

Lecture Notes in Computer Science 3816
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Goutam Chakraborty (Ed.)

Distributed Computing
and Internet Technology

Second International Conference, ICDCIT 2005
Bhubaneswar, India, December 22-24, 2005
Proceedings

13

Volume Editor

Goutam Chakraborty
Iwate Prefectural University
Department of Software and Information Science, Intelligent Informatics Lab.
Iwate 020-0193, Japan
E-mail: goutam@soft.iwate-pu.ac.jp

Library of Congress Control Number: 2005937591

CR Subject Classification (1998): D.1.3, C.2.4, D.2, F.2, H.3, H.4, D.4.6, K.6.5

ISSN 0302-9743
ISBN-10 3-540-30999-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30999-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11604655 06/3142 5 4 3 2 1 0

Program Chair’s Message

Distributed computing and Internet technology are two key areas of research
which have set the agenda for numerous initiatives for the development of in-
novative tools and techniques leading to a convergence of communication and
computing. Many conferences around the globe promote new evolving research
ideas in these areas. The International Conference on Distributed Computing
and Internet Technology, ICDCIT in short, is one of these, but with a special
characteristic. ICDCIT focuses on important cutting-edge research in the area
and aims to offer the participants a concise program and a proceedings with
excellent papers.

This is the second year of the conference, and we already enjoy a much
greater support from the research community. For this year’s conference, 426
papers were received from all continents, spread over 27 countries, close to a
100% increase in volume of submissions compared to ICDCIT 2004. I would like
to thank everyone who submitted their works to ICDCIT 2005.

The conference and these proceedings are divided into five tracks, namely:

– Distributed Computing (DC) track
– Internet Technology (IT) track
– System Security (SS) track
– Software Engineering (SE) track
– Data Mining (DM) track

The five track chairs, Arunabha Sen of Arizona State University, USA (DC
track), Mukesh Mohania of IBM India Research Lab., India (DM track), San-
jay K. Madria of University of Missouri-Rolla, USA (IT track), Indrajit Ray of
Colorado State University, USA (SS track), and Gopal Gupta of University of
Texas at Dallas, USA (SE track) took the leading role to select an excellent
set of papers in their respective tracks. The track chairs received the necessary
support from 103 members of the Program Committee and a number of addi-
tional reviewers in reviewing a large number of submissions. The review work
is time-consuming, difficult, voluntary, takes up free time, and requires honest
attention. My special thanks to all reviewers for their help.

In spite of the sincere efforts of all, it was still a difficult task to make the
acceptance decisions. Many of the submissions were of very good quality, and
we had to work very hard to select only 59 papers out of 426 submissions. Most
of the accepted papers were reviewed by three reviewers.

The papers are divided into two categories, long and short. Several factors,
other than the quality, were considered to categorize long and short papers.
One of the main considerations was how much length is required to express the
novelty of the work. We finally have 16 long and 9 short papers in the DC track,
5 long and 3 short papers in the DM track, 6 long and 3 short papers in the IT
track, 7 long in the SE track, and 6 long and 4 short papers in the SS track.

VI Preface

The opening ceremony and pre-conference tutorials on various related topics
were held on December 21. The technical program started on December 22 and
continued for three days. The program was arranged in single track so as to
enable participants to attend sessions of different tracks. Papers from the DM,
IT, SE, and SS tracks were divided into two sessions, whereas DC track sessions
were held on the first two days of the conference.

The program also included two plenary talks. The first talk was delivered
by S. S. Iyengar from Louisiana State University, USA. The second talk was
delivered by He Jifeng from the International Institute for Software Technology
(IIST) Macau. Prof. Iyenger’s talk on “The Distributed Sensor Networks — An
Emerging Technology” was focused on new ideas about the use of distributed
systems for emerging technology, while Prof. Jifeng’s talk on “Linking Theories
of Concurrency by Retraction” dealt with semantics of concurrency.

All the conference committee members contributed towards the success of
ICDCIT 2005. And it was a pleasant experience for me to work with them. The
one name that sticks out is R. K. Ghosh, Steering Committee Chair. He really
steered the group with his past experience as Program Chair of ICDCIT 2004.
Then of course the five track chairs, Arunabha Sen, Mukesh Mohania, Sanjay
Madria, Indrajit Ray, and Gopal Gupta, were the five pillars on which the con-
ference stood. In addition to time-to-time advice, Vijay Kumar, General Chair,
and Hrushikesha Mohanty, Steering Committee member, helped in many other
ways at difficult times. Pabitra Mitra (Publicity Chair), M. M. Gore (Tuto-
rial Chair), Madhabananda Das (Scholarship Chair), Jyotiranjan Hota (Finance
Chair) did an excellent job to fulfil their responsibilities. Finally my special
thanks to A. Samanta (Advisory Committee Member and Chancellor KIIT) for
his support and encouragement and P. K. Mishra (Organizing Chair) for taking
care of all local arrangements. For the publishing process at Springer, I would
like to thank Alfred Hofmann, Executive Editor, and Ms. Anna Kramer for their
constant help and cooperation. And without the financial support from KIIT,
we could not possibly imagine taking this project.

Last, but not least, thanks to all the authors whose scholarly submissions
allowed us to offer an excelled technical program, and the attendees for lively
interactions. Enjoy the proceedings — I am sure you will find plenty of interesting
material.

December 2004 Goutam Chakraborty

General Chair’s Message

We witness the evolution of a fully connected information space as a result of
recent advances in communication technology, networking and distributed com-
puting. The information space has significantly narrowed the virtual separation
among these areas, which we used to perceive as quite orthogonal as a result of
our lack of understanding. The complementary nature of areas such as software
engineering, networking and system security, database systems, data mining,
etc., are highly visible to researchers and practitioners, and a good research con-
tribution now derives equal share from a number of these areas. Conferences,
journals, and other publication avenues recognize the significance of this unified
space and create their submission structure accordingly.

The International Conference on Distributed Computing and Internet Tech-
nology (ICDCIT) has clearly recognized the complementary nature of these areas
and has built a platform to honor the contributions of national and international
researchers. ICDCIT 2005 stood on the foundation of ICDCIT 2004 and took the
conference series several steps further. It presented itself as a highly competitive
international computer science event. The submissions to the conference were
categorized broadly into five tracks to provide a suitable platform to researchers,
practitioners, and students. These tracks are identified as: (a) Distributed Com-
puting, (b) Internet Technology, (c) System Security, (d) Data Mining, and (e)
Software Engineering.

I am very happy to recognize the contributions of the Steering Commit-
tee members, conference officers, student volunteers, and other secretarial staff
members. I thank them for their hard work. It was mainly due to their effort
that ICDCIT 2005 received a large number of submissions from many countries,
including India.

I thank the Kalinga Institute of Industrial Technology, Bhubaneswar, for
creating the necessary environment for ICDCIT 2005. My special thanks go to
Chancellor A. Samanta and Pro-chancellor P. K. Misra for their support and
the momentum they generated for the forward march. I also thank Springer for
publishing the ICDCIT proceedings in their LNCS series.

December 2004 Vijay Kumar

Conference Organization

Advisory Committee
Steering Chair: Ratan K. Ghosh, Indian Institute of Technology Kanpur, India

General Chair: Vijay Kumar, University of Missouri-Kansas City, USA

Advisors:
A. Samanta, KIIT, Bhubaneswar, India
Chris George, UNU/IIST, Macau, China
Gautam Barua, IIT Guwahati, India
Hrushikesha Mohanty, University of Hyderabad, India
Krithi Ramamritham, IIT Bombay, India
Pradeep Khosla, CMU, USA
P. K. Mishra, KIIT, Bhubaneswar, India
R. K. Shyamasundar, TIFR, India
R. K. Ghosh, IIT Kanpur, India

Program Committee
Program Chair: Goutam Chakraborty, Iwate Prefectural University, Japan

Editorial Committee:
Ratan K. Ghosh, Indian Institute of Technology Kanpur, India
Vijay Kumar, University of Missouri-Kansas City, USA
Hrushikesha Mohanty, University of Hyderabad, India

Track Chairs:
Distributed Computing: Arunabha Sen, Arizona State University, USA
Internet Technology: Sanjay K. Madria, University of Missouri-Rolla, USA
Systems Security: Indrajit Ray, Colorado State University, USA
Software Engineering: Gopal Gupta, University of Texas at Dallas, USA
Data Mining: Mukesh Mohania, IBM India Research Lab., India

Tutorial Chair: M. M. Gore, NIT, Allahabad, India

Scholarship Chair: Madhabananda Das, KIIT, Bhubaneswar, India

Publicity Chair: Pabitra Mitra, IIT Kanpur, India

Organizing Chair: P. K. Mishra, KIIT, Bhubaneswar, India

Finance Chair: Jyotiranjan Hota, KIIT, Bhubaneswar, India

X Organization

Program Committee Members

Distributed Computing Track

Ajay Datta, Univ. of Nevada, Las Vegas, USA
Albert Burger, Heriot-Watt University, UK
Anup Kumar, Univ. of Louisville, USA
Aniruddha Gokhale, Vanderbilt University, USA
Anwitaman Datta, École Polytechnique Fédérale de Lausanne (EPFL),

Switzerland
Ambuj Mahanty, IIM, Kolkata, India
Bhabani Sinha, ISI, Kolkata, India
Bharat B. Bhargava, Purdue University, USA
B. S. Panda, IIT Delhi, India
Bhed Bahadur Bista, Iwate Prefectural University, Japan
David Wei, Fordham University, USA
Debasish Chakraborty, Tohoku University, Japan
D. Saha, IIM, Kolkata, India
D. Janki Ram, IIT Madras, India
Gautam Das, Univ. of Texas, Arlington, USA
G. Sajith, IIT Guwahati, India
Glenn Mansfield, Cyber Solutions Inc., Japan
K. Gopinath, IISc Bangalore, India
Krithi Ramamritham, IIT Mumbai, India
Mainak Chaudhuri, IIT Kanpur, India
Matthieu Latapy, Univ. of Paris 7, France
M. M. Gore, MNNIT, Allahabad, India
Mohammed Atiquzzaman, Univ. of Oklahoma, USA
Nabanita Das, ISI, Kolkata, India
Partha Dasgupta, Arizona State University, USA
Prem Uppuluri, Univ. of Missouri-Kansas City, USA
Raj Kannan, Lousiana State University, USA
Ravi Prakash, Univ of Texas, Dallas, USA
R. C. Hanshdah, IISc Bangalore, India
S. K. Aggarwal, IIT Kanpur, India
Somprakash Bandyopadhyay, IIM Kolkata, India
Subir Bandhyopadhyay, University of Windsor, Canada
Suman Bannerjee, University of Wisconsin, Madison, USA
Supratim Biswas, IIT Mumbai, India
Vipin Chaudhary, Wayne State University, USA
Yoshikuni Onozato, Gunma University, Japan

Organization XI

Internet Technology Track

Anirban Mandal, Univ. of Tokyo, Japan
Antonio Badia, Univ. of Louisville, USA
Debajyoti Mukhopadhyay, Techno India, Kolkata, India
Gajanan Chinchwadkar, Sybase Inc., USA
Gi-Chul Yang, Mokpo National University, South Korea
Gruenwald Le, University of Oklahoma, USA
Kajal Claypool, Univ. of Massachusetts, Lowell, USA
Kalpdrum Passi, Laurentian University, Canada
Leszek Lilien, Purdue University, USA
N. L. Sarda, IIT Bombay, India
S. K. Gupta, IIT Delhi, India
Shiyong Lu, Wayne State University, USA
Sourav Bhowmick, NTU, Singapore
Takahiro Hara, Osaka University, Japan
Tan Kian Lee, NUS, Singapore
Wee Keong Ng, NTU, Singapore

System Security Track

Aditya Bagchi, ISI Kolkata, India
Brajendra Panda, University of Arkansas, USA
Csilla Farkas, University of South Carolina, USA
Duminda Wijesekera, George Mason University, USA
Ehud Gudes, Ben Gurion University, Israel
Elena Ferrari, Università degli Studi dell’Insubria, Italy
Indrakshi Ray, Colorado State University, USA
Martin Olivier, Univ. of Pretoria, South Africa
Nasir Memon, Polytechnic University, USA
R. K. Shyamsundar, TIFR, India
Rajni Goel, Howard University, USA
Ravi Mukkamala, Old Dominion University, USA
Sabrina De Capitani di Vimercati, Univ. of Milan, Italy
Sibabrata Ray, University of Alabama, USA
Sukumar Nandi, IIT Guwahati, India
Vijay Atluri, Rutgers University, USA
Vijay Varadharajan, Macquarie University, Australia

XII Organization

Software Engineering Track

Abhik Roychoudhury, National University of Singapore, Singapore
Bernhard K. Aichernig, UNU/IIST, Macau, China
Adolfo Villafiorita, Istituto Ricerca Scientifica e Tecnologica, Italy
Bikram Sengupta, IBM India Research Lab., India
Biplav Srivastava, IBM India Research Lab., India
Dang Van Hung, UNU/IIST, Macau
H. Mohanty, Univ. of Hyderabad, India
Hai-Feng Guo, Univ. of Nebraska, USA
Joao Cangussu, Univ. of Texas at Dallas, USA
Paddy Krishnan, Bond University, Australia
Sagar Naik, University of Waterloo, Canada
Sukhamay Kundu, Louisiana State University, USA
Suresh Manandhar, York University, UK
Zhiming Liu, United Nations University, Macau, China

Data Mining Track

Anirban Mondal, Univ. of Tokyo, Japan
Asaf Adi, IBM Haifa Labs., Israel
Deendayal Dinakarpandian, Univ. of Missouri-Kansas City, USA
Indranil Bose, The Univ. of Hong Kong, Hong Kong, China
Janez Brank, Jozef Stefan Institute, Ljubljana, Slovenia
Jean-Gabriel Ganascia, Univ. Pierre et Marie Curie, France
Jorge Bernardino, Univ. of Coimbra, Portugal
Krishna Kummamuru, IBM India Research Lab., India
Ladjel Bellatreche, ENSMA, France
Michael Schrefl, Institut für Wirtschaftsinformatik, Austria
Ng Wee Keong, NTU, Singapore
Rajeev Gupta, IBM India Research Lab., India
Pabitra Mitra, IIT Kanpur, India
Shalab Goel, Hyperion, USA
Torben Bach Pedersen, Auburg University, Denmark
Vladimir Estivill-Castro, Griffith University, Australia
Werner Winiwarter, Univ. of Vienna, Austria
Y. Yao, Univ. of Regina, Canada
Yue-Shi Lee, Ming Chuan University, Taiwan

Organization XIII

List of Referees

Asaf Adi
S. K. Aggarwal
Bernhard K. Aichernig
Mohammed Atiquzzaman
Vijay Atluri
Antonio Badia
Aditya Bagchi
Ajay Bansal
Ladjel Bellatreche
Jorge Bernardino
Bharat B. Bhargava
Bhed Bahadur Bista
Indranil Bose
Albert Burger
Venkatesan Balakrishnan
Suman Bannerjee
Somprakash Bandyopadhyay
Subir Bandhyopadhyay
Kalyan Basu
Sourav Bhowmick
Supratim Biswas
Shane Bracher
Joao Cangussu
Kaojia Cao
Debasish Chakraborty
Vipin Chaudhary
Mainak Chaudhuri
Xin Chen
Gajanan Chinchwadkar
Krishna Prasad Chitrapura
Lawrence Chung
Kajal Claypool
Gautam Das
Nabanita Das
Nibedita Das
Partha Dasgupta
Anwitaman Datta
Ajay Datta
Deendayal Dinakarpandian
Jing Dong
Alpana Dubey
Vladimir Estivill-Castro
Csilla Farkas

Leonidas Fegaras
Elena Ferrari
Colin Fidge
Gavin Finnie
Jean-Gabriel Ganascia
Ankit Goel
Rajni Goel
Shalab Goel
Aniruddha Gokhale
M. Goller
K. Gopinath
M. M. Gore
Ehud Gudes
Hai-Feng Guo
Rajeev Gupta
S. K. Gupta
R. C. Hanshdah
Takahiro Hara
Dang Van Hung
Morihiro Hayashida
D. Janki Ram
Sachindra Joshi
Janez Brank Jozef
Raj Kannan
R. Kaushik
Ng Wee Keong
Srividya Kona
Paddy Krishnan
Krishna Kummamuru
Anup Kumar
Rajeev Kumar
Sukhamay Kundu
Matthieu Latapy
Gruenwald Le
Tan Kian Lee
Yue-Shi Lee
David Levine
Xiaoshan Li
Xiaoshan Li
Leszek Lilien
Miao Liu
Zhiming Liu
Xiaojian Liu

XIV Organization

Rohit M. Lotlikar
Lunjin Lu
Shiyong Lu
Ambuj Mahanty
Monika Maidl
Ajay Mallya
Suresh Manandhar
Glenn Mansfield
Setsuro Matsuda
Nasir Memon
Sun Meng
H. Mohanty
Anirban Mandal
Pabitra Mitra
Debajyoti Mukhopadhyay
Krishnendu Mukhopadhyaya
Ravi Mukkamala
Sudheendra Murty
Sagar Naik
Wee Keong Ng
Sukumar Nandi
Martin Olivier
Yoshikuni Onozato
B. S. Panda
Brajendra Panda
Kalpdrum Passi
Torben Bach Pedersen
Ravi Prakash
Krithi Ramamritham
Bhaskaran Raman
Indrakshi Ray
Sibabrata Ray
Marco Roveri
Abhik Roychoudhury

D. Saha
Diptikalyan Saha
G. Sajith
N. L. Sarda
Michael Schrefl
Bikram Sengupta
R. K. Shyamsundar
Y. N. Singh
Bhabani Sinha
Luke Simon
Sumit W Sorde
Biplav Srivastava
Phil Stocks
Vivy Suhendra
Angelo Susi
Roberto Tiella
Udaya Kiran Tupakula
Prem Uppuluri
Vijay Varadharajan
Ranga Raju Vatsavai
Adolfo Villafiorita
Sabrina De Capitani di Vimercati
Qian Wang
David Wei
Duminda Wijesekera
Werner Winiwarter
Matthew Wright
Y. Yao
Gi-Chul Yang
Gabriele Zacco
Naijun Zhan
Wei Zhang
Xiangpeng Zhang
Ling Zhou

Table of Contents

Plenary Talk I

The Distributed Sensor Networks – An Emerging Technology
S.S. Iyengar . 1

Distributed Computing

Distributed Computing Track Chair’s Message
Arunabha Sen . 2

Network Protcols

Efficient Binding Lifetime Determination Schemes in HMIPv6
Sun Ok Yang, SungSuk Kim, Chong-Sun Hwang 3

A Fast Search and Advanced Marking Scheme for Network IP
Traceback Model

Jia Hou, Moon Ho Lee . 15

Design and Performance Evaluation of Token-Based MAC Protocols in
WDM Burst Switched Ring Networks

Li-Mei Peng, Young-Chul Kim, Kyoung-Min Yoo, Kyeong-Eun Han,
Young-Chon Kim . 21

Routing in Mobile Ad Hoc Network

Self-stabilizing Energy-Aware Routing Algorithm in Wireless Sensor
Network with Limited Mobility

Smruti Padhy, Diganta Goswami . 27

Position Based Gradient Routing in Mobile Ad Hoc Networks
Anand Praksh Ruhil, D.K. Lobiyal, Ivan Stojmenovic 39

Distributed Clustering Algorithm for Finding Virtual Backbone in
Ad Hoc Networks

B. Paul, S.V. Rao . 50

XVI Table of Contents

Merging Clustering Algorithms in Mobile Ad Hoc Networks
Orhan Dagdeviren, Kayhan Erciyes, Deniz Cokuslu 56

Performance Study and Implementation of Self Organized Routing
Algorithm for Mobile Ad Hoc Network Using GloMoSim

K. Murugan, S. Shanmugavel . 62

Communication and Coverage in Wireless Networks

Self-stabilizing Deterministic TDMA for Sensor Networks
Mahesh Arumugam, Sandeep S. Kulkarni . 69

Effect of Mobility on Communication Performance in Overloaded
One-Dimensional Cellular Networks

Michihiro Inoue, Noriaki Yoshiura, Yoshikuni Onozato 82

Distributed Time Slot Assignment in Wireless Ad Hoc Networks for
STDMA

Subhasis Bhattacharjee, Nabanita Das . 93

Efficient Algorithm for Placing Base Stations by Avoiding Forbidden
Zone

Sasanka Roy, Debabrata Bardhan, Sandip Das . 105

Secured Communication in Distributed Systems

Secure Two-Party Context Free Language Recognition
Anshuman Singh, Siddharth Barman, K.K. Shukla 117

Autonomous Agent Based Distributed Fault-Tolerant Intrusion
Detection System

Jaydip Sen, Indranil Sengupta . 125

Cleaning an Arbitrary Regular Network with Mobile Agents
Paola Flocchini, Amiya Nayak, Arno Schulz . 132

Query and Transaction Processing

Multi-attribute Hashing of Wireless Data for Content-Based Queries
Yon Dohn Chung, Ji Yeon Lee . 143

A Tool for Automated Resource Consumption Profiling of Distributed
Transactions

B. Nagaprabhanjan, Varsha Apte . 154

Table of Contents XVII

An Efficient Algorithm for Removing Useless Logged Messages in
SBML Protocols

JinHo Ahn . 166

Theory of Distributed Systems

Divide and Concur: Employing Chandra and Toueg’s Consensus
Algorithm in a Multi-level Setting

Rahul Agarwal, Mahender Bisht, S.N. Maheshwari,
Sanjiva Prasad . 172

Distributed Multiple Hypothesis Testing in Sensor Networks Under
Bandwidth Constraint

Chandrashekhar Thejaswi PS, Ranjeet Kumar Patro 184

A Scalable Multi-level Distributed System-Level Diagnosis
Paritosh Chandrapal, Padam Kumar . 192

Analysis of Interval-Based Global State Detection
Punit Chandra, Ajay D. Kshemkalyani . 203

Grid Computing

A Two-Phase Scheduling Algorithm for Efficient Collective
Communications of MPICH-G2

Junghee Lee, Dongsoo Han . 217

Towards an Agent-Based Framework for Monitoring and Tuning
Application Performance in Grid Environment

Sarbani Roy, Nandini Mukherjee . 229

GDP: A Paradigm for Intertask Communication in Grid Computing
Through Distributed Pipes

D. Janakiram, M. Venkateswara Reddy, A. Vijay Srinivas,
M.A. Maluk Mohamed, S. Santosh Kumar . 235

Internet Technology

Internet Technology Track Chair’s Message
Sanjay K. Madria . 242

XVIII Table of Contents

Internet Search and Query

Rewriting Queries Using View for RDF/RDFS-Based Relational Data
Integration

Huajun Chen . 243

An Effective Searching Method Using the Example-Based Query
Kil Hong Joo, Jaeho Lee . 255

On Communicating with Agents on the Network
Rajat Shuvro Roy, M. Sohel Rahman . 267

E-Commerce

Applying Fuzzy Logic to Recommend Consumer Electronics
Yukun Cao, Yunfeng Li, Xiaofeng Liao . 278

Generic XML Schema Definition (XSD) to GUI Translator
V. Radha, S. Ramakrishna, N. Pradeep Kumar 290

Off-Line Micro-payment System for Content Sharing in P2P Networks
Xiaoling Dai, John Grundy . 297

Browsing and Analysis of Web Elements

FlexiRank: An Algorithm Offering Flexibility and Accuracy for
Ranking the Web Pages

Debajyoti Mukhopadhyay, Pradipta Biswas . 308

Adaptable Web Browsing of Images in Mobile Computing Environment:
Experiments and Observations

Atul Kumar, Anjali Bhargava, Bharat Bhargava, Sanjay Madria 314

An Incremental Document Clustering Algorithm Based on a
Hierarchical Agglomerative Approach

Kil Hong Joo, SooJung Lee . 321

Systems Security

System Security Track Chair’s Message
Indrajit Ray . 333

Table of Contents XIX

Theory of Secured Systems

A Game Based Model of Security for Key Predistribution Schemes in
Wireless Sensor Network

Debapriyay Mukhopadhyay, Suman Roy . 334

E-mail Worm Detection Using the Analysis of Behavior
Tao Jiang, Wonil Kim, Kyungsuk Lhee, Manpyo Hong 348

Verifiably Encrypted Signature Scheme Without Random
Oracles

M. Choudary Gorantla, Ashutosh Saxena . 357

Intrusion Detection and Ad Hoc Network Security

An Improved Intrusion Detection Technique for Mobile
Adhoc Networks

S. Prasanna, V. Vetriselvi . 364

User Revocation in Secure Adhoc Networks
Bezawada Bruhadeshwar, Sandeep S. Kulkarni 377

A Hybrid Method to Intrusion Detection Systems Using HMM
C.V. Raman, Atul Negi . 389

Secured Systems Techniques

Enhanced Network Traffic Anomaly Detector
Suresh Reddy, Sukumar Nandi . 397

Statistically Secure Extension of Anti-collusion Code Fingerprinting
Jae-Min Seol, Seong-Whan Kim . 404

An Improvement of Auto-Correlation Based Video Watermarking
Scheme Using Perceptual Masking for Motion

Hyun-Seong Sung, Seong-Whan Kim . 410

Validation of Policy Integration Using Alloy
Manachai Toahchoodee, Indrakshi Ray . 420

Plenary Talk II

Linking Theories of Concurrency by Retraction
He Jifeng . 432

XX Table of Contents

Software Engineering

Software Engineering Track Chair’s Message
Gopal Gupta . 433

Software Architecture

Integrating Architecture Description Languages: A Semantics-Based
Approach

Qian Wang . 434

Automated Runtime Validation of Software Architecture
Design

Zhijiang Dong, Yujian Fu, Yue Fu, Xudong He 446

Software Optimization and Reliability

Analyzing Loop Paths for Execution Time Estimation
Abhik Roychoudhury, Tulika Mitra, Hemendra Singh Negi 458

A Technique for Early Software Reliability Prediction
Rakesh Tripathi, Rajib Mall . 470

Formal Methods

Executable Requirements Specifications Using Triggered Message
Sequence Charts

Bikram Sengupta, Rance Cleaveland . 482

Efficient Symmetry Reduction for an Actor-Based Model
M.M. Jaghoori, M. Sirjani, M.R. Mousavi, A. Movaghar 494

Validated Code Generation for Activity Diagrams
A.K. Bhattacharjee, R.K. Shyamasundar . 508

Data Mining

Data Mining Track Chair’s Message
Mukesh Mohania . 522

Table of Contents XXI

Data Clustering Techniques

An Approach to Find Embedded Clusters Using Density Based
Techniques

S. Roy, D.K. Bhattacharyya . 523

Using Sub-sequence Information with kNN for Classification of
Sequential Data

Pradeep Kumar, M. Venkateswara Rao, P. Radha Krishna,
Raju S. Bapi . 536

Distance-Based Outliers in Sequences
Girish Keshav Palshikar . 547

Capturing Market Intelligence from Customer Feedback E-mails
Using Self-enhancing Bolztmann Machine-Based Network of
Knowledge Maps

Pradeep Kumar, Tapati Bandopadhyay . 553

Multidimensional Data Mining

Algorithm for Fuzzy Clustering of Mixed Data with Numeric and
Categorical Attributes

Amir Ahmad, Lipika Dey . 561

Dissemination of Multidimensional Data Using Broadcast Clusters
Ilias Michalarias, Hans-J. Lenz . 573

Multidimensional Frequent Pattern Mining Using Association Rule
Based Constraints

S. Vijayalakshmi, S. Suresh Raja . 585

A Classification Based Approach for Root Unknown Phylogenetic
Networks Under Constrained Recombination

M.A.H. Zahid, Ankush Mittal, R.C. Joshi . 592

Author Index . 605

The Distributed Sensor Networks – An
Emerging Technology

S.S. Iyengar

Louisiana State University, USA

Abstract. Distributed Sensor networks have a wide range of real-time
applications in aerospace, automation, defense, medical imaging,
robotics, and weather prediction. Over the past several years, scientists,
engineers, and researchers in a multitude of disciplines have been clamor-
ing for more detailed information without much success. This new evolv-
ing technology can provide solutions to a variety of these technology
related problems. Professor Iyengar in this talk will give an overview
of these impact areas based on his experience in working with various
industries like Oak ridge National Lab, Jet Propulsion Lab, and Naval
Research Lab. His talk is also based on his experiences of working with
scientists from Raytheon, Boeing during the last few years.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Distributed Computing Track Chair’s Message

Arunabha Sen

Arizona State University, USA

Abstract. The Distributed Computing track of ICDCIT 2005 received
181 papers. Based on the review by the members of the Program Com-
mittee, 16 full and 9 short papers were selected for inclusion in the pro-
ceedings of the conference. The accepted papers cover a wide range of
topics in Distributed Computing. Design of MAC protocol, network ar-
chitecture and routing protocol for Wireless Ad-Hoc Networks seem to
attract the attention of many researchers. 5 of the 16 accepted full pa-
pers fall in this area. The other popular areas include, Network Security,
Sensor Networks, Fault Detection and Recovery and Grid Computing.
Each of these areas will have at least 3 papers in the proceedings. The
Distributed Computing track will also have papers in the areas of Cel-
lular Networks, Peer-to-Peer Networks, Optical Networks, Information
Retrieval, QoS and Mobile IP. We have put together a program that
covers many important areas of Distributed Computing. We hope you
will find the papers in this track informative, interesting and useful.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, p. 2, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Binding Lifetime Determination
Schemes in HMIPv6�

Sun Ok Yang1, SungSuk Kim2, and Chong-Sun Hwang1

1 Dept. of Computer Science & Engineering, Korea University, Seoul, S. Korea
{soyang, hwang}@korea.ac.kr

2 Corresponding author. Dept. of E-Businees, SeoKyeong University, Seoul, S. Korea
sskim03@skuniv.ac.kr

Abstract. Mobile IP represents a global solution, providing mobility
management for a wide variety of radio technologies, devices and ap-
plications. Significant research results relating to extensions for MIPv6
have been reported over the last several years. However practical and
common issues exist within the technology, in particular, the specifica-
tion of Binding Update Lifetime has a substantial impact on the system
performance. In this paper, binding lifetime determination schemes are
devised to obtain high energy-efficiency mobile nodes in HMIPv6. Some
people may stay within some area for a long time and thus the related
information can be very useful in decreasing the frequency of binding
update messages. That is, if each user maintains a profile locally based
on moving history; this can be very useful in fixing the lifetime in terms
of current location. In addition, the resident time is occasionally affected
by the daily arrival time as well as the subnet. Thus, we expand the
scheme to consider the time region of arrival time per each subnet. We
study the performance improvement of our schemes through extensive
simulations.

1 Introduction

Mobile IP [1] represents a global mobility solution, providing mobility manage-
ment for a wide variety of radio technologies, devices and applications. It allows
a Mobile Node (MN) to change location without requiring restart of any ap-
plications or termination of any ongoing communication. Significant research
resulting in various extensions for Mobile IPv6 (MIPv6) has been reported over
the last several years. This work deals with a number of aspects: Fast Handovers
for MIPv6 [2], QoS Guarantees with MIPv6 [3], Cellular IP [4] and Mobile IP
with Paging [5]. However there are practical and common issues, of which much
less attention is paid. This problem related to the specification of the Binding
Update Lifetime [1]. Hierarchical Mobile IPv6 (HMIPv6) [6], differentiating the
local mobility from global mobility is more appropriate to the Internet. It has
been developed by the IETF with new functionality for improving the perfor-
mance of MIPv6 in terms of handoff delay. In HMIPv6 (see Fig. 1), a Binding is
� This research was supported by University IT Research Center Project.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 3–14, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

4 S.O. Yang, S. Kim, and C.-S. Hwang

CN

MAP1MAP1

AR1AR1

Internet

AR2AR2

MAP2MAP2

AR4AR4
AR3AR3

CN

Packet
BU

MNMN

Domain 1

Domain 2

MNMN

HA

Movement

Fig. 1. Hierarchical Mobile IPv6

the association of the home address of a MN with an on Link Care-of-Address
(LCoA) or a Regional Care-of-Address (RCoA), for that mobile node, along with
the remaining lifetime for that association. A lifetime is specified whenever a MN
transmits a Binding Update (BU) Message to the Mobility Anchor Point (MAP),
its Home Agent (HA) and relevant Correspondent Nodes (CNs). This lifetime is
identified where specifications of a lifetime impact system performance. If the
lifetime is set too short, HA quickly detects that the MN is disconnected from
the network, but resulting in a large number of BU messages over the wireless
link. This is one of the main reasons of HA processing overload and deterioration
of MN energy efficiency and wireless bandwidth utilization. The reverse, when
a long lifetime BU message is received, HA and CNs keep it in a binding cache
until the lifetime expires. If a MN disconnects from the network, the problem
occurs since HA cannot know this situation until the lifetime is refreshed. In
addition, the binding record will eventually occupy more space in both data
structures, Binding Cache and Binding Update List, of the MNs [1]. Therefore,
an approach for determining proper binding lifetime is needed in the context of
HMIPv6 networks.

In our previous work [7], a Profile-Based Strategy (PBS) in MIPv6 was pro-
posed to determine the BU lifetime dynamically. Based on that work, binding
lifetime determination schemes is presented in order to provide energy-efficiency
of MN in HMIPv6. If information containing each MN’s mobility pattern is
available, this is helpful in predicting future movement behavior. A MN gathers
related information whenever it leaves a subnet and periodically computes the
lifetime values for all visited subnets, maintaining them in its profile. When a
MN migrates any subnet, and there is a record for the subnet in the profile, an
adaptive lifetime is applied to the BU lifetime. In addition, another regularity
pattern can be found in the daily arrival time as well as the visited subnet. Thus,
an expanded scheme is proposed considering the time region of arrival for each
subnet. Simulation work is performed to present the efficiency of the proposed
ideas over MIPv6 and HMIPv6.

The paper is organized as follows. The binding management and schemes for
dynamically setting the lifetime are presented in Section 2. The schemes are

Efficient Binding Lifetime Determination Schemes in HMIPv6 5

compared with that in MIPv6 and HMIPv6 with regard to the number of BU
messages in Section 3. Finally, the conclusions and further work are discussed in
Section 4.

2 Dynamic Lifetime Determination

In this section, the proposed schemes, which reduce the number of BU messages
from MNs, are described. To do so, a new type of BU message is first introduced
in HMIPv6 and then the algorithms to determine BU lifetime will be proposed
using local profile information.

Binding Management. As previously mentioned, a binding for a MN is the
triplet that contains the home address, LCoA or RCoA, and the binding lifetime.
With HMIPv6, every node has a Binding Cache, which is used to hold the
bindings for other nodes. If a node receives a BU, it will add this binding to its
Binding Cache. In addition, every MN has a Binding Update List, used to store
information regarding each BU transmitted by this MN, for which the lifetime
has not expired. A binding entry is removed from either the Binding Cache or
Binding Update List, whenever its lifetime has expired.

Considering that some kinds of people (such as office worker, housewife, shop-
keeper) have comparatively regular movement patterns in some subnets, i.e.,
they will not move out of their subnet for a predictable period of time. In con-
trast, others (such as taxi driver, salesman) move around completely irregular.
That is, past movements for such users cannot be used to accurately predict
current movements within the subnet. If information regarding each MN’s past
movements is maintained locally and is available, the proper BU lifetime can be
provided whenever the MN enters a subnet. In this paper, three kinds of BU
messages are used according to the lifetime.

(1) BUα has a default lifetime (LT α), which is the same value as one used in
existing MIPv6 [1]. After switching to a new MAP, MN may transmit BUα

to its previous MAP, asking it to redirect all incoming packets to its new
CoA.

(2) BUβ has a adaptive lifetime (LT β), which is computed based on local profile.
A MN has to transmit it to the MAP, its HA and CNs.

(3) BU0 contains a zero lifetime value (LT 0). When a MN migrates a subnet in
another domain before the BUβ has expired, it will be used to notify both
HA and external CNs that the cached data regarding the BUβ has become
stale and the data requires removal.

Both BUα and BU0 are originally used in MIPv6 but the BUβ is newly devised
in this paper. Of course, if the MN does not move out of the subnet, although
LT β expires, BUα will be used hereafter.

Resident Time Based Scheme (RT). When a MN leaves a subnet, informa-
tion (moving log) regarding the visit, is recorded. The log contains an ordered

6 S.O. Yang, S. Kim, and C.-S. Hwang

ρ α

α
ρ α

α

β

β

Fig. 2. Resident Time Based Scheme

pair (l, AT , DT), which represents the subnet identifier, Arrival Time (AT)
and Departure Time (DT), respectively. The average resident time and the fre-
quency of logs in each subnet are considered when the adaptive lifetime (LT β)
is calculated. This scheme is named the resident time based scheme (RT). When
a MN moves to another m, it adds current visit information to a moving log.
The average resident time for all visited subnets is periodically calculated, and
the scheme is described in Fig. 2. At first, the resident time (tn) for nth visit to
subnet m is computed by simply subtracting AT from the DT.

In Fig. 2, a comparison of tn and ρ ∗DLT is used to exclude the moving log
where the resident time is small (that is, the case where a MN recently passed
by the subnet, for a moment while moving to specific destination). It is assumed
that tn is compared with ρ (≥ 1) times as long as DLT . Summ and Countm
represent total resident time and total visit number to subnet m respectively.
During the calculation, if the number of visits to subnet m is fewer than the
constant value (countb), the BUα will be used since poor (or no) regularity is
found in subnet m. The variance rate, as well as the average resident time, in
this case is considered. To begin with, the movement patterns for all subnets in
the profile are divided into mobility types A, B, and C to present the degree of
accuracy of the profile. To quantify the difference, the variance is calculated for
all subnets as Eq. (1):

V arm =
1
n

n∑
i=1

(ti −Meanm)2 (1)

If V arm is smaller than the constant δ1, subnet m is classified as mobility type A
(the most reliable subnet). If V armis larger than constant δ1 and smaller than
constant δ2, the subnet is classified as mobility type B. Otherwise; the subnet
belongs to mobility type C. The lifetime value for the next BU is calculated by
multiplying the mean resident time by the difference constant, V, according to

Efficient Binding Lifetime Determination Schemes in HMIPv6 7

AT mn
highAT mn
high

DT mn
lowDT mn
low

(a) (b) (c) (d) (e)

Fig. 3. Various Cases of Visiting Time

mobility type. Namely, the constant value in mobility type A (V A) is larger than
that in mobility type B (V B). The calculated value, LTβ, will be used as the
lifetime for BUβ when the MN visits subnet m, after creating the profile. If a
MN migrates to a subnet within another domain before LTβ has expired, the
previous MAP has to transmit a BU0 to both HA and external CNs.

Time Region Based Scheme (TR). The resident time for some subnets
often depends on the arrival time. In this way, another scheme is devised, a Time
Region based scheme (TR) by expanding the RT. This scheme also considers the
time region of the arrival time to enhance the accuracy of the profile. During
periodic calculations, the mean resident time per (subnet ID, time region) pair,
must be considered, not simply the subnet. To do so, a scheme to determine the
time regions from moving logs is required. Five different cases are considered, as
shown in Fig. 3. The following information is also maintained in the profile per
time region:

•AThigh
mn the highest (or latest) arrival time

•DT low
mn the lowest (or earliest) departure time

•Countmn the number of visits included in the nth time region
•TotalCountmn the total number of visits considered in the nth time re-

gion

Where subscriptions n and m mean nth time region to subnet m. Since the time
region is considered, as well as the visiting subnet, each time region maintains
its visiting number (TotalCountmn, Countmn) separately.

In the figure, the vertical dotted line represents the time interval (Intervalmn

= DT low
mn - AT high

mn) that one time region calculated. The solid line presents the
current visiting time. In the case of Fig. 3-(e), it is natural to exclude a new
visit from the time region. Visit in Fig. 3-(a) or (b) requires to verification of
the MN resides too long or too short in the subnet. If the resident time is longer
than 3

2 × Intervalmn or shorter than 1
2 × Intervalmn, the difference between

both grows too long and thus, the current visiting log cannot provide reliable
information. That is, the log is completely excluded; if the log is not too long,
the log is also used in periodic calculations. In addition it must be considered not
only the length of resident time but also the time that a MN has arrived must
be considered. Fig. 3-(c) and (d) initially appear to be similar cases. However, if
both are considered, the time region does not provide useful information. Thus,
the following process is required for an accurate determination.

8 S.O. Yang, S. Kim, and C.-S. Hwang

middle = Intervalmn/2
if (middle ≥ arrival time of current visit)

the current log include into the nth time region
else the current log is excluded

Then, if the current log is included into nth time region of subnet m, Countmn

and TotalCountmn all increase by 1. Otherwise, only TotalCountmn increases by
1 (Fig. 3-(a) and (b)), since this variable will be used to determine the accuracy
of the profile. If the arrival time in the current visit is earlier than AThigh

mn ,
it is enough to be considered contrary to the cases shown in Fig. 3-(c), (d),
and (e). The moving log excluded from the above algorithm will be used to
form another time region, except the regions described in Fig. 3-(a) and (b).
After time regions are determined using this method, mostly the algorithm to
determine mobility type is similar to the RT with one exception. In the RT, only
V arm is considered per visited subnet. However, both comparisons between ratio
Countmn and TotalCountmn and V arm are required to evaluate the usefulness
of the information regarding the time region. That is, if V armis smaller than δ1
and Countmn

TotalCountmn
is larger than γ1, the time region to subnet m is regarded as

mobility type A. If V arm is greater than δ2 or Countmn

TotalCountmn
is smaller than γ2,

it is considered that without regularity (mobility type C). In the other cases, the
average resident time is adjusted as mobility type B.

Disconnection. In the proposed schemes, the scheme of most important is
disconnection. If a MN cannot connect to its CN or HA due to various reasons,
some packets may be lost. This is because the CNs assume that the MN is alive
and is now transmitting packets until the lifetime expires. This situation creates
two cases. The first case, disconnection occurs when a MN is moving. The MN
transmits new BUs to both HA and CNs after forming a new CoA. That is, it is
the establishment of new connectivity. In the second case, disconnection occurs
when a MN stays. If the MN is now communicating, it simply transmits BUs as
in HMIPv6. The probability of disconnection, however, is very small except for a
voluntary power-off, because of the advance of mobile communication technology.
This means that the probability of loss of packets resulting from disconnection
is extremely small. Therefore this problem is not investigated in this paper.

3 Performance Analysis

In order to examine the performance of the two proposed schemes, the RT and
TR, an experimental evaluation is achieved. In the experiments, the main interest
focuses on energy-efficiency in terms of the bandwidth usage, thus the schemes
are both compared to HMIPv6.

3.1 Simulation Models

The simulation model for the schemes is depicted in Fig. 4. Each MN collects
log data in the form (l, ATn, DTn), whenever it leaves a visited subnet. It is

Efficient Binding Lifetime Determination Schemes in HMIPv6 9

Mean 1

¥ ¥ ¥

Mean 2

Subnet2

AT DT

SubnetmSubnet1

MN

AT DT

Subnetm

1stvisit 2 nd visit nthvisit

AT m1 AT m2

AT mn

DT m1
DT m2

DT mn

¥ ¥ ¥ t1 t2 tn

Mean 2

AT DT

(a) RT Model (b) TR Model

Fig. 4. Simulation Models

assumed that the resident time at any subnet follows a Gamma distribution
[8] with shape parameter α. As is generally known, a Gamma distribution is
selected because it can be shaped to represent many distributions, as well as
measure data that cannot be characterized by a particular distribution.

The Eq. (2), (3), and (4) describe the density function for resident time, the
mean of resident time at a visited subnet and the variance of resident time,
respectively. In the equations, t is the resident time at each visited subnet. It
is important to note, however, that the resident time follows an exponential
distribution where parameter α =1, λ = 1/E(t) in a Gamma distribution. The
results are shown as the amount of bandwidth allocated by BU messages.

f(t) =
λα

Γ (α)
(λt)α−1l−λt, t ≥ 0 (2)

E(t) =
α

λ
(3)

V (t) =
α

λ2 (4)

All parameters set as constant in the previous section are presented in Table 1
where ρ and Countb are used to check whether to consider the current movement
log or not, and δ1, δ2, γ1 and γ1 to determine mobility type of the subnet. The
values are selected from various experiment settings however they will not affect
the overall performance seriously. V A and V B mean the weight value for the
calculated lifetime of mobility type A and B, respectively. The disconnection rate
(ζ) is set at 0.001 but does not affect overall performance since both schemes
and HMIPv6 treat disconnection in the same manner. It is also assumed that
the energy cost to compute and maintain profile is negligible considering the
communication cost. Issue relating to the degree of accuracy of the profile is
beyond the scope of this paper and thus, is not developed further.

3.2 The Results

In following (5), (6) and (7), BWMIPv6, BWHMIPv6 and BW proposal are the
amounts of the allocated bandwidth for BUs in MIPv6, HMIPv6 and the pro-
posed schemes, respectively. SizeBU is defined as the size of a BU (68bytes =
IPv6 header (40bytes) + Binding Update Extension Header (28bytes)) [9]. fHA

is denoted as the BU emission frequency from the MN to its HA and fCN is
the average BU emission frequency from the MN to its CNs. When a MN mi-
grates, κ represents the intra-domain moving rate. The domain-crossing rate is

10 S.O. Yang, S. Kim, and C.-S. Hwang

Table 1. Parameter Settings

parameter value meaning
ρ 2
Countb 10 threshold of Count
δ1 10 constant value to determine mobility type A
δ2 50 constant value to determine mobility type C
γ1 0.8 constant value of Countmn

TotalCountmn
for mobility type A

γ2 0.6 constant value of Countmn
TotalCountmn

for mobility type C
κ 0.3 intra-domain moving rate
VA 1.0 V value for mobility type A
VB 0.8 V value for mobility type B
ζ 0.001 disconnection rate

1-κ, meaning the number of crossing domains divided by the total number of
crossing subnets. The MN transmits M consecutive BUs to its external CNs,
and transmits another BU to its HA, receiving a BA from HA. In (5) [9], #CN
is the number of CNs that are not on the home network. When a MN, using
MIPv6, migrates along subnets, it transmits a BU to each CN and to its HA
equal to fCN and fHA. In (6) [9], #CN is the number of external CNs of MN.
When it is migrating within a foreign domain, the BU is also transmitted to both
external CNs and the HA at a refreshment frequency (fREF). Even though MN
does not cross out of a domain, it should transmit messages periodically if it is
based on MIPv6 or HMIPv6. If the profile information proposed in this paper
can be used, the refreshment frequency may be reduced to fRT−REF , although
the MAP should transmit an additional BU, fADD, to its external CNs and HA
(7). In case of inter-domain movement, the total levels of bandwidth allocated
to BUs are equal among the three schemes.

BWMIPv6 =SizeBU ×{κ×(fCN ×(
CN + 1)+fHA)+(1 − κ)×(M×
CN + 2)} (5)

BWHMIPv6 = SizeBU × {κ × fREF × (
CN + 1) + (1 − κ) × (M ×
CN + 2)} (6)

BWproposal=SizeBU×{κ×fRT−REF ×(
CN+1)+(1−κ)×(M×
CN+2)+fADD}(7)

fADD =
{

	CN + 1 if visiting subnet is in the profile
0 otherwise

Figure 5 represents the comparison among the RT, MIPv6, and HMIPv6 in a
Gamma distribution where the mean resident time varies from 7 to 100 minutes
and the variance is set to 0.01, 1, 25 and 100. In this case, resident time less than
7 minutes is not considered since a MN will do exactly the same. It is assumed
that a MN migrates as mobility type A in 5% of the all subnets recorded in
the profile, mobility type B in another 15% of the subnets, and mobility type

Efficient Binding Lifetime Determination Schemes in HMIPv6 11

(a) Variance = 0.01 (b) Variance = 1

(d) Variance = 100(c) Variance = 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 10 20 30 40 50 60 70 80 90 100

Mean Resident Time (Minute)

B
 U

 B
 a
 n
 d
 w
 i
 t
 h

 R
 a
 t
 i
 o
 RT/HMIPv6

RT/MIPv6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 10 20 30 40 50 60 70 80 90 100

Mean Resident Time (Minute)

B
 U

 B
 a
 n
 d
 w
 i
 t
 h

 R
 a
 t
 i
 o
 RT/HMIPv6

RT/MIPv6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 10 20 30 40 50 60 70 80 90 100

Mean Resident Time (Minute)

B
 U

 B
 a
 n
 d
 w
 i
 d
 t
 h

 R
 a
 t
 i
 o

RT/HMIPv6

RT/MIPv6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 10 20 30 40 50 60 70 80 90 100

Mean Resident Time (Minute)

B
 U

 B
 a
 n
 d
 w
 i
 d
 t
 h

 R
 a
 t
 i
 o

RT/HMIPv6

RT/MIPv6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 10 20 30 40 50 60 70 80 90 100

Mean Resident Time (Minute)

B
 U

 B
 a
 n
 d
 w
 i
 d
 t
 h

 R
 a
 t
 i
 o

RT/HMIPv6

RT/MIPv6

Fig. 5. Gamma Distribution

C in the remaining 80%. As mentioned in Section III.C. The subnets recorded
as mobility type A provide more reliable information for their subsequent visits
than those with mobility type B or C. During local movement within a foreign
domain, BU bandwidth depends on #CN, fCN , fHA, fREF and fRT−REF .
Since the behaviors of the BU bandwidth ratio are almost identical when #CN
is 2 or 10, Fig. 5 presents the results where #CN=2. In the figure, the Y-axis
value is a relative value comparing the schemes. That is, if the value is smaller
than 1.0, the RT saves more bandwidth than the other scheme. At first, it is
known that variance has little influence on overall performance. The reason is as
follows: Users have irregular movement patterns and variance is one of the factors
that affect irregularity. Thus, the profile is used to capture reliable information
unaffected by the factors, i.e., variance. In Fig. 6, experiments are made when
the parameter is set at α=1, λ = 1/E(t) in a Gamma distribution and resident
time follows an exponential distribution.

From the Fig. 5 and 6, both the ratio of RT to MIPv6 and the ratio of
RT to HMIPv6 decrease as mean resident time increases. For example, in the
case where mean resident time =100 in Fig. 5-(a), only 20% of messages are

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 10 20 30 40 50 60 70 80 90 100

Mean Resident Time (Minute)

B
 U

 B
 a
 n
 d
 w
 i
 d
 t
 h

 R
 a
 t
 i
 o
 RT/HMIPv6

RT/MIPv6

Fig. 6. Exponential Distribution

12 S.O. Yang, S. Kim, and C.-S. Hwang

required, compared with MIPv6 and HMIPv6. The other figures show similar
results. This indicates that bandwidth usage in the RT is the most efficient
than the others and HMIPv6 provides better usage than MIPv6. The reason is
that in the case of MIPv6, BUs are transmitted to its HA and CNs when the
MN is roaming locally but HMIPv6 just forces transmission of the BUs refresh
to MAP periodically. The RT only transmits the BUs to its MAP similar to
HMIPv6, and moreover, refresh time is also lengthened if a long resident time
is computed for the current location from the profile.There may be differences
between the computed lifetime and real resident time. In spite of this, the level
of reduced bandwidth is substantial, in subnets where MNs are determined as
consisting mainly of mobility type A or B. In particular, when a MN does not
migrate across domains frequently, most of the signaling load is generated by the
refreshing BUs. The central improvements proposed in this paper, are achieved
by decreasing the number of periodic refreshing BUs.

If a MN leaves the current subnet before the lifetime expires, the MAP should
transmit BU0 to delete the binding cache in it’s HA and external CNs. There-
fore, additional fADD messages require delivery. This may represent a problem
when a MN does not follow the previous movement pattern, especially when the
current resident time is much shorter than the determined lifetime. However, if
the current resident time is longer than 7 minutes for a subnet, the maximum
75-80% of BU messages can be reduced, fully counteracting the negative effect
due to the additional messages. Another point to note here is that the mean res-
ident time can be much longer than 100 minutes in reality, although the time is
set from 7 to 100 minutes in the experiments. Some kinds of users - for example,
office workers, clerks, housewives and so on - stay very long in a domain, and
therefore will only transmit a small number of messages. If the user moves out,
the default mechanism in HMIPv6 will be used and thus there is little additional
overhead. Thus, the energy efficiency of the proposed schemes can improve over
the results presented in this paper. If an algorithm is devised, to extract use-
ful and reliable information from a profile, the efficiency is greatly improved.
However, this is beyond the scope of this paper, and therefore does not require
detailed discussion.

The second experiments are to examine the effects on the time region of the
arrival time (see Fig. 7). The ratio of TR to RT is investigated in a Gamma
distribution where the variance is set at 0.01, 1, 25 and 100. In the experiments,
only the subnets where good regularity is obtained from the profile, were con-
sidered. It is assumed that 40% of all the subnets recorded as mobility type A or
B in their profile have only one time region, another 40% subnets have two time
regions, and the remaining have three or more time regions. From the figure,
it is shown that variance represents an important role in performance, unlike
previous results. When variance is set 0.01 and 1, the TR displays an improved
bandwidth usage than the RT. However, as it is set to high value (i.e., 25 and
100), the RT is superior over the TR. The reason can be found from the profile
information. If there are two or more time regions in a subnet m, each mean
resident time is different, among them,V arm also has a high value in the RT,

Efficient Binding Lifetime Determination Schemes in HMIPv6 13

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

7 10 20 30 40 50 60 70 80 90 100

Mean Resident Time (Minute)

B
 U

 B
 a
 n
 d
 w
 i
 d
 t
 h

 R
 a
 t
 i
 o

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

7 10 20 30 40 50 60 70 80 90 100

Mean Resident Time (Minute)

B
 U

 B
 a
 n
 d
 w
 i
 d
 t
 h

 R
 a
 t
 i
 o

V=0.01

V=1

V=25

V=100

V=0.01

V=1

V=25

V=100

Fig. 7. The Comparison of TR and RT in Gamma Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Intra-domain Moving Rate

B
 U

 B
 a
 n
 d
 w
 i
 d
 t
 h

 R
 a
 t
 i
 o

RT/TR

RT/HMIPv6

RT/MIPv6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Intra- domain Moving Rate

B
 U

 B
 a
 n
 d
 w
 i
 d
 t
 h

 R
 a
 t
 e

RT/TR

RT/HMIPv6

RT/MIPv6

(a)Gamma Distribution (b) Exponential Distribution

Fig. 8. The Comparison of BU bandwidth with various intra-domain moving ratio

determining the subnet as mobility type B or C. However, the TR can diminish
V arm by grouping the logs into time regions. This indicates that if some regu-
larity for both subnet and arrival time is obtained, the computed lifetime can
provide more correct reliability.

Figure 8 represents the effect of the intra-domain moving rate (κ). If κ is
set to a high value, the probability is high that the MN may reside within an
intra-domain, not migrating out to another domain. In this case, if the current
subnet is recorded as type A or B, it indicates that the MN will rarely leave
the current location before new lifetime expires. Naturally, HMIPv6 and the
proposed schemes demonstrate improved bandwidth usage over MIPv6 due to
the same reason. In addition, the RT can also reduce the number of BUs lower
than HMIPv6. However, as κ increases, the volume of the bandwidth in the TR
increases at a faster rate than that in the RT. The reason is that information
in the profile down to the details applies to the TR within a MAP domain. In
other words, the number of BUs transmitted to the HA and CNs becomes larger
than that of the RT when the MN is moving within a MAP. However, it’s HA
and CNs maintain a more accurate binding cache in the TR than that the RT.

4 Conclusion

In this paper, binding lifetime determination schemes (TR and RT) for periodic
binding update messages in HMIPv6, are proposed. The overhead incurred by
frequent BUs is reduced, by capturing some regularity in movement patterns of
each MN. That is, from the MN’s arrival time as well as the resident time in

14 S.O. Yang, S. Kim, and C.-S. Hwang

visited subnets, the proper lifetime is computed and applied dynamically. The
main contributions in this paper are allowing limited wireless bandwidth to be
utilized effectively, and greatly improving the energy efficiency in the MN, by
reducing the number of BUs. However, the accuracy of the profile is required for
more in depth analysis, to ascertain the effects of each parameter through data
mining schemes, since the proposed schemes are based on local profiles.

References

1. B. Johnson, C. Perkins and J. Arkko, Mobility Support in IPv6, RFC 3775, IETF,
2004.

2. Rajeev Koodli, ”Fast Handovers for Mobile IPv6”, IETF Internet Draft, draft-ietf-
mobileip-fast-mipv6-08.txt, 2003.

3. Hemant Chaskar, ”Requrements of a QoS Solution for Mobile IPv6”, IETF Internet
Draft, draft-ietf-mobileip-qos-requirements-04.txt, 2003.

4. Campbell, J. Gomez, C-Y. Wan, Z. Turanyi, and A. Valko, ”Cellular IP”, IETF
Internet Draft, 1999.

5. C. Castelluccia, ”Extending Mobile IP with Adaptive Individual Paging: A Perfor-
mance Analysis,” INRIA, 1999.

6. H. Soliman, C. Castellucia, K. E. Malki and L. Bellier, ”Hierarchical MIPv6 mobility
management (HMIPv6)”, IETF Internet Draft, draft-ietf-mobileip-hmipv6-08.txt,
2003.

7. S. Yang, U. Song, J. Gil and C. Hwang, ”A Profile-Based Dynamic Binding Update
Strategies in Mobile IPv6”, In Proc. Internationa Conference on Wireless Networks,
2002, pp. 238-244.

8. Y. B. Lin, W. R. Lai and R. J. Chen, ”Performance Analysis for Dual Band PCS
Networks”, IEEE Journal on Transactions on Computers, Vol. 49, No.2, 2000, pp
148-159.

9. C. Castelluccia, ”HMIPv6: A Hierarchical Mobile IPv6 Proposal,” ACM SIGMO-
BILE Mobile Computing and Communication Review (MC2R), Vol.4, No.2, Jan.
2000, pp 48-59.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 15 – 20, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Fast Search and Advanced Marking Scheme
for Network IP Traceback Model

Jia Hou1,2 and Moon Ho Lee2

1 School of Electronics & Information Engineering, Soochow University,
Suzhou 215006, China

houjiastock@hotmail.com
2 Institute of Information & Communication, Chonbuk National University,

Chonju 561-756, Korea
moonho@chonbuk.ac.kr

Abstract. Defending against distributed denial-of-service (DDoS) attack is one
of the hardest security problems on the internet today. In this paper, we investi-
gate a fast search algorithm for IP trace back, which is similar to the Viterbi al-
gorithm and it has simple implementation. The approach is capable of tracking
back attacks as quickly as possible. Our research can feature low network and
router overhead, and support incremental deployment.

1 Introduction

Denial-of-service (DoS) attacks pose an increasing threat to today’s internet [1]. A
serious problem to fight these DoS attacks is that attackers use incorrect or spoofed IP
addresses in the attack packets and hence disguise the real origin of the attacks. Due
to the stateless nature of the internet, it is difficult problem to determine the source of
these spoofed IP packets, which is called the IP traceback problem. One solution is to
let routers probabilistically mark the packets with partial path information during
packet forwarding [2]. The victim then reconstructs the complete paths after receiving
a modest number of packets that contain the marking. We refer to this type of ap-
proach as the IP marking approach. This approach has a low overhead for routers and
the networks. It can support incremental deployment.

In this paper, we address the problem of identifying the source of the attack, and
present a fast search algorithm with advanced marking scheme to solve the IP trace-
back problem. The results of our proposal have the same low router and network
overhead as that of FMS proposed in [2], yet our approach is efficiently and accu-
rately to obtain the reconstruction of attacking path under DDoS.

In particular, our approach can reconstruct the attacking path within seconds with a
low false positive rate. Further, the proposed fast search algorithm is implemented
similarly as that of the Viterbi algorithm [3]. It can efficiently compare with the refer-
ence distance and decide the correct path by a high probability. This prevents a com-
promised router from forging other uncompromised routers markings.

2 Fast Search and Advanced Marking Scheme for IP Traceback

We refer to the packets used in DDoS attacks as the attack packets. We call a router
false positive if it is in the reconstructed attack path but not in the real attack graph.

16 J. Hou and M.H. Lee

Similarly, we call a router false negative if it is in the true attack graph but not in
the reconstructed attack path. And we call a solution to the IP trace back problem
robust if it has very low rate of router false positives and router false negatives. At
first, we propose a router map from victim by using set partition, as shown in Fig.1.
It divides the routers and IP addresses to several levels according to the reference
distances. Next, after comparing with the differences from the routers and IP ad-
dresses, we use the IP marking scheme to encode the information for tracing. The
basic idea of the IP marking approach is that the routers can record the differences
of the IP addresses and probabilistically write some encoding of partial path infor-
mation into the packets [2]. The IP marking scheme reserves two static fields of the
size of IP addresses, “start” and “end”, and a static distance field in each packet.
Each router of the network should update these fields. By using this IP marking
scheme, any packet written by the attacker will describe a difference from the au-
thenticated packet. Normally, the difference is greater than that of the conventional
case without attacking.

Definition 1: Each router marks the packet with a probability q . When the router

decides to mark the packet, it will write its own IP address into the start field and put
zero into the distance field. Otherwise, we should indicate its previous routers have
marked this packet if the distance field was already zero. Finally, it always should
increment the distance field, if the router didn’t mark the packet. Thus, the distance
field in the packet indicates the number of routers, and such information that the
packet has traversed from the router which marked the packet to the victim.

In general, the distances describe the differences of the two IP addresses, and the
IP addresses have implied several levels or local information, which was applied to
set partition mapping, as shown in Fig.1. Obviously, this hidden levels or local infor-
mation can be applied to IP marking scheme for reducing the time of trace back.

For example, there are two IP addresses. One is 210.117.184.25, and the other is
210.117.186.35, thus we can write the information of distance as 25.184.117.210

10.2.0.035.186.117.210 =− . Clearly, there are 4-levels on the IP representation. And
based on “0.0.2.0” and “0.0.0.10”, the distances on different levels record the path of
direct way to original IP source and the local information of IP addresses. Therefore,
comparing with the distance on higher level is a fast way to find shortest attacking
path and its location.

Definition 2: The victim can use the edges marked in the attack packets to reconstruct
the attack graph. For each attack path with distance d , the expected number of pack-
ets needed to reconstruct the path is bounded by

1)1(

)(

)Pr(

)(
−−

==
dqq

dIn

x

dIn
Np , (1)

where)(dIn is the number of packets indicates with d , and)Pr(x denotes the write

probability of the distance d at router x .)Pr(x can be computed by using

1)1()0Pr()0Pr()Pr(−−=≠== dqqddx . (2)

 A Fast Search and Advanced Marking Scheme for Network IP Traceback Model 17

Fig. 1. Set partition map of the fast search algorithm

According to the Viterbi algorithm [3], we should the difference of the distances on
each level and then decide the reconstructed path for next step. Thus, the pair-wise
probability of choosing a correct path based on a reference path is given as

()

[] =−+

−

=−

=
+=

−

+=

−

.,)1(
2/2

1

)1(

;,)1(

)(

2/

12/

2/)1(

evendqq
d

d

qq
k

d

odddqq
k

d

dPe

d

d

dk

kdk

d

dk

kdk

 (3)

Marking Scheme: The router always can increase the distance field which it decides
not to mark the packet. The XOR of two neighboring routers encode the edge between
the two routers of the upstream router map. The edge field of the marking will contain
the XOR result of two neighboring routers, expect for samples from routers one hop
way from the victim. Since baba =⊕⊕ , we can start from markings of the routers
by one hop away from the victim, and then hop-by-hop, decode the previous routers,
as shown in Fig.2. The reason to use two independent hash functions is to distinguish
the order of the two routers in the XOR results. For the proposed fast search algo-
rithm, XOR operations also present the difference between two IP addresses. Thus,
calculating the XOR operations on higher levels will be helpful to find the up-level
locations or IP information on the correct path.

For example, the attacker uses the path “210.117.184.23, 210.117.186.45,
210.118.184.35” to attack the IP “210.118.184.44”. Based on the calculations for
higher level, we can first get “0.118.0.0” and “0.117.0.0”, and second, we can decide
the next level “0.117.186.0” and “0.117.184.0”. Finally, the attacker IP “210.117.
184.23 ” can be found. Unlike the conventional reconstruction, the calculation of
“210.118.184.35” is skipped in the proposed set partition search algorithm, therefore,
the speed of searching is increased.

18 J. Hou and M.H. Lee

⊕

⊕

⊕

dc ⊕

cb ⊕

ba ⊕

⊕

⊕

⊕

Fig. 2. Set partition map of the fast search algorithm

Marking and Reconstruction
Marking procedure at router iR : For each packet P , let u be a random number from

)1,0[. If qu ≤ then .P distance 0 and .P edge)(iRh (Hash function). Else, if

(.P distance = 0) then .P edge .P edge ⊕)(' iRh , and .P distance .P distance + 1.

Reconstruction procedure at victim v : Let dS (The set of routers at distance d to

the victim in the reconstructed attack graph) be empty for)max(0 dd ≤≤ . For each

child R of v in mG (Upstream router map), if 0)(Ψ∈Rh then insert R into 0S .

For =:d 0 to 1)max(−d ,

 For each y in dS and each x in 1+Ψd

)(' yhxz ⊕= .

 For each child u of y in mG

 If zuh =)(then insert u into 1+dS

 Output dS for)max(0 dd ≤≤ .

The victim repeats the steps until it reaches the maximal distance marked in the pack-
ets, denotes as)max(d . The proposed searching exploits the Viterbi algorithm to find

the maximum distance from the attacker with less computation complexity.

 A Fast Search and Advanced Marking Scheme for Network IP Traceback Model 19

Analysis: Assume a DDoS attack, and let dM denote the number of routers in the

attack graph at distance d from the victim. Let yt denote the in-degree of element y

in the 1−dS (the number of y ’s children) in mG , and recall that dΨ is the number of

unique edge segments received by the victim with de distance field marked as d . With
11 bits hash value, the expected number of false positives among y ’s children in mG is

112/dytFp Ψ⋅= , (4)

if we assume that has functions are good random, we have

() 1111 2))2/11(1(⋅−−=Ψ dM
dE . (5)

Numerical Results: For example, in the conventional scheme [4], we have
32=yt ,and 64=dM . But in the proposed case, the yt and dM can reduce about

10 15 20 25 30 35 40 45 50 55 60
10

-2

10
-1

10
0

The number of unique edge segments

F
al

se
 p

os
iti

ve
s

Conventional scheme in [4]
The proposed spider fast search algorithm

Fig. 3. False positive of the proposed fast search algorithm

0 1 2 3 4 5 6 7 8 9
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Distance

E
rr

or
 P

ro
ba

bi
lit

y
on

 p
at

h
se

ar
ch

Conventional scheme
Spider fast search

Assuming q=0.01

Fig. 4. Error probability on the path search

20 J. Hou and M.H. Lee

1/4 of conventional one. The false positive of the proposed fast search algorithm is
shown in Fig.3. Further, the error probability on path search of the proposed algo-
rithm can be improved following the increasing of the distance. The computation
complexity of the proposed scheme is much lower than the fragmet marking scheme

(FMS),)(1+Ψ⋅ d
d

dsO instead of)(
8

1+Ψ⋅ d
d

dsO . Also, given the same mark-

ing probability q , this scheme needs 1/8 of the packets in FMS for the reconstruction.

3 Conclusion

We present a fast search algorithm with advanced IP marking scheme. It allows the
victim to trace back the approximate origin of spoofed IP packets. Our technique has
very low network and router overhead, and it can support incremental deployment.

Acknowledgement

This work was supported by Chonbuk National University (Post-Doc.), and ITRC
supervised by IITA, Korea.

References

1. J. Howard: An Analysis of Security Incidents on The Internet. Ph.D Thesis, Carnegie Mel-
lon University, (1998)

2. S. Savage, D. Wetherll, A. Karlin, and T. Anderson: Practical Network Support for IP
Traceback. Proc. 2000 ACM SIGCOMM, Vol.1, USA, (2000), 415–438

3. G.D. Forney. Jr.: The Viterbi Algorithm. IEEE Proceedings, Vol.61, no.3, (1973) 268-278
4. D.X. Song, and A. Perrig: Advanced and Authenticated Marking Scheme for IP Trace Back.

Proc. IEEE INFORCOM, Vol.2, USA, (2001) 878-889

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 21 – 26, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Design and Performance Evaluation of Token-Based
MAC Protocols in WDM Burst Switched Ring Networks

Li-Mei Peng, Young-Chul Kim, Kyoung-Min Yoo,
Kyeong-Eun Han, and Young-Chon Kim*

Department of Computer Engineering, Chonbuk National University,
Jeonju 561-756, Korea

Tel: +82-63-270-2413, Fax: +82-63-270-2394
{mini0729, yckim}@chonbuk.ac.kr

Abstract. Token-based MAC(Medium Access Control) Protocols are proposed
for WDM Burst-Switched Ring Network which consists of nodes using
TT-TR(Tunable Transmitter-Tunable Receiver). The node architectures with
TT-TR may make an efficient use of network resources, even though traffic
pattern such as IP traffic with high self-similarity are dynamically changed, and
can also support good expandability. However, MAC protocols suitable for
TT-TR node architecture must be designed with consideration for various factors
in order to use the limited resources of network efficiently. A variety of Token-
based MAC protocols are suggested to increase the performance while reducing
the processing overhead at each node. The performance of the MAC protocols
are evaluated and compared in terms of average packet delay, channel utilization
and burst loss rate through OPNET simulation. Finally, we provide insight into
the design of MAC protocols by investigating the effect of various parameters.

1 Introduction

Optical burst switching(OBS) [1]-[2] is a promising method that can transport
data over a Wavelength Division Multiplexing(WDM) network. It combines the best
of circuit switching and packet switching paradigms, but has better bandwidth utiliza-
tion than OPS and faster switching time than OCS. In OBS, the transmission of each
burst is preceded by the transmission of a burst control packet(BCP), which occurs
on a separate channel. Therefore, O/E/O conversions are only required on control
channels.

Previous researchers proposed node architectures with FT-TR(Fixed Transmitter-
Tunable Receiver) [3] or TT-FR(Tunable Transmitter-Fixed Receiver) [5]. In [3],
nodes can transmit without worrying about channel collisions since no other node can
transmit with the same wavelength. However, there’s a waste of bandwidth because
bursts that maybe discarded are transmitted. In [5], receivers would be more leisurely
and it’s a waste of receiver resource as a node can only transmit one burst each time.

To overcome the drawbacks of FT-TR and TT-FR, we proposed the node architec-
ture based on TT-TR (Tunable Transmitter-Tunable Receiver), which is scalable and
flexible as all nodes can use all channels. However, these are at the expense of higher

* Correspondance author.

22 L.-M. Peng et al.

resource contention opportunity. To minimize the drawbacks and use the TT-TR
architecture optimally, appropriate medium access control (MAC) protocols are re-
quired. With such purpose, we elaborate on MAC protocols based on multi-token.

The rest of this paper is organized as follows. Section 2 presents architectures of
the OBS ring network and the OBS node. Section 3 describes the proposed MAC
protocols. The performance evaluation of our MAC protocols and the effect of vari-
ous burst sizes on our MAC protocols are investigated by simulation in section 4.
Finally, Section 5 provides some concluding remarks.

2 OBS Ring Network and TT-TR Node Architecture

We design a unidirectional ring network consisting of N OBS nodes as shown in
Figure 1. Each node acts as a source node(insert and send bursts), as an intermediate
node(pass through bursts) and as a destination node(receive bursts).

Figure 2 shows the TT-TR based node architecture. Each node can access all wave-
lengths and has two kinds of FIFO queue: transmission queue and Token queue.
Transmission queues consist of N VOQ(Virtual Output Queue). Bursts arriving at
each node are firstly buffered to their VOQ according to their destination. As nodes
may own multi-token simultaneously, Token queue is also needed to serve Tokens in
their arrival order and each Token corresponds to each wavelength. Each fiber sup-
ports W+1 channels, one control channel and W data channels. Correspondingly, W
Tokens are used for the W data channels. Nodes can access the i-th wavelength if and
only if it captures the i-th Token. Except BCP format in the general OBS network,
another control format called Token is involved to imply the current available wave-
length. Both of them are transmitted through the control channel.

 Fig. 1. OBS ring network Fig. 2. Node architecture based on TT-TR

3 Design of Medium Access Control(MAC) Protocol

Several variants occur when calculating offset time. Xu et al.[3] investigated MAC
protocols using JET(Just Enough Time) and ODD(Only Destination Delay) schemes.
We propose MAC protocols based on JET scheme in this paper.

As the accessibility of each wavelength is limited by Token, the token release time
or token rotation time(TRT) is crucial to our protocols. Therefore, CA(Collision

 Design and Performance Evaluation of Token-Based MAC Protocols 23

Avoidance) and IR(Immediately Release) protocols are proposed, differentiated by
the token release time. Both of them consist of two algorithms described as follows.

3.1 CA Based MAC Protocol

In CA based protocol, Tokens are released after completing each burst transmission.

3.1.1 CA/T_RR(Token_Only with Round_Robin)
CA/T_RR protocol uses multiple Tokens and serves transmission queues in a Round
Robin manner. At the transmitter side, if node i captures an available Token, it firstly
checks whether the transmission queue j selected by RR is eligible. If yes, node i gets
a packet out, generates and sends BCP; then transmits the burst after offset time; fi-
nally it releases the Token. If no, node i releases Token to the downstream node di-
rectly. At the receiver side, node j receives and reads BCP; then tunes to wavelength i
to receive the coming burst. However, the collision may occur when other bursts
arrive at node j through other wavelengths simultaneously.

3.1.2 CA/PARC (Previous Avoidance of Receiver Collision)
CA/PARC protocol is used to reduce receiver collision previously in the source node.
Each node maintains a CIT(Channel Information Table) recording the reservation
information of each wavelength. If node intends to send a burst selected by RR, firstly
checks its destination; then determines if there exist bursts reserved on other wave-
lengths forwarding for the same destination via CIT. If such bursts exist and the cur-
rent reserved burst overlaps with them in time, reservation fails and releases Token
directly. If such bursts don’t exist or exist but not overlap with the current burst, re-
source reservation for burst succeeds and node processes the burst transmission. Nev-
ertheless, CA/PARC protocol isn’t completely ‘receiver collision free’, because the
current node doesn't know the reservation information in other nodes, but it reduces
the burst loss to some significant extent compared to CA/T_RR protocol.

3.2 IR Based MAC protocol

In CA protocol, Tokens are released after completing burst transmission, so it is pre-
dicted to present poor resource utilization. Therefore, IR protocol is proposed to guar-
antee the resource utilization and reuse. In IR protocol, tokens are released immedi-
ately after completing BCP transmission, i.e., offset time earlier than bursts.

3.2.1 IR/T_RR
The processing is similar to that of CA/T_RR protocol, except for the difference in
token release time. As Tokens are released immediately after BCP and earlier than
bursts, wavelength contention is likely to occur when bursts from upstream node
overlap with the bursts being transmitted in the current node. Figure 3 and Figure 4
shows such contention for wavelength. When Token i arrives at Node j after BCP1,
Node j starts to reserve resources for Burst2 on Wi. After offset1 time, Burst1 will
pass Node j through Wi, meanwhile, Node j intends to send Burst2 through the same
Wi after offset2 time. As shown in Figure 8, Burst1 and Burst2 will content for Wi
leading to burst loss. To avoid this, each node reads the reservation information in
CIT before sending a burst. If the outgoing burst overlaps with the cutting-through

24 L.-M. Peng et al.

burst, reservation fails and the node releases Token directly; otherwise, reservation
succeeds, the node generates and sends BCP; adds the reservation information to its
own CIT and updates it; then release Token; finally, it transmits the burst.

 Fig. 3. Before token arrives Fig. 4. After token arrives

3.2.2 IR/PARC
IR/PARC protocol is used to reduce the receiver collision in IR/T_RR protocol. The
process is also similar to CA/PARC protocol, except that each node should read the
CIT twice before transmitting a burst to reduce both the wavelength contention and
the receiver collision. Node firstly reads reservation information of the current data
channel in CIT to avoid the wavelength contention in a source node; then reads the
reservation information of all data channels to reduce receiver collision in destination.

4 Simulation and Results

We simulated an OBS ring network with 12 nodes and each node is separated by 5km.
The number of wavelengths per fiber is set to 5 and each runs at 1Gbps. The average
burst size is 105 bits(100μs). Packets are generated by exponential distribution.

Figure 5 shows the average packet delay versus offered load. The performance for
CA is much higher than that of IR. Due to the long token rotate time(TRT) in CA,
packets are buffered and wait Tokens for a long time. The performance of the PARC
scheme is higher than T_RR scheme for both CA and IR protocol. This is because the
delay in CIT for avoiding wavelength contention and receiver collision. Figure 6
shows the channel utilization. IR/PARC protocol exhibits the best performance, fol-
lowed by IR/T_RR, CA/PARC and CA/T_RR. In IR, packets have more opportunities
to be transmitted, thus it presents a better performance. The performance for CA pro-
tocol is limited to less than 50% and increases slightly due to the long average TRT.
As offered load increases packets are generated faster than Tokens rotate, meaning
that network traffic intensity is saturated. After the saturated point, even if many more
packets are generated, they’re buffered to wait for Tokens. As a result, the number of
transmitted packets increases slightly when offered load continuously increases, lead-
ing to a slight increase in channel utilization. Figure 7 shows the Burst loss rate. The
behavior for CA is unexpectedly higher than that of IR firstly and than becomes
lower. Even with the light offered load, the TRT for CA protocol is large enough to
saturate network traffic. Thus, once node j transmits a burst, it waits a long time to use
the same wavelength again. During this long period, node j only uses the rest 3 data
channels in fact, increasing the traffic intensity for the 3 channels as well as the colli-
sion and burst loss probability.

 Design and Performance Evaluation of Token-Based MAC Protocols 25

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1
offered load

A
ve

ra
ge

 p
ac

ke
t

de
la

y
CA/T_RR

CA/PARC

IR/T_RR

IR/PARC

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
offered load

C
ha

nn
el

 u
ti

li
za

ti
on

CA/T_RR

CA/PARC

IR/T_RR

IR/PARC

Fig. 5. Average packet delay Fig. 6. Channel utilization

0.0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

offered load

B
ur

st
 lo

ss
 r

at
e

CA/T_RR

CA/PARC

IR/T_RR

IR/PARC

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
offered load

A
ve

ra
ge

 p
ac

ke
t d

el
ay 10μs/CA

100μs/CA

1ms/CA

10μs/IR

100μs/IR

1ms/IR

Fig. 7. Burst loss rate Fig. 8. Average packet delay

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
offered load

C
ha

nn
el

 u
ti

li
za

ti
on

10μs/CA

100μs/CA

1ms/CA

10μs/IR

100μs/IR

1ms/IR

0.0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1
offered load

B
ur

st
 lo

ss
 r

at
e

10μs/CA

100μs/CA

1ms/CA

10μs/IR

100μs/IR

1ms/IR

Fig. 9. Channel utilization Fig. 10. Burst loss rate

Finally, we investigate the effect of various burst sizes ranging from 104 bits(10μs)
to 106 bits(1ms). The average packet delay increases with the packet size for CA and
the behavior reverses for IR(Figure 8). Specifically, because the average TRT for CA
protocol increases dynamically when increases burst size, bursts would be queued to
wait an even longer time for Tokens. Figure 9 and Figure 10 present the channel utili-
zation and the burst loss rate. Channel utilization performs better for larger bursts in
both CA and IR protocol. However, it’s at the cost of longer packet delay and higher
burst loss rate shown in Figure 8 and Figure 10. The behavior indicates that the burst
loss rate performance is affected by both the burst size or traffic intensity.

5 Conclusion

In this paper, multi-token based MAC protocols were proposed for OBS ring network
with TT-TR node architecture. We designed CA and IR protocols to use the limited

26 L.-M. Peng et al.

resource in TT_TR architecture efficiently. Each of them includes two variants called
T_RR scheme and PARC scheme. Performances of the four protocols are evaluated
by OPNET simulation. IR protocol performs better than CA protocol for both T_RR
and PARC, and PARC seems to be better than T_RR. In addition, the variety of burst
sizes was evaluated by simulation and was proved to influence our MAC protocols.
IR protocol prefers larger bursts while the performance for CA will be seriously de-
layed in the case of a large burst. As a result, it is important to determine an appropri-
ate burst size for a network. Otherwise, the performance may suffer from delays,
inefficiency, or undesirable burst loss.

Acknowledgments

This work was supported in part by the Korea Science and Engineering Foundation
(KOSEF) through OIRC project and IITA.

References

1. C. Qiao, M. Yoo, "Optical burst switching (OBS) - a new paradigm for an Optical Internet,"
J. High Speed Network (JHSN), vol. 8, no. 1, pp. 69-84, 1999

2. Y. Chen, C. Qiao, X. Yu, “Optical burst switching: A new area in optical networking re-
search”, IEEE Network, 18(3), pp. 16-23, May/June 2004

3. Lisong Xu et al., “A simulation Study of Optical Burst Switching Access Protocols for
WDM Ring Network”, Computer Networks, 41(2), Jan. 2003

4. B. C. Kim, You-Ze Cho, Dong Mongomery., “An Efficient Optical Technique for Multi-
Hop”, IEICE TRANS. COMMUN., vol. E87-B, no. 6, Jun. 2004

5. Y. Arakawa N. Yamanaka I. Sasase, “Performance of Optical Burst Switched WDM
Ring network with TTFR System” The first IFIP Optical Networks & Technologies Con-
ference 2004 (OpNeTec2004), Pisa, Italy, pp. 95-102, October, 2004

6. I. Baldine, G. N. Rouskas, H. G. Perros, D. Stevenson., “Jumpstart: A just-in-time Signaling
Architecture for WDM Burst-switched Networks”, IEEE Communication, 40(2):82-89,
Feb. 2002

7. L. Xu, H. G. Perros, G. N. Rouskas, “Techniques for optical packet switching and optical
burst switching”, IEEE Communication, 39(1):136-142, Jan. 2001.

Self-stabilizing Energy-Aware Routing
Algorithm in Wireless Sensor Network with

Limited Mobility

Smruti Padhy and Diganta Goswami

Indian Institute of Technology, Guwahati,
North Guwahati - 781039, India

Abstract. Application of sensor networks in different fields is an inter-
esting area to work with and has already drawn widespread attention.
Since sensors have limited supply of on-board energy, efficient manage-
ment of network is a compulsion in extending life of the sensor. At the
same time, frequent damage to sensors and link failure occur because
of the adverse environment in which they are deployed. A sensor net-
work has to tolerate and recover from these failures themselves with no
external help. In this respect, we have designed a self-stabilizing energy-
aware routing protocol in a sensor network. Our protocol ensures the
sensor network, starting from an arbitrary state, eventually set up reli-
able communication in network with minimum energy consumption and
in a finite number of steps.

1 Introduction

Explosive growth in research in miniaturization and low-power design has been
observed in the last few years leading to large-scale highly distributed systems
of wireless unattended sensors. One of the major problems with sensors in such
situations are that they are energy-constrained and their batteries can not be
recharged. Therefore, designing energy-aware algorithms becomes an important
factor for extending the lifetime of sensors. On the other hand, in such sensor
network applications, both sensors and sensor network infrastructure are prone
to various kinds of failures. Despite these, a sensor network should ensure a
certain level of reliability and must function correctly to achieve its mission. In
this respect, we design a routing protocol which is energy-aware and tolerant to
transient node/link failure by using a technique called self-stabilization [1]. Being
self-stabilizing guarantees that the system will converge to the intended behavior
in finite time regardless of the system starting state (initial state of the sensor
nodes and the initial messages on the link) without the help of any external
agents. Some basic concepts and overview of the technique self-stabilization are
given in in [2], [3], [4] and [5] and a survey on wireless sensor networks and
existing routing protocols for sensor networks can be found in [6].

Only a small number of self-stabilizing routing protocols for the wireless sensor
network has been proposed till date. One such protocol is based on directed
diffusion method [7] [8]. A request for data from an initiator node is broadcast

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 27–38, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

28 S. Padhy and D. Goswami

in the network, and the positive answers from the sensors are forwarded back to
the initiator (following a Shortest-Path-Tree (SPT) construction rooted at the
initiator). The sensor nodes, starting from an arbitrary state and following this
protocol, establish reliable communication in the network in a finite number of
steps. A self-stabilizing routing protocol called Logical Grid Routing Protocol
(LGRP) which was used in the project A line in the Sand was proposed by
Arora et al. in [9]. LGRP uses the localization or neighborhood detection service
to determine a set of reliable nearby neighbors called as the logical neighbors.
The root node periodically transmits beacons in order to construct and maintain
a routing tree. The logical neighbors of the root receive these beacons and set
the root to be their parent. These one-hop neighbors of the root then start
propagating their own beacons. Upon receiving a beacon from a logical neighbor,
a node selects it as its parent if it is a closer to the root. In case a node does
not receive any beacons from any such neighbors, a node selects a neighbor
which is farther from the root as its parent. LGRP is self-stabilizing and can
tolerate node fail-stops. But neither of these two works take into account the
energy-awareness.

2 System Model

In the system architecture, which is taken from [10], sensor nodes are grouped
into clusters controlled by a single command node. Sensors are only capable
of radio-based short-haul communication and are responsible for probing the
environment to detect a target/event. Every cluster has a gateway node that
manages sensors in the cluster. Here the gateway nodes are assumed to have
a mobilizer and thus have the capability to move. We also assume that the
sensor nodes are stationary and all the sensor nodes are located within the
communication range of the gateway in a cluster. Clustering the sensor network
is performed by the command node. The command node will inform each gateway
node of the ID and location of sensors allocated to the cluster. Sensors receive
commands from and send readings to the gateway node which processes these
readings.

Gateway nodes are assumed to be less-energy constrained than the sensors
and interface the command node with the sensor network via long-haul commu-
nication link. The gateway node sends to the command node reports generated
through fusion of sensor readings. The command node performs system-level fu-
sion of collected reports for an overall situation awareness. The sensor is assumed
to be capable of operating in an active mode or a low-power stand-by mode. It
is also assumed that a sensor can act as a relay to forward data from another
sensor. The on-board clocks of both the sensors and gateways are assumed to be
synchronized, e.g. via the use of GPS.

Sensor networks are subject to a wide variety of faults and unreliability. In-
expensive hardware, limited resources and extreme environment conditions all
contribute to causing these fault. Here we assume that when the system is in
operation, any number of communication links or sensor nodes may fail for some
time and then may again come up after some time.

SSEA in Wireless Sensor Network with Limited Mobility 29

3 The Proposed Protocol

In the following subsections we give the description of the protocol and the data
structures used and then present the algorithm.

3.1 Protocol Description

The gateway node of a cluster receives command from the command node to
send the data. The sensing-enabled node is in the direct transmission range of the
gateway. So, the gateway directly sends a REQUEST message to the sensing-
enabled node to sense the environment and send the data. The node senses
the environment and sends the DATA to its neighbor in the path specified by
the gateway to relay it further to reach the gateway in specified time. So, a
communication path is set up from sensing-enabled node to the gateway for the
data. This is the correct behavior of our system when the gateway is not moving.

Now, if the gateway moves to a new position within its own cluster, the path
from the sensing-enabled node to the newly positioned gateway is divided into
two sub-paths. The first sub-path (named as sub-path 1) constitutes the path
from sensing-enabled node to one hop neighbor of the old position of the gate-
way, (call it as prev one hop neigh). The second sub-path (named as sub-path 2)
constitutes the path from prev one hop neigh to the newly positioned gateway.
When the gateway moves to a new position it sends an UPDATE message to
prev one hop neighs. All the data which are in its path to old position of the gate-
way are then forwarded to new positioned gateway. When all such data reaches
the gateway, fresh paths are set up for the same request. So, a communication
path is established between sensing enabled node and the new position gateway.
This is the correct behavior when the gateway has made some movements.

Suppose at some point of time, the gateway doesn’t receive the data in a
specified time and the gateway is stationary. Then the gateway knows either
some sensors have failed in the path or there is some communication link failure.
To get the data, the gateway node try to establish communication with the
sensor by again sending a REQUEST message to the sensor. At the same time
the gateway constructs a subset from the neighbors of the sensor on the basis
of available energy. The sensors having more available energy are selected in
the subset. The gateway sends an ENQUIRY message to this subset to enquire
about the status of the originating data. Two situations may arise – link failure
and node failure.

If there is a link failure in the path from the sensing-enabled node to the gate-
way, the sensing-enabled node will send the DATA to the subset of its neighbor
in response to their ENQUIRY message. The neighbors forward this DATA to
the gateway in the path specified by the gateway. The gateway will get more than
one copy of DATA. It accepts the DATA which reaches first. The sensor piggy-
backs its updated energy-level into DATA message as it forwards the message.
The gateway updates the energy-level of each sensor in its local memory and
updates its routing table. It finds the least cost path to the sensor for future use.

If a sensing-enabled node fails, then the subset of neighbors of the failed node
will not able to contact the sensor. On timeout, a neighbor which wants to take

30 S. Padhy and D. Goswami

the role of the failed sensor sends a message to the gateway with a role-bit set.
The gateway then selects a neighbor to the failed sensor in the least cost path
and sends a REQUEST message to it to sense and send the DATA.

Suppose at some point of time, the gateway moves to a new position within
the cluster and the gateway doesn’t receive some data in its new position. Then
there are two possibilities : there may be node/link failures in sub-path 1 or in
sub-path 2.

– node/link failure in sub-path 1: If the data has not reached at previous
one hop neighbors, then there is node/link failure in sub-path 1. After a
specified timeout, gateway sends fresh request with fresh path to sensing-
enabled nodes and its subset of its neighbors as in stationary case.

– node/link failure in sub-path 2: If there is node/link failure in sub-path 2 and
data has reached prev one hop neigh, then it is forwarded to new positioned
gateway through alternative paths specified by the gateway in response to
the ENQUIRY message to prev one hop neighs and subset of its neighbors.

In both the above situations, the communication path is set up and the system
is brought back to normal operation.

When the gateway moves along the boundary, it is forced to come inside the
cluster to its previous position inside the cluster. During this transition, the data
is stored in the input buffer of the previous one hop neighbors till the gateway
reaches its previous position. Then, the data is forwarded towards the gateway.
Again, the system behaves correctly.

For gateway to set up the least cost path between the gateway and sensors,
we first assume that the gateway and sensors are connected by bi-directional
wireless links with a cost associated with each direction. Each link may have a
different cost for each direction due to different energy levels of the nodes at each
end. The cost of a path between two nodes is defined as the sum of the costs of
the links traversed. The routing algorithm can find the shortest-path from the
gateway to the sensor and then using the transpose property. To account for
energy conservation, delay optimization and other performance metrics, we use
the cost function for a link as defined in [10].

3.2 Data Structures and Functions Used

Each sensor node has a unique local ID, LIDv, and knows only its direct neigh-
bors, so it can distinguish among its adjacent wireless links. Each sensor node
maintains several variables of different types. The underlying layer of topologi-
cal maintenance protocol computes the variables Nv (the set of neighbors of v)
and current time (the current time). Sv denotes a subset of Nv. The gateway
node selects Sv depending on the energy available at each of the sensors. Other
variables are listed below:

– inp buf: Each node contains a local memory to store the request messages.
– sensed: It is set to true by the sensing unit whenever new data is collected.
– SU: the sensing unit data structure which contains the complete collected

data, and it has the following fields: attr (name of the attribute), value

SSEA in Wireless Sensor Network with Limited Mobility 31

(value of the attribute detected by the sensing unit) and other (other fields
depending on the type of the sensor which enhance the description of the
sensed fact or phenomena). The sensing unit sets the Boolean variable sensed
to true whenever new data is collected and stores in the data structure SU.
Later on, the algorithm processes the data and sets the variable sensed back
to false.

– wait msg: It is set to true when a neighbor waits for a data from data origi-
nating sensor.

The gateway node has three variables:

– thru nbr: Sets to true when a message is forwarded through neighbors due
to link failure.

– role nbr: Sets to true when a neighbor takes up a role.
– once send: Sets to true when gateway node sends message to a node for the

first time.
– mobilized: The location finding system sets it to true when the gateway moves

to a new position. It is set to false when the gateway is not moving.

The following types of messages (fields are shown along with) are used by our
protocol:

– DATA: src id, relay id, dest id, attr, value, time, expire, path, role-bit.
– REQUEST: org id, relay id, attr, value, time, expire, path.
– ENQUIRY: org id, relay id, attr, value, time, expire, path, mobile-bit.
– UPDATE: id, new position, forward bit.

The roles of each of the fields are indicated below.

– src id: sender’s local id.
– org id: sensor id where the data is originating.
– relay id: relay sensor’s local id.
– dest id: destination sensor local id.
– attr: name of the attribute.
– value: value of the attribute.
– time: time when the data was sent.
– expire: interval for which the data is valid.
– path: path of the data.
– role-bit: It is set to 1 when a neighbor wants to take up the role of a failed

sensor.
– mobile bit: It is set to 1 when the gateway moves to a new position and

enquires to its previous one hop neighbors about the data which is not re-
ceived.

– id: sensor’s local id.
– new position: new position of the gateway.
– forward bit: It is set to 1 when the gateway has moved to a new position and

the previous one hop neighbors need to forward the data destined for new
positioned gateway. It is set to 0 when the gateway in new position receives
data destined for it.

32 S. Padhy and D. Goswami

The algorithm uses the following functions:

data expiry(msg): checks for data msg expiry, return true if expired.
request expiry(): checks for the validity of a request message in the input buffer.
If it has expired, then returns true.
exist(msg): checks whether the REQUEST msg exists in the input buffer. If
exists, then returns true.
wait(): The sensor has to wait for specified time for the gateway to come its
previous position.

3.3 Self-stabilizing Energy-Aware Routing Algorithm(SSEA)

The energy-aware self-stabilizing algorithm for sensor network is presented
below.

Predicates
On limit ≡ ∀i(Th ≤ energyi ≤Max value)
wrong time ≡ inp buf [i].time > current time
wrong neigh ≡ ¬(inp buf [i].dest id ∈ Nrelay id)
move limit ≡ (0 ≤ move ≤ max mov)

The algorithm executed by a gateway node

[0.01]¬On limit −→ remove the entry of sensor from the routing table.
[0.02] On limit ∧¬mov limit −→ Gateway is forced to stay within the cluster
by moving to its previous position.
[0.1]On receive command from the command node −→

send REQUEST(msg) to sensor, say, v
once send=true; thru nbr = false; role nbr = false

[0.2]rcv DATA(msg) from sensor v −→ if ¬(data expiry(msg)) then
Do the processing according to the mission

[0.3] timeout1 ∧¬ rcv DATA (msg) ∧(thru nbr== false) ∧ (role nbr==
false)∧(mobilized ==false) −→ Construct the subset of neighbors Sv

send REQUEST(msg) to v ∧∀ ∈ Sv send ENQUIRY (msg) to u
[0.4] rcv DATA(msg) from uεSv with role bit not set to 1 ∧ (mobilized ==
false)−→ update the energy level of sensors in the path in its routing table

find the least-cost path and the neighbor of v in that path
thru nbr= true

[0.5] rcv DATA(msg) from u∈ Sv with role bit set to 1 ∧timeout2 ∧(mobilized
==false) −→ update the nodes energy level

find the least-cost path
if thru nbr then DISCARD msg
else the role of v is assigned to its neighbor in the least cost path
role nbr = true

[0.6] once send ∧ thru nbr ∧(mobilized ==false) −→ send ENQUIRY(msg)
to u
[0.7] once send ∧ role nbr∧(mobilized ==false) −→ send REQUEST(msg) to u

SSEA in Wireless Sensor Network with Limited Mobility 33

[0.8] (When the gateway moves to a new position within the cluster)
∧(mobilized ==true) −→ send UPDATE(new position, path) to prev one hop
sensors of the gateway.
[0.9] rcv DATA(msg) from prev one hop ∧(mobilized ==true)−→ check for
data expiry() and process data as per mission.
[0.10] timeout3 ∧ ¬rcv DATA(msg) from v ∧(mobilized ==true) −→ send
ENQUIRY(msg) to (prev one hop ∪ subset of its neighbors)
[0.11] timeout4 ∧ ¬rcv DATA(msg) from prev one hop∧(mobilized ==true)
−→ send ENQUIRY(msg) to subset of v

send REQUEST(msg) to v with fresh path to new positioned gateway
[0.12]once send ∧(thru nbr ∨ role nbr)∧(mobilized ==true) −→ send
REQUEST(msg) to v with fresh path
[0.13]timeout5∧(mobilized ==true) −→ set mobilized = false

send REQUEST(msg) with fresh path to sensors whose data are not
received when the gateway moved to a new position.
send UPDATE(forward bit=0) TO prev one hop

Each of the sensor nodes execute the following code
[1.01] ¬On limit −→ Switch yourself off
[1.02] On limit ∧ wrong time −→ delete inp buf[i]
[1.03] On limit ∧ wrong neigh −→ delete inp buf[i]
[1.1] rcv REQUEST(msg) from Gateway −→
if((msg.org id == LIDv) ∧ (msg.dest idεNrelay id) ∧ (msg.time <
current time) ∧ (msg.time + msg.expire > current time)) then

when(sensed==true) send DATA(msg) to nbr in the path
if exist(msg) then update the path and time field in inp buf[i]
else add to inp buf the msg
sensed=false
else DISCARD msg

[1.2] rcv DATA(msg) from nbr −→
if (msg.relay id == LIDv)∧¬ data expiry()then

if(msg.dest id==gateway id)∧(msg.dest id �∈ Nrelay id)
add the DATA to inp buf
if(forward bit==1) send DATA (msg) to nbr in the path specified

by new positioned gateway else wait()
if(msg.dest id ∈ Nrelay id) send DATA(msg) to msg.dest id in the
path

if (wait msg) then wait msg=false else DISCARD msg
[1.3] timeout3∧sensed−→ if (¬request expiry())

send DATA to nbr in the path specified previously.
sensed=false

else DISCARD msg
[1.4] rcv ENQUIRY(msg) from Gateway with mobile bit set to 0 −→

if((msg.org id ∈ Nrelay id) ∧ (msg.relay id == LIDv)∧ (msg.time <
current time) ∧ (msg.time+msg.expire > current time)) then

send REQUEST(msg) to msg.org id

34 S. Padhy and D. Goswami

wait msg=true
else DISCARD msg

[1.5] wait msg ∧ timeout4 −→ role bit=1
when(sensed=true) send DATA(msg) to nbr in the path

[1.6] rcv REQUEST(msg) from nbr −→ if ((msg.org id==LIDv)∧ (msg.time
< current time) ∧ (msg.time + msg.expire> current time)) then

send DATA(msg) to nbr
send DATA(msg) to nbr in the previous path

[1.7] rcv UPDATE(new position) from the gateway −→
if(msg.id== LIDv)

if(any data in inp buf to be forwarded to the gateway)
send DATA(msg) to nbr in the path towards
new positioned gateway

set forward bit=1
[1.8] rcv UPDATE(forward bit=0) from the gateway −→

if(msg.id == LIDv) then set forward bit=0
[1.9] rcv ENQUIRY(msg) from the Gateway with mobile bit set to 1 −→

if((msg.org id== LIDv)∧(msg.relay id ∈ Norg id)∧ (msg.time <
current time) ∧ (msg.time+msg.expire > current time)) then

if exist(DATA) then send DATA in the path specified to
msg.relay id

else if(msg.relay id == LIDv)∧ (msg.relay id ∈ Norg id)∧ (msg.time
< current time) ∧ (msg.time+msg.expire > current time)) then
send ENQUIRY(msg) to org id else DISCARD msg

[1.10] rcv ENQUIRY(msg) from nbr −→ if ((msg.org id == LIDv) ∧
(msg.time < current time) ∧ (msg.time+msg.expire > current time))
then if exist(DATA)

send DATA(msg) to msg.relay id in the specified path.

4 Proof of Correctness

We define the state predicate L = L1 ∧L2 ∧L3 ∧L4 ∧L5 as the invariant for all
legitimate states, where
L1=On limit
L2=On limit ∧¬wrong time
L3=On limit ∧¬wrong neigh
L4=On limit ∧ mov limit
L5=A communication path is eventually set from the source node to the Gateway

To prove self-stabilization, in Theorem 1 we show that starting from an arbi-
trary configuration, every computation of SSEA reaches a state in which L holds
within a finite amount of time.

Property 1. Starting from any state, in any execution of SSEA, the guard 1.01
is enabled at most once and 0.01 is enabled at most the number of sensors in
the cluster.

SSEA in Wireless Sensor Network with Limited Mobility 35

Proof. When the sensor’s energy is below the threshold level, it will not be able
to transmit data. If it remains turn on, then other sensors may continue to
send data to it for relaying, thereby spending extra energy. Thus, such sensor
should be switched off. Once it is switched off, it will never be alive again. So,
guard[1.01] is enabled at most once. If any sensor in the relay path gets switched
off, then alternate paths are selected between the sensing-enabled node and the
gateway. If any sensing-enabled node runs out of energy, then the task of that
node is assigned to another sensor (guard[0.5] is enabled and executed). So, the
system remains in the legitimate state. When sensor’s energy becomes below the
threshold level, the gateway will remove the entry of that particular sensor from
the routing table. Thus, the guard[0.01] is enabled at most the number of sensors
in the cluster. The moment at which the number of sensors in the cluster falls
below a certain number, the underlying layer’s topological maintenance protocol
will do re-organization so that the system will have optimal number of sensors.
Thus, the system again goes to legitimate state.

Lemma 1. The item On limit is a closed attractor for the predicate L and is
an invariant for all legitimate states.

Proof. It follows directly from property 1.

Property 2. Starting from any state, in any execution of the SSEA, the guard
1.02 is enabled as many times as number of spurious message in the input buffer.

Proof. When the sensor’s energy is above the threshold, it is alive and can send
and receive messages. If there is any message in the input buffer with wrong
time stamp (i.e, inp buf[i].time > current time), then the sensor executes the
guard[1.02] and deletes the message from the input buffer. So, the guard[1.02] is
executed as many times as number of messages with wrong time stamp.

Whenever a REQUEST/ENQUIRY message is received from the gateway
(guard[1.1], [1.4], [1.9]) or a REQUEST message is received from a neighbor
(guard[1.6]) or an ENQUIRY message from a neighbor (guard[1.10]), the times-
tamp of the message is checked. If message time is greater than the current time,
the message is corrupted and it is discarded. In this case, the guards [1.1], [1.4],
[1.6], [1.9] and [1.10] takes care of any wrong timestamp and the guard[1.02] is
not enabled.

Lemma 2. The item {∀ i, On limit ∧¬wrong time} is a closed attractor for
predicate L and an invariant for all legitimate state.

Proof. It follows directly from property 2.

Property 3. Starting from any state, as long as there is no node/link crashes
in the immediate neighborhood of a sensor, in any execution of the SSEA, the
guard[1.03] is enabled at most the number of corrupt) messages (i.e, with wrong
neighbor) in the input buffer. If c crashes have occurred in the immediate neigh-
borhood, then the guard[1.03] is enabled at most once.

36 S. Padhy and D. Goswami

Proof. No crash: In any execution of SSEA, with On limit true, no messages
with wrong time stamp, and the gateway is not moving and there is no crash,
each sensor checks its input buffer for any message with wrong neighbor. If there
is any such message, guard[1.03] is enabled. The guard is eventually executed
and the corrupt message is deleted from the input buffer. Thus, the guard[1.03]
is enabled at most the number of messages with wrong neighbor in the input
buffer. So, the gateway can send a REQUEST to sensor without fail by rightly
specifying the path to the sensor. If the gateway moves to a new position with
no crash in the immediate neighborhood of a sensor, then the previous one hop
to the gateway successfully forwards the data to the new positioned gateway.
Here, the guard[1.03] is not enabled.

c crashes : When a REQUEST message is received from the gateway, it is checked
for any wrongly specified neighbor to sensing-enabled node. If there is any such
specification, the message is discarded. Otherwise, the data is sent to the gateway
node through the path specified by the gateway and the REQUEST is stored
for valid period in the input buffer (guard[1.1]). The sensing-enabled node sends
the data at regular interval towards the gateway in the path specified by the
gateway in response to a valid REQUEST guard[1.3]. If c crashes occur in the
immediate neighborhood of the sensing-enabled node with gateway in its original
position and the gateway has specified a crashed node/link in the path, then
the guard[1.03] is enabled and the REQUEST message is deleted from the input
buffer. Then guards [0.3], [0.4], [0.5] may get enabled. The data is sent in different
path and the task of the sensing enabled node is assigned to another.

When a data is received from a neighbor to further forward it, it is checked
for wrong neighbor. If it found to have wrong neighbor, discard the message
(guard[1.2] is enabled and executed). Otherwise, data is successfully forwarded to
its neighbor as specified in the path. Similarly, when an ENQUIRY message is re-
ceived with mobilized equals to false, it is checked whether sensing-enabled node
is in the neighborhood of it. If not, then the message is discarded (guard[1.4]).

If c crashes occur in the immediate neighborhood of the sensing enabled node
with gateway moving to a new position, then wrong neighbor is checked at previ-
ous one hop neighbor sensor. If there is any such neighbor, the message is discarded
and the data is sent through alternate path from the previous one hop neighbor
to new positioned gateway (guards[1.9] and [1.10] may get enabled). If there are
crashes between sensing-enabled node and the old position of the gateway, the
message with wrong neighbor is discarded and fresh route is set up (guard[0.11]
may get enabled). In all these situations, the guard[1.03] is not enabled.

So, the guard [1.03] is enabled at most once when the sensor is sending data
to a previous valid request and the immediate neighbor in the path crashes. In
rest situations, guards [1.2], [1.4], [1.6], [1.9], [1.10] and [1.10] take care of any
crash in the path.

Lemma 3. The item {On limit ∧¬ wrong neigh} is a closed attractor for pred-
icate L and an invariant for all legitimate state.

Proof. It follows directly from property 3.

SSEA in Wireless Sensor Network with Limited Mobility 37

Property 4. Starting from any state, as long as the gateway makes movement
within the cluster, in any execution of the SSEA, the guard[0.02] is not enabled.
If the gateway makes movement c times along the boundary, then the guard
[0.02] is enabled c times.

Proof. Gateway’s movement within the cluster : When the gateway moves within
the cluster, the gateway’s movement is within the limit, i.e, move limit is true.
So, the guard[0.02] is not enabled. The location finding system of the gateway
detects its movement. Then, the gateway sends its new position in the UPDATE
message to previous one hop sensors to forward the data which are in its path
towards the old positioned gateway(guard[0.8] is enabled and executed). When
the data, which were in the path, reaches previous one hop sensors, they are
forwarded to new positioned gateway (guard[1.2] gets enabled and executed).
So, the gateway is able to receive all its data within a finite time in its new
position. So, the system remains in the legitimate state.

Gateway’s movement along the boundary: When the gateway makes any move-
ment along the boundary of the cluster, then guard[0.02] is enabled. The guard
is eventually executed and the gateway is forced to move to its previous position.
If the gateway moves c times along the boundary of the cluster, it is forced to
move to its previous position until it reaches a position within the cluster. So,
the guard[0.02] is enabled c times. After the guard[0.02] is executed c times,
the gateway is within the cluster. If there is any data in the input buffer of the
previous one hop neighbor sensors of the previous position of the gateway, it re-
mains there for some specified time period till the gateway reaches its previous
position. After that time period, the data is sent to the gateway (guard [1.2] is
enabled and executed). So the system goes to legitimate state.

Lemma 4. The item On limit ∧ move limit is a closed attractor for predicate
L and an invariant for all legitimate states.

Proof. It follows directly from property 4.

Theorem 1. Starting from any arbitrary state, every computation of SSEA
reaches a state in which L holds within a constant amount of time. In other
words, starting from arbitrary state, a communication path is eventually set up
between sensors and the gateway in a cluster in a finite amount time.

Proof. It follows directly from lemma 1, lemma 2, lemma 3 and lemma 4.

5 Conclusion

In this paper, we have incorporated fault-tolerance to energy-aware routing for
wireless sensor networks by the use of a technique called self-stabilization. A gate-
way node acts as a cluster-based centralized network manager that sets routes
for sensor data and monitors latency throughout the cluster. The gateway tracks
energy usage at every sensor node and changes in the mission and the environ-
ment. The gateway configures the sensors and the network to operate efficiently

38 S. Padhy and D. Goswami

in order to extend the life of the network. Here, we have assumed that all sensors
are stationary and the gateways are mobile. If any node/link failure occurs, the
gateway selects another least cost path which is energy efficient. No initialization
of the system is required. Our self-stabilizing protocol guarantees that starting
from an arbitrary state and in fine number of steps, reliable communication is
built in the network based on energy-awareness.

References

1. E. Dijkstra, “Self-stabilizing systems in spite of distributed control,” Communica-
tions of the ACM, vol. 17, no. 11, 1974.

2. M. Flatebo, A. Datta, and S. Ghosh, “Self-stabilization in distributed systems,”
In Readings in Distributed Computing Systems,IEEE Computer Press, 1994.

3. J. Brzezinksi and M. Szychowiak, “Self-stabilization in distributed system: A short
survey,” Foundations of Computing and Decision Sciences, vol. 25, no. 1, 2000.

4. S. Dolev, Self-Stabilization. MIT Press, March 2000.
5. M. Gouda and N. Multari, “Self-stabilizing communication protocols,” IEEE

Transaction on Computers, vol. 40, no. 4, pp. 448–458, 1991.
6. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor net-

works: A survey,” Computer Networks, vol. 38, pp. 393–422, March 2002.
7. D. Bein and A. Datta, “A self-stabilizing directed diffusion protocols for sensor

networks,” in IEEE Proceedings of the 2004 International Conference on Parallel
Processing Workshops(ICPPW04), 2004.

8. C. Intanagonwiwat, R. Govidan, and D. Estrin, “Directed diffusion: A scalable
and robust communication paradigm for sensor networks,” in Proceedings of the
6th Annual ACM/IEEE International Conference on Mobile Computing and Net-
working(MobiCom00), August 2000.

9. A. Arora, P. Dutta, and et al, “A line in the sand,” Computer Networks, vol. 46,
pp. 605–634, December 2004.

10. M. Younis, M. Youssef, and K. Arisha, “Energy-aware management for cluster-
based sensor networks,” Computer Networks, vol. 43, 2003.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 39 – 49, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Position Based Gradient Routing in Mobile
Ad Hoc Networks

Anand Praksh Ruhil1,*, D.K. Lobiyal2, and Ivan Stojmenovic3

1 National Dairy Research Institute, Karnal (Hariyana), India
anandpruhil@yahoo.com

2 School of Computer and Systems Sciences,
Jawaharlal Nehru University, New Delhi – 110067, India

dkl@mail.jnu.ac.in
3 SITE, Iniversity of Ottawa, Ottawa, Ont K1N6N5, Canada

www.site.uottawa.ca/~ivan

Abstract. This paper presents a gradient routing algorithm a modified approach
of DIR (compass routing) method to suit for mobile ad hoc network. It is a di-
rection based localized algorithm where each node makes forwarding decisions
solely based on the position of itself, its neighbors and destination. Source node
selects a neighbor node to forward a message which is closest (having mini-
mum gradient i.e. angle) towards the direction of destination. This algorithm
makes use of the position information of nodes to improve the performance of
routing protocols in mobile ad hoc network. The performance of gradient algo-
rithms is compared with other directional routing algorithms LAR and DREAM
in mobile environment using proactive approach. The experimental results
show that gradient algorithm have higher success rate and lower flooding rate
compared to LAR and DREAM

1 Introduction

Ad hoc network is a collection of self-organized nodes equipped with the facility of
wireless communication to receive and transmit the message. There is no fixed infra-
structure to route a message from source to destination. Therefore each node also
works as a router, and cooperates in forwarding a message to the next hop for multi
hop routing in ad hoc network. Ad hoc networks can be divided into two classes static
and mobile. In static ad hoc network the nodes remain static after becoming the part
of network. In mobile ad hoc network (MANET), nodes can move in any direction,
the topology of network changes dynamically with frequent linkages formation and
breakage. This makes multi-hop routing in ad hoc network a most challenging task.

A number of routing protocols have been proposed recently to achieve efficient
routing in mobile ad hoc network. These protocols are placed into two categories -
topology based protocols and position based protocols. The former uses informa-
tion about the links in the network to forward a message and the latter uses
information about the position of hosts in the network. A survey of position based
routing algorithms is presented in [1-3].

In position based routing, the strategies for selection of next hop by a source
node to forward packets towards the destination can be categorized as progress based,

* Corresponding author.

40 A.P. Ruhil, D.K. Lobiyal, and I. Stojmenovic

distance based and direction based forwarding [4]. In distance based strategies a
packet is forwarded to a neighbor that has minimum distance towards destination. In
progress-based strategy a message is forwarded to a neighbor that has best progress
towards destination. In direction based strategy a message is forwarded to a neighbor
that is closest to the direction of destination i.e. having minimum angle between the
lines from source to node and line from source to destination. A variant of direction
based forwarding strategy is restricted directional flooding. In this approach a mes-
sage is forwarded to all neighbors in a zone (restricted area) in the direction of desti-
nation. For example location aided routing (LAR) [5] and Distance routing effect
algorithm for mobility (DREAM) [6].

In this paper we present a direction based routing using the position of nodes to
improve the efficiency of routing protocols in mobile ad hoc network. This is a modi-
fied algorithm of the compass routing method [7]. Originally compass routing method
was proposed to deliver a message in a geometric network based on the direction of
destination. Later, Stojmenovic and Lin [4] referred this method as DIR and evaluated
the performance with LAR, geographic distance routing (GEDIR) and many other
methods in static network. Here we modify DIR method to make it suitable for mobile
ad hoc network and named the new modified method as Gradient algorithm since as
such DIR method is not able to handle the complexity of mobile network. The per-
formance of gradient algorithm is evaluated in mobile environment on parameters -
success rate, average minimum hop counts and flooding ratio with other highly
publicized directional algorithms LAR (scheme 1) and DREAM. The experimental
results show that Gradient algorithm has outperformed LAR and DREAM on all the
performance parameters considered in this paper.

Mobility is introduced using random walk mobility model. Location updates are
performed using proactive approach. We have designed and implemented our own
code in VC++ for simulation and tested the performance of algorithms in a network of
200 nodes.

2 Related Work

With the advent of low cost GPS equipments a number of position based methods
have been published in the literature in last few years. This paper discusses only the
direction based localized algorithm where each node makes forwarding decisions
solely based on the position of itself, its neighbors and destination. Kranakis, Singh
and Urrutia [7] proposed compass routing method for Geometric Networks. This
method requires the position information of destination, source and direction of the
edges incident with source. The edge having closest slope to the line segment con-
necting the source and destination is selected as next hop. This process is repeated
until the message is delivered to the destination. This method is not loop free inher-
ently. Authors of paper [7] did not compare this method with any other protocols.
Later, paper [4] referred this method as DIR and evaluated the performance with
GEDIR, shortest path (SP), LAR, 2 hops GEDIR, flooding GEDIR and many other
methods in static network and concluded that DIR and GEDIR are better than LAR.

Ko and Vaidya, [5] presented two schemes of location-aided routing (LAR) and
Basagni, Chlamtac, Syrotiuk, and Woodward [7] presented a distance routing effect
algorithm for mobility (DREAM) that floods the message in limited range called as

 Position Based Gradient Routing in Mobile Ad Hoc Networks 41

request zone in the direction of destination to find a path from source to destination.
The authors of paper [5] compared the performance of LAR schemes with flooding
algorithm and shown the superiority of their algorithm over flooding. In DREAM [4]
the authors have compared their algorithm with dynamic source routing (DSR) [8] on
the parameters as percentage of messages delivered and average end-to-end delay.
Through the simulation under favorable conditions authors reported that more than
80% of data messages have been delivered to their destination without resorting to a
recovery routine.

3 Gradient Routing

3.1 Motivation

The motivation for modifying the DIR (compass) method is to make it suitable to han-
dle the complexity of mobility. DIR method is simple and easy to understand since
it does not require complex mathematical calculations. Moreover DIR method has
performed better than LAR in static ad hoc network as shown in paper [4]. Therefore
authors decided to improve DIR method for mobile ad hoc network and compared its
performance with existing direction based protocols namely LAR and DREAM.

3.2 DIR Method

It is assumed that each node knows its own position and also the position of other
nodes exactly in the network. Suppose source S needs to send a message to destina-
tion. S computes the angle of all its neighbors with the line joining S and D. Based on
the minimum angle (i.e. slope) S selects a neighbor (say X) to forward a message. The
node X will further forward the message to its neighbor which has the minimum angle
with line joining X and D. This process continues until the message is delivered to D
or dropped due to non availability of path. For example consider the figure 1 given
below, source (S) selects its neighbor B as next hop since B has minimum slope

with line segment SD . Node B similarly will select its next hop to deliver a message
to D until message is delivered to D or dropped due to non availability of path. This
algorithm is inherently not loop free.

Fig. 1. Selection of next hop in DIR Method

S

A

B

C

D

Transmission
Range of S

42 A.P. Ruhil, D.K. Lobiyal, and I. Stojmenovic

3.3 Position Information

We assume that each node knows its current position precisely (error free) through a
GPS device or based in the strength of signals received or by some other method.
Each node maintains a location table containing the last known position information,
time of updating the last known position and mobility speed of all other nodes in the
network. The position information is updated independent of routing task. Position
information is transmitted to one hop neighbors and in the entire network at regular
interval. Location update scheme is described in detail in later section.

3.4 Expected Zone

In mobile environment it is difficult to locate a particular node exactly at any point of
time since the nodes are in moving state. Therefore we can only try to estimate the
probable location of a mobile node in an area (known as expected zone) drawn around
the last known position of the node where the probability of finding a moving node is
highest. The size of expected zone depends on moving speed and time elapsed since
the last known position of the node. Consider a node S needs to send a message to
node D at time tc. Assume that node S knows the last position information of D up-
dated at time t (where tc > t) and D is moving at an average speed v. S can expect the
new location of D in a region defined by R=v*(tc- t) centered at location of D at time
t . This region is known as expected zone (as shown in figure 2 given below) since
the probability of node D being in this region is very high. The shape of an expected
zone may be a circle (figure 2(A)), a rectangle (figure 2(B)) or any other shape.

Fig. 2. Expected Zone

3.5 Request Zone

Source node S defines a request zone explicitly or implicitly to increase the probabil-
ity of delivering a message to destination D. Source S forwards a message only to
nodes those belong to the request zone. An explicitly defined request zone draws a
specific area around the expected zone including source node. Nodes lying inside the
specified area are members of the request zone. The request zone defined implicitly

(A) (B)

*(tc- t)
D D

 Position Based Gradient Routing in Mobile Ad Hoc Networks 43

does not draw any such specific area rather the membership of nodes to the request
zone is decided based on some particular criteria. Request zone includes the nodes
that are the best choices for any probable location of destination D within the ex-
pected zone to forward a message. The shape of a request zone defined explicitly may
be an angular one by drawing tangents from source on the circular expected zone as
shown in figure 3(A). The shape of a request zone may also be a rectangle drawn
from source at one end of diagonal and expected zone at other end of the diagonal as
shown in figure 3(B) or any other shape.

Fig. 3. Request Zone

3.6 Gradient Routing

Gradient routing is a modified and improved version of DIR method to make it suit-
able for mobile ad hoc network. A source node select next hops which are closer to
destination (any possible position inside the expected zone) based on minimum angle
(i.e. slope or gradient) with the line segment joining source and destination. Since
gradient (i.e. slope or angle) plays significant role at each step in selection of next hop
and delivering a message to destination therefore, it is named as gradient routing.
Message is forwarded to only those neighbors which are best choices for a possible
position of destination in the expected zone. The membership of request zone is de-
termined implicitly. Gradient routing algorithm is described as follows:

Consider a source S initiates a routing process to send a message to destination D
at time tc. S will look up the location table to know the last position information of
D. Assume that position information of D was updated at time tl (where tc > t) and D
is moving at an average speed v. S can expect the new location of D in a circular
region (known as expected zone) defined by the radius R=v*(tc- t) centered at loca-
tion of at time t .

Since D can be located any where inside the expected zone therefore we have to
cover the entire zone to reach D. To cover entire expected zone we propose to select
certain equally spaced points on the boundary of an expected zone as probable desti-
nations as shown in figure 4 given below. Further assume that destination may be any
where inside the circle including the positions marked on boundary of the circle as
probable destinations. S marks a node among its neighbors as next hop for each prob-
able destination using DIR as basic algorithms for forwarding the message. To avoid
the loop formation an additional condition on the selection of next hop is laid down

that the angle between next hop and SD must be less than right angle. No specific

(A)

Expected
Zone

S
Expected

Zone

Request
Zone

(B)

Request
Zone

44 A.P. Ruhil, D.K. Lobiyal, and I. Stojmenovic

request zone is drawn here to determine next hop. The marked nodes further mark
their neighbor nodes as next hop to deliver a message to D. This process is repeated
until massage is delivered to D or dropped due to non-availability of path. Once the
message is reached inside the expected zone, message is flooded inside the expected
zone to deliver the message to D since it is difficult to locate the exact position of D.

For example in the figure 4, S draw an expected zone around D and selects 16
(arbitrarily) equally spaced points as probable destinations on the boundary of
expected zone. For each probable destination say U and U' (or any other point on the
boundary), S determines A and B as next hops respectively (using DIR as basic algo-
rithm) to deliver a message to D for any position of D inside the expected zone.

Fig. 4. Gradient Routing

3.7 Advantages

Gradient routing algorithm has the following advantages:

• Gradient routing is robust. Message can be delivered to destination through more
than one route independent of each other. Failure of one route will not disconnect
the source and destination since multiple routes exists.

• Gradient routing is adaptive to sleeping period operation due to existence of mul-
tiple routes. Failure of one route will not affect routing task.

• It is adaptive to mobility since at every step the source and intermediate nodes
selects next hop based on the latest information available about the destination.

• It is loop free since message is forwarded to nodes lying towards destination.
• It is distributive and localized algorithm.
• This algorithm is suitable for routing as well as geocasting. Delivery of message

is independent of location update tasks.
• This method is scalable in terms of number of nodes in the network.

4 Experimentation

We have simulated the protocols by implementing algorithms in VC++. We have
considered a network of 200 nodes and assume that each node has equal transmission

 Position Based Gradient Routing in Mobile Ad Hoc Networks 45

range R and the links are congestion free. The nodes are spread in the area L x W
where L=640 units and W=480 units. Simulation was carried out by varying average
degree K of the network (i.e. the average number of neighbors of a node in the
network) as 5, 6, 7, 8, 9, 10, 11 and 15. Transmission range (R) is set as a function of
K, number of nodes N and the network area using relation:

()1−
∗∗=

N

WLK
R

π
 (1)

For each value K, 1000 pairs of source and destination are selected in one experiment.
The experiment is repeated 10 times. Average values of success rate, minimum hop
counts, and flooding ratio were calculated from the data generated through experiments.

Mobility is introduced using random walk model using proactive routing approach.
Each node is moving at a speed of x units per clock tick with zero pause time in a
random direction, where x is selected randomly for each node in interval [0, 2]. Ran-
dom direction is selected between 0 to 2p for each clock tick independent of speed. A
moving node is reflected back from the network boundary wall if it hits the wall. The
first pair of source and destination is selected to transmit a data message after 25
clock ticks of the simulation. Thereafter pairs of source and destination are selected to
transmit data messages with time difference between two pairs being exponentially
distributed with the mean of 2 clock ticks. The size of expected zone is determined
based on the speed and the time difference from the last known position independ-
ently at each node. The massage is flooded inside the expected zone once it reaches
inside the expected zone.

4.1 Location Update Scheme

In this location update scheme each moving node sends a location update message at
regular time interval (containing new position information, and current speed of the
node). There are two types of location update messages i.e. short duration location
update message and a long duration update message. Short duration messages are
transmitted to one-hop neighbors at every 10 clock units whereas long duration mes-
sages are transmitted in the entire network at every 70 clock units. Since the network
may be partitioned therefore long duration message may not reach to all nodes.

The source node transmits the message to its neighbor according to algorithm used
if the time gap is smaller than a threshold value timeOut, otherwise source node drops
the message and starts recovery procedure to deliver the message. Value of timeOut is
computed by the formula:

()∗∗
=

speed

PWL
timeOut

π
 (2)

where, P is taken 20% area of the network that an expected zone (circle) can cover.
This condition was necessary to restrict the size of expected zone since in some case it
was found that the expected zone was large enough to cover the entire network. Since
LAR is applied in proactive environment (instead of originally described as reactive
one), therefore it is called as LAR-P.

46 A.P. Ruhil, D.K. Lobiyal, and I. Stojmenovic

5 Results and Discussion

The performance of Gradient routing algorithm is compared with two popular
location based directional routing protocols namely LAR (Scheme 1) and DREAM on
the following parameters:

5.1 Percentage of Successful Deliveries (Success Rate)

A message delivery is treated as successful if source and destination are found con-
nected. Success rate is computed as the sum of the number of messages delivered
successfully to destination divided by the total number of message sent.

0

10

20

30

40

50

60

70

80

90

100

5 6 7 8 9 10 11 15
Degree of Network

P
e

rc
e

n
ta

g
e

DREAM

LAR1-P

Gradient

Fig. 5. Success Rate

Figure 5 (given above) show the success rate of protocols. Gradient routing has
significantly higher success rate than LAR-P and DREAM. Success rate is extremely
low in DREAM (less than 6% for K≤11) since for many cases expected zone is not
formed or its size is very small and accordingly the size of request zone reduced.
Source node is not able to find next hop (most of time) inside the request zone being
small in size. The size of expected zone is determined by the radius R=v*(tc- t)
where v is the mobility speed of destination. Mobility speed of each node is selected
randomly in interval [0 2]. In case speed is zero (or very small number) then R be-
comes zero and consequently size of expected zone also becomes zero. Through the
experiment we found that when size of expected zone is zero or very small then
DREAM frequently fails to find next hop to forward the message inside the request
zone. In this situation Gradient routing is able to find path and therefore it has maxi-
mum success rate.

5.2 Average Minimum Hop Counts

It is the sum of hop counts (taking the minimum hop counts in case of more than one
successful deliveries for a given pair of source and destination) of all successful
deliveries divided by total number of such deliveries. Average minimum hop counts

 Position Based Gradient Routing in Mobile Ad Hoc Networks 47

plays an important role in measuring the performance of algorithms particularly when
links are assumed to be congestion free. It signifies that in how many minimum hops
an algorithm delivers a message from source to destination.

The results of average minimum hop counts are shown in figure 6 (given below).
Gradient and LAR-P have almost similar hop counts while Gradient has significantly
higher success rate than LAR-P. DREAM has minimum hop counts since its success
rate is also very low.

3

4

5

6

7

8

9

10

11

5 6 7 8 9 10 11 15
Degree of Network

H
o

p
 C

o
u

n
ts

DREAM
LAR1-P
Gradient

Fig. 6. Average minimum hop counts

5.3 Flooding Ratio

Flooding ratio of an algorithm exhibits the average load on the network during
message delivery. It is computed as the percentage of marked nodes outside the
expected zone from the total nodes outside the expected zone for forwarding the mes-
sage. All message deliveries (successful and unsuccessful) have been considered for
computing the flooding ratio. Each algorithm behaves in the same way inside the
expected zone since flooding is applied inside the expected zone. Thus only the nodes
marked outside the expected zone make difference in flooding a message in the
network. Therefore only such nodes have been considered for computing flooding
ratio.

Figure 7 (given below) shows the results for flooding. From this figure it is ob-
served that LAR-P has maximum flooding ratio (approximately 19% at K=15). Gra-
dient has significantly low flooding ratio (approximately 9% at K=15) in comparison
to LAR- P. DREAM has lowest flooding ratio and its success rate was also low. It is
also observed that flooding ratio increases rapidly with the value of K especially in
LAR-P while in Gradient routing flooding ratio remains approximately same. The
reason is that LAR-P does blind flooding in request zone and Gradient routing method
selects only suitable neighbors which are best choice to forward the message to prob-
able destination.

48 A.P. Ruhil, D.K. Lobiyal, and I. Stojmenovic

0

5

10

15

20

5 6 7 8 9 10 11 15
Degree of Network

P
e

rc
e

n
ta

g
e

DREAM

LAR1-P

Gradient

Fig. 7. Flooding Ratio

6 Conclusion

In this paper, we presented Gradient routing method (a modified version of DIR
algorithm). This method is adaptive to mobile network and is inherently loop free.
The performance of Gradient method is evaluated on the parameters - success rate,
average minimum hop counts and flooding ratio. Its performance is compared with
other directional routing protocols namely LAR and DREAM. The simulation results
show that Gradient method has outperformed LAR and DREAM on all parameters.
Gradient routing method maintains high success rate at low flooding rate and hop
counts as degree of network increases. Therefore this method is also suitable for
dense network.

References

1. Mauve M., Widmer J., and Hartenstein H.: A survey on Position-Based Routing in Mobile
Ad Hoc Networks, IEEE Network (2001), 30-39.

2. Giordano S., Stojmenovic I., and Blazevic L.: Position based routing algorithms for ad hoc
networks A taxonomy, (2001) http://www.site.uottawa.ca/~ivan/wireless.html

3. Stojmenovic I., Ruhil A.P., and Lobiyal D.K.: Voronoi diagram and convex hull based
geocasting and routing in wireless networks, Proc. of Eighth IEEE ISCC, Antalya, Turkey,
(2003) 51-56

4. Stojmenovic I. and Lin X.: Loop-Free Hybrid Single-Path/Flooding Routing Algorithms
with Guaranteed Delivery for Wireless Networks, IEEE Transactions on Parallel and Dis-
tributed Systems, Vol. 12, No. 10, (2001) 1023-1032.

5. Ko Y.B. and Vaidya N.H.: Location-aided routing (LAR) in mobile ad hoc networks,
MOBICOM, (1998) 66-75; Wireless Networks, Vol. 6, No. 4, (2000) 307-321.

 Position Based Gradient Routing in Mobile Ad Hoc Networks 49

6. Basagni S., Chlamtac I., Syrotiuk V.R., and Woodward B.A.: A distance routing effect
algorithm for mobility (DREAM), Proceedings MOBICOM, (1998) 76-84.

7. Kranakis E., Singh H., and Urrutia J.: Compass Routing on Geometric Networks", Proceed-
ings 11th Canadian Conference on Computational Geometry, Vancouver, (1999)

8. Johnson D. and Maltz D. A.: The Dynamic Source Routing in Ad-Hoc Wireless Networks
(DSR), IETF, MANET working group, Internet draft, 21st February 2002. http://www.
ietf.org/internet-drafts/draft-ietf-manet-dsr-07.txt

Distributed Clustering Algorithm for Finding
Virtual Backbone in Ad Hoc Networks

B. Paul and S.V. Rao

Department of Computer Science & Engineering,
Indian Institute of Technology, Guwahati,

Guwahati - 781039, Assam, India
{bpaul, svrao}@iitg.ernet.in

Abstract. An important objective in designing a protocol is to save
scarce resources like energy and bandwidth, and avoid the broadcast
storm problem [1]. One way of addressing these problems is by forming
a small virtual backbone. In this paper, we present a distributed clus-
tering algorithm for forming a small backbone in ad-hoc network, based
on connected dominating set. The time and message complexity of the
algorithm is in O(n).

1 Introduction

In ad hoc networks, the broadcast storm problem [1] is a bottleneck in the
applications where the broadcasting is one of the major requirement. Recent
research shows that this problem can be addressed efficiently by constructing a
small backbone, since it is an efficient approach for routing in which message
redundancy, contention, and collision can be reduced. But, unfortunately find-
ing a smallest backbone is a NP-complete problem [2]. So, several researchers
proposed various approximate algorithms for computing backbone.

One class of algorithms are based on connected dominating sets (CDS). Guha
and Khuller [3], presented two centralized algorithms. The distributed version
of these algorithms are proposed in [4]. A localized distributed algorithm is
proposed in [5] by using two hop neighbors information. A distributed algorithm
for forming a CDS with an approximation ratio of O(log Δ) is presented in [6].
Alzoubi et al. proposed many algorithms [7, 8] for CDS construction. Spanning
tree-based CDS algorithms are proposed in [7, 9, 10]. In [11], rule-k is proposed
to decrease the size of the CDS generated in [5]. The Span [12] chooses a node
in each region as a coordinator and connects them with other node.

Another class of algorithms are based on clustering using independent domi-
nating sets. Baker and Ephremides [13] proposed linked cluster algorithm Gerla
and Tsai [14] presented two distributed algorithm based on lowest ID and high-
est degree Improved version of these algorithms are proposed in [15]. Some al-
gorithms are based on clustering using dominating sets. In [16], a distributed
greedy algorithm is proposed for dominating sets.

In this paper we propose a distributed clustering algorithm for constructing
a small connected dominating set. The rest of the paper is organized as follows:
next section describes the proposed distributed algorithm for constructing a

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 50–55, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Distributed Clustering Algorithm for Finding Virtual Backbone 51

CDS. The section 3, presents our simulation results. And finally we conclude in
fourth and final section.

2 Proposed Distributed Algorithm

We assume that every node knows its 1-hop neighbors. This can be easily gath-
ered by broadcasting HELLO packet by each node. This 1-hop information con-
tains node ID and its cluster head. The cluster head information is gathered dur-
ing cluster formation. Before discussing the algorithm we explain the variables
maintained at each node. Each node maintains its unique identification, cluster
head, and parent respectively in the variables id, ClusterHead, and parent. The
variable ClusterHead can be used as a cluster ID. Moreover, each node main-
tains list of its children and list of backbone nodes in its vicinity respectively in
child list, and internal list. The nodes in the internal list need not be from the
same cluster. To distinguish nodes from other cluster, we store cluster head ID
along with node ID. These nodes are sorted by ClusterHead and id.

Our algorithm works in two phases, in first phase clusters are formed and
in second phase these clusters are connected to form a backbone. Formation
of clusters starts with the identification of cluster heads. We explain the cluster
formation phase using color code WHITE, GRAY, and BLACK. After first phase
of the algorithm, cluster heads are marked BLACK and all other nodes are
marked GRAY. Each node initially mark itself WHITE and acts according to
the following algorithm.

1. Each node having lowest ID among its neighbors marks itself BLACK (clus-
ter head) by setting ClusterHead to its own ID and broadcasts CHEAD
message.

2. WHITE nodes receiving first CHEAD message marks itself GRAY, sets its
parent and ClusterHead to sender ID, sends JOIN message to sender, and
broadcasts DOMINATEE message.

3. WHITE node receiving first DOMINATEE message marks itself GRAY, sets
parent to sender ID, ClusterHead to cluster head (which is received in
DOMINATEE message), sends JOIN message to sender and broadcast the
DOMINATEE message.

4. When any non-WHITE node receives the DOMINATEE message, it updates
the sender information by noting senders cluster head in its 1-hop information.

5. Upon receiving first JOIN message, each node adds sender ID in child list
and broadcast the DOMINATOR message. Note this DOMINATOR message
is required for its neighbors to know that it has become an non-leaf node.

6. Subsequently, each node receiving the JOIN message, adds sender ID in child
list.

7. Upon receiving the DOMINATOR message, each node adds the sender ID
and cluster head (which is received in the DOMINATOR message), in its
internal list.

Each cluster is a rooted spanning tree with cluster head as the root and
all the non-leaf nodes form a connected dominating set. The next step is to

52 B. Paul and S.V. Rao

connect these rooted spanning trees to form a single connected dominating set.
We use ClusterHead value as a priority to initiate connection to join with
other clusters. Lower the cluster head ID, higher the priority. Each node also
maintains connected list to keep connection information. That is, which nodes in
its cluster is connected to which node in other clusters. The variables FromNode
and ToNode maintains node ID’s of a node from its cluster and a node in other
cluster. Their status, leaf/ non-leaf, is respectively stored in FromStatus and
ToStatus. Cluster ID of ToNode is maintained in ToClusterHead. We maintain
connected list by sorted order of ToClusterHead. Each node’s connected list is
initialized to null. Cluster are joined together as per the following algorithm.

1. Any node x having lower ClusterHead among its neighbor nodes of neighbor
clusters, sends a REQUEST message to its cluster head through its parent,
if x’s cluster is not already connected by any node in its cluster.

2. Each node receiving REQUEST message forwards to its parent.
3. Upon receiving the REQUEST message, the cluster head node y adds this

connection entry to connected list and sends PERMITTED message to its
children, if y’s cluster is not connected.

4. Every node receiving PERMITTED message checks its connected list, adds
or modifies the connection entry and sends the PERMITTED message to its
children.

5. When requested node receives the PERMITTED message, it acts like a con-
nector between two clusters and sends the CONNECT message to node in
other cluster. If more than one neighbor nodes are from other cluster, it
sends to the node having lowest ID.

6. Upon receiving the CONNECT message, nodes adds or modifies the connec-
tion entry in its connected list and forwards the CONNECT message to its
cluster head.

7. When cluster head receives the CONNECT message, it adds or modifies the
connection entry and send the UPDATE message to its children.

8. Upon receiving the UPDATE message, each node adds or modifies the con-
nection entry and forwards the UPDATE message to its children.

After the above steps, our algorithm forms a connected backbone in which all
the non-leaf nodes of all clusters and connector nodes form a CDS.

2.1 Improvement

In previous algorithm, any node can become a connector. If both the connectors
are leaf nodes in their respective cluster spanning trees, then increase in the size
of the backbone is at least two. This is because, connector nodes are part of
the backbone. If the connector nodes are non-leaf nodes, there is no increase in
the size of the backbone, since non-leaf nodes are already part of the backbone.
Therefore, we can reduce the size of the backbone if we can restrict connec-
tor nodes to non-leaf nodes. This can be achieved by modifying the first four
steps of the previous algorithm, by giving priority to non-leaf node to become a
connector. These modification are discussed below.

Distributed Clustering Algorithm for Finding Virtual Backbone 53

1. All leaf nodes having lower ClusterHead among its neighbor nodes of other
clusters, send a REQUEST message to its cluster head, if the other cluster
is not connected by any node in its cluster.

2. All non-leaf nodes send REQUEST2 message to its cluster head, if the other
cluster is not connected. If connected, then sends a REQUEST2 message, if
one of the following conditions is satisfied:
– if the FromNode is leaf in its connected list, it checks for ToNode is

leaf or non-leaf. If it is leaf, then send REQUEST2 message. And if it is
non-leaf then it will check in its internal list whether it can establish a
connection with any non-leaf node of other cluster. If it can, then sends
REQUEST2 message.

– if the FromNode is non-leaf and the ToNode is leaf then it checks
whether the new connection can be made with the help of any non-
leaf node in other cluster. Note, any node can check in its internal list,
whether any non-leaf node in other cluster exists or not.

Also note that while making the new connection, each node prefers to make
the connection with an non-leaf node in the other cluster. For that each
node uses their sorted internal list to search for neighbor non-leaf node in
the other cluster.

3. The cluster head node acts according to the following way:
– Upon receiving the first REQUEST message, the cluster head adds the

connection entry to connected list and sends PERMITTED message to
its child list, if no such entry exists for the that cluster in its connected
list. Every node receiving PERMITTED message checks its connected
list, adds the connection entry and sends the PERMITTED message to
its child list.

– Upon receiving the REQUEST2 message, the cluster head checks its
connected list if any connection already exists or not. If not, it adds the
respective connection entry in the connected list and sends the PER-
MITTED message to its child list. If already exists, then sends the PER-
MITTED message to its child list, if one of the following conditions is
satisfied:
• if the FromNode is leaf in its connected list, it checks for ToNode

is leaf or non-leaf. If it is leaf, then it modifies its connected list and
sends PERMITTED message. And if it is non-leaf and the ToNode,
in new connection request, is also non-leaf node then it modifies its
connected list and sends PERMITTED message.
• if the FromNode is non-leaf and the ToNode is leaf and the ToNode,

in new connection request, is non-leaf node then it modifies
connected list and sends PERMITTED message.

Every node receiving PERMITTED message checks its connected list,
adds or modifies the connection entry, and sends the PERMITTED mes-
sage to its child list.

Every node receiving the PERMITTED message updates its connected list and
sends to its children. The remaining part of the previous algorithm is same. All the
non-leaf nodes and connectors form a smaller CDS than the previous algorithm.

54 B. Paul and S.V. Rao

3 Simulation

In this section, we compare the size of the CDSs computed by our algorithms with
existing methods using the ds custom simulator [17]. Random ad hoc network is
generated with N hosts distributed evenly in a 50×50 square units. Transmission
range R of each node is 10 units. In order to observe the impact of network
density, simulations are conducted for the average vertex degree of 6, 18, and
30. For each value of d, we run our algorithms 250 times for different values
of N . We have considered the connected undirected graph for each simulation.
We have compare our algorithms with Span [12], Rule k [11], STCDS 1 [7], and
STCDS 2 [9]. The results are reported in the figure 1. Our second algorithm
gives smaller dominating set in large and dense graphs. Note that tree based
approaches [7, 9, 10] gives smaller dominating set in comparison with cluster
based approaches but the overhead and the complexity of those are much higher.

Number of nodes

C
D

S
si

ze

50 75 100 125 150 175 200 225 250 275 300

40

60

80

100

120

140

160 Span
Our Method
(Restr.) Rule k
Our Imv. Method
STCDS 1
STCDS 2

Average degree = 6

(a)

Number of nodes

C
D

S
si

ze

50 75 100 125 150 175 200 225 250 275 300
10

20

30

40

50

60

70

80

90

Span
Our Method
(Restr.) Rule k
Our Imv. Method
STCDS 1
STCDS 2

Average degree = 18

(b)

Number of nodes

C
D

S
si

ze

50 75 100 125 150 175 200 225 250 275 300

10

20

30

40

50

Span
Our Method
(Restr.) Rule k
Our Imv. Method
STCDS 1
STCDS 2

Average degree = 30

(c)

Fig. 1. Simulation results

4 Conclusion

In this paper, we have presented a distributed algorithm for forming small back-
bone in wireless ad hoc network based on clustering concepts. The size of the
constructed backbone is further minimized by distributed algorithm. These al-
gorithms are implemented and simulation results shows that our approach forms
a small backbone in wireless ad hoc networks.

References

1. Ni, S., Tseng, Y., Cheng, Y., Sheu, J.: The broadcast storm problem in a mobile
ad hoc network. In: Proc. MOBICOMM’99. (1999) 151–162

2. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathemat-
ics. 86 (1990) 165–177

3. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets.
Algorithmica 20 (1998) 374–387

Distributed Clustering Algorithm for Finding Virtual Backbone 55

4. Bharghavan, V., Das, B.: Routing in adhoc networks using minimum connected
dominating sets. In: IEEE International Conference on Communications (ICC’97).
Volume 1., Montreal, Canada (1997) 376 – 380

5. Wu, J., Li, H.: On calculating connected dominating sets for efficient routing in
adhoc wireless networks. In: Proc. of the 3rd Int’l Workshop on discrete algorithms
and methods for mobile computing and communications. (1999) 7–14

6. Dubhashi, D., Mei, A., Panconesi, A., Radhakrishnan, J., Srinivasan, A.: Fast dis-
tributed algorithms for (weakly) connected dominating sets and linear-size skele-
tons. In: Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA). (2003)
717–724

7. Alzoubi, K.M., Wan, P.J., Frieder, O.: Distributed heuristics for connected domi-
nating set in wireless adhoc networks. IEEE ComSoc / KICS Journal of commu-
nications and networks 4 (2002) 22–29

8. Alzoubi, K.M., Wan, P.J., Frieder, O.: Message-optimal connected dominating sets
in mobile adhoc networks. In: The Third ACM Int’l Symposium on mobile adhoc
networking and computing. (2002) 157–164

9. Alzoubi, K.M., Wan, P.J., Frieder, O.: New distributed algorithm for connected
dominating set in wireless adhoc networks. In: Proceedings of the 35th Annual
Hawaii International Conference on System Sciences. (2002) 3849 – 3855

10. Wan, P.J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dom-
inating set in wireless adhoc networks. In: Twenty-First Annual Joint Conference
of the IEEE Computer and Communications Societies. (2002) 1597 – 1604

11. Dai, F., Wu, J.: An extended localised algorithm for connected dominating set for-
mation in ad-hoc wireless networks. IEEE Transactions on Parallel and distributed
systems 15 (2004)

12. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: an energy-efiicient
coordination algorithm for topology maintenance in ad hoc wireless networks. ACM
Wireless Netrworks J. 8 (2002) 481–494

13. Baker, D.J., Ephremides, A.: The architectural organization of a mobile radio
network via a distributed algorithm. IEEE Transaction on Communications 29
(1981) 1694–1701

14. Gerla, M., Tsai, J.T.C.: Multicuster, mobile, multimedia radio network. ACM-
Baltzer Journal of wireless networks 1 (1995) 255–265

15. Lin, C.R., Gerla, M.: Adaptive clustering for mobile wireless networks. IEEE
Journal on Selected Areas in Communications 15 (1997) 1265–1275

16. Liang, B., Haas, Z.J.: Virtual backbone generation and maintenance in ad hoc
network mobility management. In: Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. (2000) 1293–1302

17. Dai, F.: Dominating set simulation program. http://www.cse.fau.edu/ fdai/adhoc
(2001)

Merging Clustering Algorithms in Mobile
Ad Hoc Networks

Orhan Dagdeviren, Kayhan Erciyes, and Deniz Cokuslu

Izmir Institute of Technology,
Computer Eng. Dept., Urla, Izmir 35340, Turkey

{orhandagdeviren, kayhanerciyes, denizcokuslu}@iyte.edu.tr

Abstract. Clustering is a widely used approach to ease implementa-
tion of various problems such as routing and resource management in
mobile ad hoc networks (MANET)s. We first look at minimum spanning
tree(MST) based algorithms and then propose a new algorithm for clus-
tering in MANETs. The algorithm we propose merges clusters to form
higher level clusters by increasing their levels. We show the operation of
the algorithm and analyze its time and message complexities.

1 Introduction

MANETs do not have any fixed infrastructure and consist of wireless mobile
nodes that perform various data communication tasks. MANETs have potential
applications in rescue operations, mobile conferences, battlefield communications
etc. Conserving energy is an important issue for MANETs as the nodes are pow-
ered by batteries only. Clustering has become an important approach to manage
MANETs. In large, dynamic ad hoc networks, it is very hard to construct an
efficient network topology. By clustering the entire network, one can decrease
the size of the problem into small sized clusters. Clustering has many advan-
tages in mobile networks. Clustering makes the routing process easier, also, by
clustering the network, one can build a virtual backbone which makes multicas-
ting faster. However, the overhead of cluster formation and maintenance is not
trivial. In a typical clustering scheme, the MANET is firstly partitioned into a
number of clusters by a suitable distributed algorithm. A Cluster Head (CH)
is then allocated for each cluster which will perform various task on behalf of
the members of the cluster. The performance metrics of a clustering algorithm
are the number of clusters, the count of the nodes in a cluster and the count
of the neighbor nodes which are the adjacent nodes between the formed clus-
ters [1].

In this study, we search various graph theoretic algorithms for clustering in
MANETs and propose a new algorithm. Constructing Minimum Spanning Trees
is an important approach where part of a tree or a tree of a forest designates a
cluster. Related work in this area is reviewed in Section 2, we describe and illus-
trate the operation of our algorithm in Section 3 and the final section provides
the conclusions drawn.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 56–61, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Merging Clustering Algorithms in Mobile Ad Hoc Networks 57

2 Background: Clustering Using a Minimum Spanning
Tree

An undirected graph is defined as G = (V, E), where V is a finite nonempty
set and E ⊆ V × V . The V is a set of nodes v and the E is a set of edges
e. A graph G is connected if there is a path between any distinct e. A graph
GS = (VS , ES) is a spanning subgraph of G = (V, E) if VS = V . A spanning tree
of a graph is an undirected connected acyclic spanning subgraph. Intuitively, a
spanning tree for a graph is a subgraph that has the minimum number of edges
for maintaining connectivity [3]. The idea is to group branches of a spanning tree
into clusters of an approximate target size [4]. The resulting clusters can overlap
and nodes in the same cluster may not be directly connected [2]. Gallagher,
Humblet, Spira’s Distributed Algorithm [5] and Srivastava, Ghosh’s k-tree core
Algorithm [6] are two algorithms which construct distributed minimum spanning
trees in MANETs.

Gallagher, Humblet and Spira’s Distributed Algorithm: Gallagher, Humblet
and Spira [5] proposed a distributed algorithm which determines a minimum-
weight spanning tree for an undirected graph that has distinct finite weights
for every edge. Aim of the algorithm is to combine small fragments into larger
fragments with outgoing edges. A fragment of an MST is a subtree of the MST.
An outgoing edge is an edge of a fragment if there is a node connected to the edge
in the fragment and one node connected that is not in the fragment. Combination
rules of fragments are related with levels. A fragment with a single node has the
level L = 0. Suppose two fragments F at level L and F’ at level L’;

– If L < L’, then fragment F is immediately absorbed as part of fragment F.
The expanded fragment is at level L’.

– Else if L = L’ and fragments F and F’ have the same minimum-weight
outgoing edge, then the fragments combine immediately into a new fragment
at level L+1

– Else fragment F waits until fragment F’ reaches a high enough level for
combination.

Under the above rules the combining edge is then called the core of the new
fragment. The two essential properties of MSTs for the algorithm are:

– Property 1: Given a fragment of an MST, let e be a minimum weight outgoing
edge of the fragment. Then joining e and its adjacent non-fragment node to
the fragment yields another fragment of an MST.

– Property 2: If all the edges of a connected graph have different weights, then
the MST is unique.

The upper bound for the number of messages exchanged during the execution
of the algorithm is 5Nlog2 N +2E, where N is the number of nodes and E is the
number of edges in the graph. A message contains at most one edge weight and
log2 8N bits. A worst case time for this algorithm is O(NlogN) [5].

58 O. Dagdeviren, K. Erciyes, and D. Cokuslu

3 Our Algorithm

We propose a distributed algorithm which finds clusters in a mobile ad hoc
network. We assume that each node has distinct node id. Moreover, each node
knows its cluster leader id, cluster id and cluster level. Cluster id is identified by
the maximum node id of the node in a cluster. cluster level is identified by the
number of the nodes in a cluster. Cluster leader id is identified by the node id
of the leader node in a cluster. Cluster leader id is equal to the cluster id. We
assume that each node initially knows the cluster information of adjacent nodes.
The local algorithm consists of sending messages over adjoining links, waiting
for incoming messages and processing messages. The finite state machine of the
algorithm is shown in Fig. 1.

Poll_Node

Period_TOUT

Node_Info

Poll_Node

Connect_Mbr

Poll_Node

Change_Cluster

 / Poll_Node

Mbr_ACK

Period_TOUT / Poll_Node WT_INFO # of nodes in cluster < k

/ Poll_Node
 Connect_Mbr
/ Connect_Ldr,

IDLE
MEMBER WT_ACK LEADER

/ Change_Cluster
Ldr_ACK

Poll_Node
/ Ldr_Poll_Node

Connect_Mbr / Ldr_ACK
Change_Cluster

Connect_Ldr
/Mbr_ACK,

Poll_Node / Node_Info
/ Ldr_ACK

Poll_Node
IDLE_WT
_CONN

LDR_WT
_CONN

Connect_Ldr / Mbr_ACK

Poll_Node,
Ldr_Poll_Node
/Node_Info

Fig. 1. Finite State Machine of the Algorithm

The algorithm requires the following sequence of messages. Firstly a node
sends a Poll Node message to a destination node. Destination node sends a
Node Info message back to originator node. Originator node then sends a Con-
nect Ldr or Connect Mbr message to destination node to state it is the current
leader or not. Destination node sends a Ldr ACK or Mbr ACK message to orig-
inator node. Ldr ACK message shows that the originator node will become the
new leader. Mbr ACK message shows that the originator node will become the
member of the new cluster.

Merging Clustering Algorithms in Mobile Ad Hoc Networks 59

Messages can be transmitted independently in both directions on an edge and
arrive after an unpredictable but finite delay, without error and in sequence.
Message types are Poll Node, Ldr Poll Node, Node Info, Ldr ACK, Mbr ACK,
Connect Mbr, Connect Ldr and Change Cluster as described below.

A cluster member node will send Ldr Poll Node message to the cluster leader
node if the cluster member node receives a Poll Node message from a node
which is not in the same cluster. A node will multicast a Change Cluster to all
cluster member nodes to update their cluster id and cluster level. Period TOUT
message can be regarded as an internal message. Period TOUT occurs for ev-
ery node in the network to start clustering operation periodically. Every node
in the network performs the same local algorithm. Each node can be either
in IDLE, WT INFO, WT ACK, MEMBER, LEADER, LDR WT CONN or
IDLE WT CONN states described below.

Initially all the nodes are in IDLE state before Period TOUT occurs. A node
in WT INFO state waits for Node Info message. A node in WT ACK state
waits for a Mbr ACK or Ldr ACK. A node in LDR WT CONN state waits
for Connect Mbr or Connect Ldr message. A node in IDLE WT CONN state
waits for Connect Mbr or Connect Ldr message. After the clustering operation
is completed the nodes are either in MEMBER or LEADER state.

Timeouts can occur during communication. If a timeout occurs at a node
either in IDLE, WT INFO, WT ACK or IDLE WT CONN states, it returns
back to IDLE state, a node in LDR WT CONN state returns back to LEADER
state, a node either in LEADER or MEMBER states doesn’t change its state.

3.1 An Example Operation

Assume the mobile network in Fig. 2. Initially all the clusters are in IDLE state.
Period TOUT occurs in Node 1, Node 3, Node 4 , Node 9 and Node 12. Node
1 sends a Poll Node message to Node 7 and sets its state to WT INFO. Node 7
receives the Poll Node message and sends Node Info message to Node 1. Node 7
sets its state to IDLE WT CONN. Node 1 receives the Node Info message and
sends a Connect Ldr message to Node 7 since the node id of Node 7 is greater
than node 1. Node 1 sets its state to WT ACK. Node 7 receives the Connect Ldr
message and sends a Mbr ACK message to Node 1. Node 1 receives the message
and sets its state to MEMBER. Node 7 sends Change Cluster message to Node
1 indicating that new cluster is formed between and Node 1 and Node 7. Node
8 and Node 9, Node 2 and Node 4 , Node 11 and Node 5, Node 3 and Node 6
are connected same as Node 1 and Node 2 to form clusters with level 2.

After clusters with level 2 are formed, Node 10 in IDLE state sends a Poll Node
message to Node 7. Node 10 sets its state to WT INFO. Node 7 in LEADER state
receives Poll Node message and sends a Node Info message to Node 10. Node 7
sets its state to LDR WT CONN. Node 10 in WT INFO STATE receives
NODE INFO message from Node 7 and sends a Connect Mbr message to Node
7. Node 10 sets its state to WT ACK. Node 7 receives Connect Mbr and sends
Ldr ACK message to Node 10. Node 7 sets its state to MEMBER. Node 10 in
WT ACK state receives Ldr ACK message and multicasts Change Cluster mes-

60 O. Dagdeviren, K. Erciyes, and D. Cokuslu

1 7

6 3

10

5

11

8

9

4

2 12

13

Fig. 2. Clusters obtained using our algorithm

sage to Node 1 and Node 7 to update new cluster information. Node 10 sets its
state to LEADER. At the same time Node 13 in LEADER state sends a Poll Node
message to Node 4. 12, 13 and 2, 4 forms a new cluster as shown before. Beside
this 5, 11 and 8, 9 are connected to form new clusters.

Table 1. Cluster Formation

Iteration A B C

1 1 7 10 6 3 2 13 5 9
2 1-7 10 6-3 2-4 13-12 5-11 9-8
3 1-7-10 6-3 2-4-13-12 5-11-9-8
4 1-7-10-6-3 No Change No Change

Node 6 in LEADER state sends a Poll Node message to Node 1. Node 6
changes its state to WT INFO. Node 1 in MEMBER state receives the Poll Node
message and sends a Ldr Poll Node message to Node 10. Node 10 in LEADER
state receives the Ldr Poll Node message and sends a Node Info message to Node
6. Node 10 sets its state to LDR WT CONN state. Node 6 in WT INFO state
receives the NODE INFO and sends a Connect Ldr message. Node 6 sets its
state to WT ACK. The cluster formation scheme is continued as shown in finite
state machine in Fig. 1. Lastly the clusters in Fig. 2 are summarized in Tab. 1.

3.2 Analysis

Theorem 1. Time complexity of the clustering algorithm has a lower bound of
Ω(logn) and upperbound of O(n).

Merging Clustering Algorithms in Mobile Ad Hoc Networks 61

Proof. Assume that we have n nodes in the mobile network. Best case occurs
when each node can merge with each other exactly to double member count at
each iteration such that Level 1 clusters are connected to form Level 2 clusters.
Level 2 clusters are connected to form Level 4 clusters and so on. The clustering
operation continues until the to Cluster Level becomes m.The lower bound is
Ω(logN). Worst case occurs when a cluster is connected to a Level 1 cluster at
each iteration. Level 1 cluster is connected to a Level 1 cluster to form a Level 2
cluster, Level 2 cluster is connected to a Level 1 cluster to form a Level 3 cluster
and so on. The clustering operation continues until the Cluster Level becomes
n. The upper bound is therefore O(n).

Theorem 2. Message complexity of our algorithm is O(n).

Proof. Assume that we have n nodes in our network. For every merge operations
of two clusters 5 messages (Poll Node, Node Info, Connect Ldr/Connect Mbr,
Leader ACK/Member ACK, Change Cluster) are required. Total number of
messages in this case is 5n which means message complexity has an upper bound
of O(n).

4 Conclusions

We proposed a new algorithm for clustering in MANETs and illustrated its
operation. We showed the implementation of the algorithm and analyzed its
time and message complexity. Our algorithm has a similar but more simplified
structure than Gallagher’s Algorithm [5]. The algorithm has a lower complexity
and also we aim at forming clusters whereas the latter tries to find an MST.
We are in the process of implementing the algorithm proposed in a simulated
environment. We are planning to experiment various total order multicast and
distributed mutual exclusion algorithms in such an environment where message
ordering and synchronization are provided by the cluster heads on behalf of the
ordinary nodes of the MANET.

References

1. Nocetti, F., B. et al, Connectivity based k-Hop clustering in wireless networks,
Telecommunication Systems, (22)1-4,(2003), 205-220.

2. Chen , Y. P., Liestman, A. L., Liu, J., Clustering algorithms for ad hoc wireless
networks, in Ad Hoc and Sensor Networks ed. Pan, Y. ,Xiao, Y., Nova Science
Publishers, 2004.

3. Grimaldi, R. P., Discrete and Combinatorial Mathematics, An Applied Introduction,
Addison Wesley Longman, Inc., 1999.

4. Banerjee, S., Khuller, S., A clustering scheme for hierarchical routing in wireless
networks, CS-TR-4103, Univ. of Maryland, College Park, February 2000.

5. Gallagher, R. G., Humblet, P. A., Spira, P. M., A distributed algorithm for
minimum-weight spanning trees, ACM Trans. on Programming Languages and Sys-
tems, (5)1, (1983), 66-77.

6. Srivastava, S., Ghosh, R., A cluster based routing using a k-tree core backbone for
mobile ad hoc networks, Proceedings DIALM, (2002), 14-23.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 62 – 68, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Performance Study and Implementation of Self
Organized Routing Algorithm for Mobile

Ad Hoc Network Using GloMoSim

K. Murugan1 and S. Shanmugavel2

1 Ramanujan Computing Centre, Anna University,
Chennai, India

murugan@annauniv.edu
2 Telematics Lab, Department of Electronics and Communication Engg,

Anna University, Chennai, India
ssvel@annainiv.edu

Abstract. Reducing power consumption and increasing battery life of nodes in
an ad hoc network requires an integrated power control and routing strategy. To
maximize the lifetime of mobile networks, the power consumption rate of each
node must be evenly distributed. This objective alone cannot be satisfied by the
use of routing algorithms proposed in previous work. In this paper a new route
selection mechanism for MANET routing protocol, called as Self Organizing
Routing (SOR). Self Organized Routing (SOR) algorithm is devised to enable
high-energy nodes to participate in routing of data packets using a virtual back-
bone. Hence the lifetime and stability of the network is increased as nodes hav-
ing high energy are involved in routing of packets. Based on the simulation re-
sults obtained using GloMoSim (simulator), it is observed that SOR algorithm
increase the lifetime of mobile ad hoc networks and validate the environment
suitable for the various techniques.

1 Introduction

The Mobile Ad hoc networks (MANETs) are instantly deployable without any wired
base station or fixed infrastructure. A node communicates directly with the nodes
within radio range and indirectly with all others using a dynamically determined
multi-hop route. A key to designing efficient routing protocols for such networks
lies in keeping the routing overhead and delay minimal. Ad hoc routing protocols
can be broadly classified as table driven routing protocols and source initiated
on-demand routing protocols. Table driven schemes are more expensive in terms of
energy consumption as compared to the on-demand schemes because of the large
routing overhead incurred in the former. Hence, the on-demand approach is a good
base for designing minimum energy routing protocols. In an ad hoc network, many
routing protocols, including DSR [1], HER [2], and EBTDR [2] operate on-demand.
These protocols use source routing and each node maintains a cache of all routes that
it has previously discovered or overheard in other packets. The source node chooses
route for each packet it wishes to send using routes from its route cache. This use of
caching can substantially reduce the overhead of routing protocol.

 Performance Study and Implementation of SOR Algorithm for MANET 63

In this paper, work is focused on design and implementation of Self Organized
Routing (SOR) algorithm in the existing DSR protocol. Self Organized Routing
(SOR) algorithm is devised to enable high-energy nodes to participate in routing of
data packets using a virtual backbone. Hence the lifetime and stability of the network
is increased as nodes having high energy are involved in routing of packets. In addi-
tion to our work, the performance of the SOR algorithm is compared with the three
existing version of MANET routing protocol, namely DSR, HER and EBTDR. In the
EBTDR and HER algorithm, selection of routes should be based on the remaining
battery level of the node. These algorithms are designed and implemented using
Global Mobile Simulator (GloMoSim), a scalable simulation environment for net-
work simulation.

The rest of the paper is organized as follows. Section 2 of this paper gives an over-
view of the basic operation of the DSR, EBTDR and HER protocol. In Section 3,
explain the description of Self Organized Routing (SOR) algorithm. Section 4 pre-
sents the details of the simulator tools and environments. In Section 5, present the
Simulation results and analysis. Finally, section 6 presents our conclusions.

2 MANET Routing Protocols

In this section, three different MANET routing protocols, namely, DSR, EBTDR and
HER are discussed.

2.1 Dynamic Source Routing Protocol

This section provides an overview of the Dynamic Source Routing protocol (DSR) [1]
as an example ad hoc network routing protocol. The operation of DSR is based on
source routing, where in the source determines the complete sequence of hops to be
used as the route for that packet to reach the destination.DSR divides the routing
problem in two parts, Route Discovery and Route Maintenance, both of which operate
entirely on-demand. In Route Discovery, a node actively searches through the net-
work to find a route to an intended destination node. While using a route to send
packets to the destination, Route Maintenance is the process by which the sending
node determines if the route has broken. A node that has a packet to send to some
destination searches its route cache for a route to that destination. If no cached route
is found, the sending node initiates Route Discovery.

2.2 Energy Based Time Delay Routing (EBTDR) Algorithm

The EBTDR algorithm is based on the DSR protocol. The Route Discovery in the
DSR protocol is modified so as to select the most energy efficient route by the desti-
nation node. Generally in an on-demand routing algorithm, when a source needs to
know the route to a destination, it broadcasts a RREQ packet. The neighboring nodes
on receiving the first-arrived RREQ packet relay this packet immediately to their
neighbors. In the EBTDR algorithm, each node on receiving a request packet holds
the packet for a period of time, which is inversely proportional to its current energy
level [2]. After this delay period, the node forwards the request packet. This simple
delay mechanism is motivated by the fact that the destination accepts only the first

64 K. Murugan and S. Shanmugavel

request packet and discards other duplicate requests. With this delay mechanism [2],
request packets from nodes with lower energy levels are transmitted after a larger
delay, whereas the request packets from nodes with higher energy levels are transmit-
ted with a smaller delay.

2.3 Highest Energy Routing Algorithm

In this section, another new MANET routing protocols, Highest Energy Routing
(HER) is described. In HER [3], an energy field in the RREQ packet is included,
where the intermediate nodes insert their current energy level while forwarding the
RREQ packet. The information on the remaining energy levels of intermediate nodes
reaches the destination node. Thus this algorithm makes energy information of the
various paths traversed available to the destination node. The destination node selects
the route with the highest lifetime from a set of available routes.

3 Self Organized Routing (SOR) Algorithm

A Self Organized Routing algorithm is devised to enable high-energy nodes to par-
ticipate in routing of data packets using a virtual backbone thereby minimizing the
effects of broadcasting route request packets in the network. This protocol enable
source nodes to unicast route request packet to reliable nodes thereby making the
channel free for transmission of other nodes.

3.1 Initialization of Network

The network is said to be self organized as the nodes with higher energy participate
more in transmission of packets in preference to the nodes weak in their energy levels.
Nodes having higher energy are termed as root nodes. Root nodes broadcast hello
packets containing the information of the destination reachable through them. The leaf
nodes (nodes having weak energy profile) make entry of the presence of the root node
in their cache and also the destination that could be reached through the root node. The
broadcast by the root nodes takes place every 10 seconds and the latest information
heard is entered in the hello packet (to be sent by the root node). A node entering a
different partition learns of different routes to destinations in shorter intervals. If a root
node receives a hello packet, then an entry of the initiator of the hello packet is made in
the root cache. Thus a virtual backbone can be formed between the root nodes.

3.2 Route Discovery

DSR protocol performs the route discovery by flooding the network with the route
request packets, but the SOR unicasts the route request packet only to the root nodes
and maintains a timer for the route reply to come. If no entry in the root cache is
found or the timer has expired, the source node floods the network with the route
request packets like DSR. Thus the destination which receives the packet reply the
route request packet to the source and drop all other route requests obtained from the
same source like as in DSR. This variation in route discovery enables formation of
stable routes with the high-energy nodes for transmission of packets. The routes
so formed are less prone to link breakages and even if link breakages do occur due

 Performance Study and Implementation of SOR Algorithm for MANET 65

to mobility then by the use of salvaging, intermediate nodes obtain alternate route to
the destination. As the root nodes broadcasts the destinations reachable in the hello
packets, the surrounding nodes gets to update their cache of the latest information
about its neighbors and obtain routes quickly.

3.3 Route Maintenance

In DSR, the route maintenance is done by the use of route errors packets that are
piggy backed to the source. In SOR, in addition to the route maintenance of DSR, the
root nodes periodical broadcast of the hello packet updates the cache in the surround-
ings of the root node. Through Update Route Caching (URC) mechanism, which is
also one of the cache validation techniques [5], the link breakage information, is
broadcasted in turn by the nodes that receive the route error packets.

4 Simulation Environments and Methodology

The routing protocols are implemented and simulated within the GloMoSim library
[3][4]. We simulated a network of mobile nodes placed randomly within a 1000 x
1000 meter area. Each node has a radio propagation range of 250 meters and channel
capacity of 2 Mb/s was chosen for each node. We used the IEEE 802.11 Distributed
Coordination function (DCF) as the Medium Access Control (MAC) Protocol. Each
simulation was executed for 900 seconds. Multiple runs with different seed values
were conducted for each scenario and the collected data was averaged over those runs.

4.1 Performance Metrics

The following metrics are used in comparing the protocol performance.

Throughput: Measured as the ratio of the number of data packets delivered to the
destination and the number of data packets sent by the sender.

End-to-End delay: It is the time between the reception of the last and first packet /
total number of packets reaching the application layer.

Control Overhead: Measured as the total number of control packets transmitted
during the simulation period.

Cache Hit ratio: Measured as the total no of hits at particular node to the total
request.

Route Error Ratio: Measured as the ratio of the number of route errors registered
due to link breakages because of mobility and energy drain to total number of data
packets sent.

5 Simulation Results and Analysis

In this section, the performance results of various algorithms with respect to control
overhead, throughput, end-to-end delay and average energy left are presented. Given
below are the effects of our algorithm on the various parameters.

66 K. Murugan and S. Shanmugavel

5.1 Performance Variation with Respect to Scatter and Nodal Density

Figure 1 shows the variation of proposed SOR with other routing protocols namely
DSR, HER and EBTDR. The throughput of the proposed SOR is higher and tends to
unity at all levels of nodes density. From figure 2, it can be seen that the efficient
route maintenance in SOR, the number of route errors is less compared with other
protocols. The pro-active nature of SOR also tends to find an alternate path to the
destination while forwarding packets. From Figure 3 it can be inferred that there is
marginal difference in the hit percentage when compared to DSR and HER The
higher refresh rate in SOR causes removal of stale information in the route cache
there by leading to lower hit percentage with negligible bad replies.

Fig. 1. No. of Nodes Vs Throughput

Fig. 2. No. of Nodes Vs Route Error Ratio

Fig. 3. No. of Nodes Vs Cache hit Ratio

0.5

0.6

0.7

0.8

0.9

1

1.1

10 20 30 40 50 60 70 80 90 100

No. of Nodes

T
h

ro
u

g
h

p
u

t DSR

EBTDR

HER

SOR

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

10 20 30 40 50 60 70 80 90 100

No. of Nodes

R
o

u
te

 E
rr

o
r

R
a

ti
o DSR

EBTDR

HER

SOR

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80 90 100

No. of Nodes

C
a

c
h

e
 H

it
 R

a
ti

o

DSR

EBTDR

HER

SOR

 Performance Study and Implementation of SOR Algorithm for MANET 67

5.2 Performance Variation with Respect to Traffic Load

From figure 4, as the load on the network increases, the hit percentage is maintained at a
value greater than 60% on comparison to other routing protocols where the hit percentage
drops below 50%. The statistics can conclude the efficient performance of the routing
protocol SOR when compared to others. As the Error packets being generated in DSR,
HER and EBTDR amount in 1000’s the error packets in case of SOR are
below 500 as shown in Figure 5. From figure 6, it is be seen that, the values for energy
remaining in the nodes are stable at higher traffic loads and this stability is due to re-
duced propagation of errors and frequent updation of cache. The throughput of SOR has
not dropped below 80% and is consistent at that value for higher loads in the traffic.

Fig. 4. Source Destination Pair Vs Cache Hit Ratio

Fig. 5. Source Destination Pair Vs Route Error Ratio

Fig. 6. Source Destination Pair Vs Average Energy left

5.3 Performance Variation with Respect to Speed

Link breakages in the case of mobile ad hoc networks are due to mobility and power
constraint in nodes. From figures 7 and 8, it is seen that SOR has lower hit percentage
and less number of route error packets generated with higher throughput performance.
This is due to the periodic refreshing of the route caching in every ten seconds.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45 50

Source Destination Pair

C
a
c
h

e
 H

it
 R

a
ti

o DSR

EBTDR

HER

SOR

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

5 10 15 20 25 30 35 40 45 50

Source Destination Pair

R
o

u
te

 E
rr

o
r

R
a
ti

o

DSR

EBTDR

HER

SOR

0

500

1000

1500

2000

2500

3000

3500

4000

5 10 15 20 25 30 35 40 45 50

Source Destination Pair

A
v
e
ra

g
e
 E

n
e
rg

y
 l

e
ft

DSR

EBTDR

HER

SOR

68 K. Murugan and S. Shanmugavel

Fig. 7. Speed Vs Cache Hit Ratio

Fig. 8. Speed Vs Throughput

6 Conclusions

In SOR, the route established to forward data packet is stable compared to other pro-
tocols. The throughput of the proposed SOR is higher and tends to unity at all levels
of nodes density. As the efficient route maintenance incorporated in SOR, the number
of route errors is less compared to other protocols. Though the formation of reliable
route is ascertained in the SOR, it is at the cost of power being consumed to broadcast
the hello packet frequently. But the rate of power consumption with increase in the
nodes density is less compared to other protocol. SOR has the hit percentage above
65% and is comparatively good in its throughput. Hence, SOR is a routing protocol
that can be applied to congested environments and with higher nodal density.

References

1. Josh Broch, David B. Johnson, and David A. Maltz.: The Dynamic Source Routing Protocol
for Mobile Ad Hoc Networks: Internet-Draft, draft-ietf-manet-dsr-03.txt, (1999).

2. K.Murugan, C.Sapthagiri Saravanan, S.Saravanan, J.Venkatakrishnan, S.Shanmugavel.:
Delay and Energy Metric Based Routing Algorithms for Improving Efficiency for Mobile
Ad Hoc Networks: Proceedings of 3rd Asian Mobile Computing Conference (AMOC 2004).

3. Glomosim user Manual http://pcl.cs.ucla.edu/projects/glomosim
4. Richard A.Meyer and Rajive Bagrodia, PARSEC User Manual Release 1.1, http://

pcl.cs.ucla.edu. (1999)
5. K.Murugan, P.Sivasankar, Balaji and S.Shanmugavel: Implementation and Performance

Study of Route Caching Mechanisms in DSR and HER Routing Algorithms for MANET:
accepted to publish in ISAP05, Springer-Verlag, Lecturer Notes in computer Science
(LNCS), 2005.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Speed

C
a
c
h

e
 H

it
 R

a
ti

o

DSR

EBTDR

HER

SOR

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Speed(m/s)

T
h

ro
u

g
h

p
u

t DSR

EBTDR

HER

SOR

Self-stabilizing Deterministic TDMA
for Sensor Networks�

Mahesh Arumugam and Sandeep S. Kulkarni

Software Engineering and Network Systems Laboratory,
Department of Computer Science and Engineering,
Michigan State University, East Lansing MI 48824

{arumugam, sandeep}@cse.msu.edu
http://www.cse.msu.edu/∼{arumugam, sandeep}

Abstract. An algorithm for time division multiple access (TDMA) is
found to be applicable in converting existing distributed algorithms into
a model that is consistent with sensor networks. Such a TDMA service
needs to be self-stabilizing so that in the event of corruption of assigned
slots and clock drift, it recovers to states from where TDMA slots are con-
sistent. Previous self-stabilizing solutions for TDMA are either random-
ized or assume that the topology is known upfront and cannot change.
Thus, the question of feasibility of self-stabilizing deterministic TDMA
algorithm where topology is unknown remains open.

In this paper, we present a self-stabilizing, deterministic algorithm for
TDMA in networks where a sensor is aware of only its neighbors. This
is the first such algorithm that achieves these properties. Moreover, this
is the first algorithm that demonstrates the feasibility of stabilization-
preserving, deterministic transformation of a shared memory distributed
program on an arbitrary topology into a program that is consistent with
the sensor network model.

1 Introduction

The ability to write programs in an abstract model and then transform them
into a concrete model is crucial in distributed computing. This ability permits
one to write abstract programs where several low level issues such as commu-
nication and race conditions among different processes can be ignored. Also, it
is possible to thoroughly verify the abstract program using techniques such as
model checking and/or theorem proving. Now, if we want to utilize the verifica-
tion of the abstract program to deduce the verification of the concrete program
then the transformation must preserve those properties.

For this reason, the problem of transformation from abstract programs to con-
crete programs has been studied in the literature [1, 2, 3, 4]. These transforma-
tions have also focused on preserving the self-stabilization [5, 6] property of the

� This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant
OSURS01-C-1901, ONR Grant N00014-01-1-0744, NSF Equipment Grant EIA-
0130724, and a grant from Michigan State University.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 69–81, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

70 M. Arumugam and S.S. Kulkarni

original program. Self-stabilization refers to the ability of a system to recover from
an arbitrary state to a state from where the computation proceeds in accordance
with its specification. Since such a system recovers to legitimate states in-spite of
unexpected (transient) faults, it is highly desirable for distributed computing.

Unfortunately, the results from [1, 2, 3, 4] cannot be applied to deriving con-
crete programs for a sensor network, as the underlying model of computation in
sensor networks is write all with collision (WAC) model [7]. In this model, the
communication is (local) broadcast in nature and, hence, when a sensor executes
an action, it can update the state of all its neighbors at once. However, if two
neighbors of a sensor try to execute their actions simultaneously then a collision
occurs and none of the actions are successful.

To redress this deficiency, recently approaches [7, 8] have been proposed for
transforming programs written in abstract models into WAC model. The trans-
formation proposed in [7] takes any time division multiple access (TDMA) algo-
rithm in WAC model (e.g., [9, 10, 11, 12]) as input. If the algorithm in [9], which is
self-stabilizing, deterministic and designed for grid based topologies, is used with
[7] then the transformed program in WAC model is self-stabilizing and determin-
istically correct for grid based topologies. And, if the algorithms in [10, 11, 12],
which are randomized, are used with [7] then the transformed program in WAC
model is probabilistically correct. (Note that TDMA algorithm such as those in
[13] cannot be used with [7], as the algorithm is not correct under WAC model.
Rather, in [13], the authors assume that when two writes collide the result is an
OR operation between them.) Likewise, since the transformation in [8] is ran-
domized, it generates programs in WAC model that are probabilistically correct.
Thus, if a self-stabilizing deterministic TDMA algorithm in WAC model were
available then it would enable us to provide deterministic guarantees about the
transformed program in WAC model. To the best of our knowledge, we are not
aware of such algorithm for arbitrary networks.

With this motivation, in this paper, we propose a self-stabilizing determin-
istic TDMA algorithm. This algorithm can be used to transform existing self-
stabilizing abstract programs into deterministically self-stabilizing programs in
WAC model. This feature is useful as there is a large class of self-stabilizing
programs in the literature (e.g., [5, 6, 14]) and there is a significant need for self-
stabilization in sensor networks, where the environment is difficult to capture
and, hence, ability to recover from unexpected transient faults is crucial.

Organization of the Paper. In Section 2, we precisely define the problem
statement and the computational models. In Section 3, we present our self-
stabilizing TDMA algorithm in shared-memory model. Subsequently, we trans-
form this algorithm into WAC model in Section 4 and add stabilization in Sec-
tion 5. Finally, in Section 6, we make the concluding remarks.

2 Preliminaries

Problem Statement. TDMA is the problem of assigning time slots to each
sensor. Two sensors j and k can transmit in the same time slot if j does not

Self-stabilizing Deterministic TDMA for Sensor Networks 71

interfere with the communication of k and k does not interfere with the com-
munication of j. In other words, j and k can transmit in the same slot if the
communication distance between j and k is greater than 2. Towards this end, we
model the sensor network as a graph G = (V, E), where V is the set of all sensors
and E is the communication topology. Specifically, if sensors j and k can com-
municate with each other then the edge (j, k) ∈ E. The function distanceG(j, k)
denotes the distance between j and k in G. Thus, the problem statement of
TDMA is shown in Figure 1.

Problem statement: TDMA
Given a communication graph G=(V,E); assign time slots to V such that the
following condition is satisfied:

If j, k ∈ V are allowed to transmit at the same time, then distanceG(j, k) > 2

Fig. 1. Problem statement of TDMA

Models of Computation. Programs are specified in terms of guarded com-
mands; each guarded command is of the form, g −→ st, where g is a predicate
over program variables, and st updates program variables. An action g −→ st is
enabled when g evaluates to true and to execute that action, st is executed.

A computation consists of a sequence s0, s1, . . . , where sj+1 is obtained from
sj by executing actions in the program. A computation model limits the variables
that an action can read and write. We split the actions into a set of processes.
Each action is associated with one of the processes. We now describe how we
model the restrictions imposed by the shared-memory and the WAC models.

Shared-memory model. In this model, in one atomic step, a sensor can read its
state as well as the state of its neighbors (and update its private variables) and
write its own variables using its own variables.

Write all with collision (WAC) model. In this model, each sensor consists of
write actions (to be precise, write-all actions). Specifically, in one atomic action,
a sensor can update its own state and the state of all its neighbors. However, if
two or more sensors simultaneously try to update the state of a sensor, say k,
then the state of k remains unchanged. Thus, this model captures the fact that
a message sent by a sensor is broadcast. But, if multiple messages are sent to a
sensor simultaneously then, due to collision, it receives none.

Assumptions. We assume that there is a base station that is responsible
for token circulation. Such a base station can be readily found in sensor net-
work applications, where it is responsible for exfiltrating the data to the outside
world (e.g., in the extreme scaling project [15], the network is split into multiple
sections and each section has at least one base station for data-gathering and
network management). Next, we assume that each sensor knows the ID of the
sensors that it can communicate with. This assumption is reasonable since the
sensors collaborate among their neighbors when an event occurs. We assume
that the maximum degree of the graph does not exceed a certain threshold, say,

72 M. Arumugam and S.S. Kulkarni

d. This can be ensured by having the deployment follow a certain geometric
distribution or using a predetermined topology. Finally, we assume that time
synchronization can be achieved during token circulation. Whenever a sensor
receives the token, it may synchronize its clock with respect to its parent. Also,
we can integrate the algorithms proposed in literature (e.g., [16]).

3 Self-stabilizing TDMA in Shared-Memory Model

In this section, we present our algorithm in shared-memory model. In this algo-
rithm, we split the system architecture into 3 layers: (1) token circulation layer,
(2) TDMA layer, and (3) application layer. The token circulation layer circulates
a token in such a way that every sensor is visited at least once in every circu-
lation. In this paper, we do not present a new algorithm for token circulation.
Rather, we only identify the constraints that this layer should satisfy. Specifi-
cally, this layer should recover from token losses and presence of multiple tokens.
In other words, we require that this layer be self-stabilizing. We note that graph
traversal algorithms such as [17, 18, 19, 20] satisfy these constraints. Hence, any
of these algorithms can be used. The TDMA layer is responsible for assigning
time slots to all the sensors. And, finally, the application layer is where the ac-
tual sensor network application resides. All application message communication
goes through the TDMA layer. Now, we explain the TDMA layer in detail.

3.1 TDMA Layer

The TDMA layer uses a distance 2 coloring algorithm for determining the initial
slots of the sensors. Hence, we present our algorithm in two parts: (1) distance
2 coloring and (2) TDMA slot assignment.

Distance 2 Coloring. Given a communication graph G=(V, E) for a sensor
network, we compute E′ such that two distinct sensors x and y in V are connected
if the distance between them in G is at most 2. To obtain distance 2 coloring, we
require that (∀(i, j) ∈ E′ :: color.i �= color.j), where color.i is the color assigned
to sensor i. Thus, the problem statement is defined in Figure 2.

Problem statement: Distance 2 coloring
Given a communication graph G=(V,E); assign colors to V such that the following
condition is satisfied: (∀(i, j) ∈ E′ :: color.i �= color.j)

where, E′ = {(x, y)|(x �= y)∧ ((x, y) ∈ E ∨ (∃z ∈ V :: (x, z) ∈ E ∧ (z, y) ∈ E))}

Fig. 2. Problem statement of distance 2 coloring

In our algorithm, each sensor maintains two public variables: color, the color
of the sensor and nbrClr, a vector consisting of 〈id, c〉 elements, where id is
a neighbor of the sensor and c is the color assigned to corresponding sensor.
Initially, nbrClr variable contains entries for all distance 1 neighbors of the sensor,

Self-stabilizing Deterministic TDMA for Sensor Networks 73

where the colors are undefined. A sensor can choose its color from K, the set of
colors. To obtain a distance 2 coloring, d2 +1 colors are sufficient, where d is the
maximum degree in the graph (cf. Lemma 3.1). Hence, K contains d2 +1 colors.

Whenever a sensor (say, j) receives the token from the token circulation layer,
first, j reads nbrClr of all its neighbors and updates its private variable dist2Clr.j.
The variable dist2Clr.j is a vector similar to nbrClr.j and contains the colors
assigned to the sensors at distance 2 of j. Next, j computes used.j which contains
the colors used in its distance 2 neighborhood. If color.j ∈ used.j, j chooses a
color from K − used.j. Otherwise, j keeps its current color. Once j chooses its
color, it waits until all its distance 1 neighbors have copied color.j. Towards
this end, sensor l will update nbrClr.l with 〈j, color.j〉 if j is a neighbor of l
and color.j has changed. Once all the neighbors of j have updated nbrClr with
color.j, j forwards the token. Thus, the algorithm for distance 2 coloring is shown
in Figure 3. (For simplicity of presentation, in Figure 3, we represent action A3,
where j forwards the token after all its neighbors have updated their nbrClr
values with color.j, separately. Whenever j receives the token, we require that
action A3 is executed only after action A2 is executed at least once.)

sensor j
const

N.j // neighbors of j
K // set of colors

var
public color.j // color of j
public nbrClr.j // colors used by neighbors of j
private dist2Clr.j // colors used at distance 2 of j
private used.j // colors used within distance 2 of j

begin
A1: (l ∈ N.j) ∧ (〈l, c〉 ∈ nbrClr.j) ∧ (color.l �= c) −→

nbrClr.j :=nbrClr.j − {〈l, c〉} ∪ {〈l, color.l〉}
A2: token(j) −→

dist2Clr.j :={〈id, c〉|∃k∈N.j : (〈id, c〉∈nbrClr.k) ∧ (id �=j)}
used.j :={c|〈id, c〉∈nbrClr.j ∨ 〈id, c〉∈dist2Clr.j}
if(color.j ∈ used.j) color.j :=minimum color in K−used.j

A3: token(j) ∧ (∀l ∈ N.j : (〈j, c〉 ∈ nbrClr.l ∧ color.j = c)) −→
forward token

end

Fig. 3. Algorithm for distance 2 coloring in shared-memory model

Lemma 3.1. If d is the maximum degree of a graph then d2 + 1 colors are
sufficient for distance 2 coloring. (cf. [21] for proofs of the theorems.) ��
Corollary 3.2. For any sensor j, used.j contains at most d2 colors. ��
Theorem 3.3. The above algorithm satisfies the problem specification of dis-
tance 2 coloring. ��

74 M. Arumugam and S.S. Kulkarni

Theorem 3.4. Starting from arbitrary initial states, the above algorithm recov-
ers to states from where distance 2 coloring is achieved. ��
TDMA Slot Assignment. In our algorithm, color.j determines the initial
TDMA slot of j. And, future slots are computed using the knowledge about the
period between successive TDMA slots. Since the maximum number of colors
used in any distance 2 neighborhood is d2 + 1 (cf. Lemma 3.1), the period be-
tween successive TDMA slots, P = d2 + 1, suffices. Once the TDMA slots are
determined, the sensor forwards the token in its TDMA slot. And, the sensor
can start transmitting application messages in its TDMA slots.

We note that identifying an optimal assignment is not possible as the problem
of distance 2 coloring is NP-complete even in an offline setup [22]. In [23, 24],
approximation algorithms for offline distance 2 coloring in specific graphs (e.g.,
planar) are proposed. However, in this paper, we consider the problem of dis-
tributed distance 2 coloring where each sensor is only aware of its local neighbor-
hood. In this case, given a sensor with degree d, the slots assigned to this sensor
and its neighbors must be disjoint. Hence, at least d + 1 colors are required.
Thus, the number of colors used in our algorithm is within d times the optimal.

Theorem 3.5. The above algorithm ensures collision-free communication. ��
Since the distance 2 coloring algorithm is self-stabilizing (cf. Theorem 3.4), once
the initial TDMA slots are recovered starting from arbitrary initial states, the
sensors can determine the future TDMA slots.

Theorem 3.6. Starting from arbitrary initial states, the above algorithm recov-
ers to states from where collision-free communication is restored. ��

4 TDMA Algorithm in WAC Model

In this section, we transform the algorithm in Section 3 into WAC model that
achieves token circulation and distance 2 coloring upon appropriate initialization.
(The issue of self-stabilization is handled in Section 5.) In shared-memory model,
in each action, a sensor reads the state of its neighbors as well as writes its
own state. However, in WAC model, there is no equivalent of a read action.
Hence, the action by which sensor j reads the state of sensor k in shared-memory
model is simulated by requiring k to write the appropriate value at j. Since
simultaneous write actions by two or more sensors may result in a collision, we
allow sensors to execute in such a way that simultaneous executions do not result
in collisions.

Observe that if collision-freedom is provided then the actions of a program in
shared-memory model can be trivially executed in WAC model. Our algorithm
in this section uses this feature and ensures that collision-freedom is guaranteed.
In this algorithm, in the initial state, (a) sensors do not communicate and (b)
nbrClr and dist2Clr variables contain entries such that the colors are undefined.

Distance 2 Coloring. Whenever a sensor (say, j) receives the token, j com-
putes used.j which contains the colors used in its distance 2 neighborhood. If

Self-stabilizing Deterministic TDMA for Sensor Networks 75

nbrClr.j (or dist2Clr.j) contains 〈l, undefined〉, l did not receive the token yet
and, hence, color.l is not assigned. Therefore, j ignores such neighbors. After-
wards, j chooses a color such that color.j �∈ used.j. Subsequently, j reports its
color to its neighbors within distance 2 using the primitive report distance 2 nbrs
(discussed later in this section) and forwards the token. Thus, the action by which
k reads its neighbors (in shared memory model) is modeled as a write action
where j reports its color using the primitive report distance 2 nbrs. Figure 4
shows the transformed algorithm in WAC model.

sensor j
const N.j, K
var color.j, nbrClr.j, dist2Clr.j, used.j
begin
token(j) −→ used.j :={c|〈id, c〉∈nbrClr.j ∨ 〈id, c〉∈dist2Clr.j}

color.j := minimum color in K−used.j
execute report distance 2 nbrs
forward token

end

Fig. 4. Algorithm for distance 2 coloring in WAC model

Note that the order in which the token is circulated is determined by the
token circulation algorithm used in Section 3, which is correct under the shared-
memory model (e.g., [17, 18, 19, 20]). Since token circulation is the only activity
in the initial state, it is straightforward to ensure collision-freedom. Specifically,
to achieve collision-freedom, if j forwards the token to k in the algorithm used in
Section 3, we require that the program variables corresponding to the token are
updated at j and k without collision in WAC model. This can be achieved using
the primitive report distance 2 nbrs. Hence, the effect of executing the actions
in WAC model will be one that is permitted in shared-memory model.

Theorem 4.1. The above algorithm satisfies the problem specification of dis-
tance 2 coloring. ��
TDMA Slot Assignment. Similar to the discussion in Section 3, the color of
the sensor determines the initial TDMA slot. Subsequent slots can be computed
using the knowledge about the TDMA period. If d is the maximum degree of
the communication graph G, the TDMA period, P =d2 + 1 suffices.

However, unlike the algorithm in Section 3 in shared-memory model, sen-
sors do not start transmitting messages immediately as the TDMA message
communication may interfere with the token circulation or the primitive re-
port distance 2 nbrs. Once the TDMA slots are determined, a sensor forwards the
token in its TDMA slot. Hence, the token circulation does not collide with other
TDMA slots. Next, a sensor waits until all the sensors in its distance 2 neigh-
borhood have determined their TDMA slots before transmitting messages in its
TDMA slots. A sensor learns this information when the sensors in its distance
2 neighborhood report their colors using the primitive report distance 2 nbrs.

76 M. Arumugam and S.S. Kulkarni

Thus, when a sensor starts transmitting application messages, all sensors in its
distance 2 neighborhood have determined their TDMA slots and, hence, does
not interfere with other TDMA slots and the primitive report distance 2 nbrs.

Theorem 4.2. The above algorithm ensures collision-free communication. ��
Implementation of report distance 2 nbrs. Whenever a sensor (say, j)
decides its color, this primitive reports the color to its distance 2 neighborhood.
It updates the nbrClr value of its distance 1 neighbors and dist2Clr value of
its distance 2 neighbors. Towards this end, j sends a broadcast message with
its color and a schedule for its distance 1 neighbors. The sensors at distance 1
of j update their nbrClr values. Based on the schedule in the report message,
each of the neighbors broadcast their nbrClr vectors. Specifically, if a distance
1 neighbor (say, l) of j is already colored, the schedule requires l to broadcast
nbrClr.l in its TDMA slot. Otherwise, the schedule specifies the slot that l should
use such that it does not interfere with the slots already assigned to j’s distance
2 neighborhood. If there exists a sensor k such that distanceG(l, k) ≤ 2, then
k will not transmit in its TDMA slots, as l is not yet colored. (Recall that a
sensor transmits application messages only if all its distance 2 neighbors have
determined their TDMA slots.) Now, a sensor (say, m) updates dist2Clr.m with
〈j, color.j〉 iff (m �= j) ∧ (j �∈ N.m). Thus, this schedule guarantees collision-free
update of color.j at sensors within distance 2 of j. Furthermore, this primitive
requires at most d+1 update messages.

5 Adding Stabilization in WAC Model

In Section 4, if the sensors are assigned correct slots then validating the slots is
straightforward. Towards this end, we can use a simple diffusing computation to
allow sensors to report their colors to distance 2 neighborhood and ensure that
the slots are consistent. For simplicity of presentation, we assume that token
circulation is used for revalidating TDMA slots. Now, in the absence of faults,
the token circulates successfully and, hence, slots are revalidated. However, in
the presence of faults, the token may be lost due to a variety of reasons, such as,
(1) TDMA slots are not collision-free, (2) nbrClr values are corrupted, and/or
(3) token is corrupted. Or, due to transient faults, there may be several tokens.

To obtain self-stabilization, we use the convergence-stair approach proposed in
[25]. First, we ensure that if the system contains multiple tokens then it recovers
to states where there is at most one token. Then, we ensure that the system
recovers to states where there is a unique token (cf. Figure 5).

Step 1: Dealing with Multiple Tokens. In this step, we ensure that any
token either returns to the base station within a predetermined time or it is lost.
Towards this end, we ensure that a sensor forwards the token as soon as possible.
To achieve this, whenever a sensor, say j, receives the token, j updates its color
at its neighbors in its TDMA slot. (This can be achieved within P slots, where
P is the TDMA period.) Furthermore, in the subsequent slots, (a) the neighbors
relay this information to distance 2 neighbors of j and (b) j forwards the token.

Self-stabilizing Deterministic TDMA for Sensor Networks 77

(Both of these can be achieved within P slots.) If the TDMA slots are valid
then any token will return in 2 ∗ P ∗ |Et| slots to the base station, where |Et| is
number of edges traversed by the token. Otherwise, it may be lost.

•when new token circulation begins
• set a timer T1 until which the

token must return
• set TokensReceived := 0
•upon completing token circulation
• set TokensReceived := 1
• // do not recirculate until T1 expires

−upon expiration of timer T1

− // no sensor other than base station
has the token

− if TokensReceived = 1
− start a new token circulation

else
wait until distance 3 neighborhood
has stopped

send recovery token

(a) Actions at the base station

•upon receiving a token
• verify nbrClr and dist2Clr variables
• forward token as soon as

possible (see description)
− set a timer T2 for return of

the token

upon expiration of timer T2

// suspend communication until
new token arrives

set nbrClr and dist2Clr
to undefined

upon receiving recovery token
recompute nbrClr, dist2Clr, color
wait until distance 3 neighborhood

has stopped
forward recovery token

(b) Actions at the sensors

TDMA slots are correctExactly 1 token

Step 3: All actions

Step 2: Actions with and

Step 1: Actions with

Exactly 1 token

At most 1 token

Arbitrary state: 0 or more tokens

(c) Convergence to legitimate states

Fig. 5. Adding stabilization

In order to revalidate the slots, the base station initiates a token circulation
once every token circulation period, Ptc slots. This value is chosen such that it is
at least equal to the time taken for token circulation (i.e., Ptc ≥ 2∗P ∗|Et|). Thus,
when the base station (i.e., r) initiates a token circulation, it expects to receive
the token back within Ptc. Towards this end, the base station sets a timeout for
Ptc whenever it forwards the token. Now, if the base station sends a token at time
t and it does not send additional token(s) before time t + Ptc then all tokens at
time t will return to the base station before time t+Ptc or they will be lost. Hence,
when the timeout expires, there is no token in the network. If the base station
does not receive any token before the timeout expires, it concludes that the token
is lost. Similarly, whenever a sensor (say, j �= r) forwards the token, it expects

78 M. Arumugam and S.S. Kulkarni

to receive the token in the subsequent round within Ptc. Otherwise, it sets the
color values in nbrClr.j and dist2Clr.j to undefined. And, stops transmitting
until it recomputes color.j and the sensors in its distance 2 neighborhood report
their colors. Therefore, at most one token resides in the network at any instant.

Lemma 5.1. For any configuration, if the base station initiates a token circula-
tion at time t and does not circulate additional tokens before time t + Ptc then
no sensor other than the base station may have a token at time t + Ptc. ��
Steps 2 and 3: Recovery from Lost Token. Now, if the token is lost, the
base station initiates a recovery by sending a recovery token. Before it sends the
recovery token, it waits until the sensors in its distance 3 neighborhood have
stopped transmitting. This is to ensure that the primitive report distance 2 nbrs
can update the distance 2 neighbors of the base station successfully. Let Trt

be the time required for sensors in the distance 3 neighborhood of the base
station to stop transmitting. The value of Trt should be chosen such that the
sensors within distance 3 of the base station can detect the loss of the token
within this interval. Although, the actual value of Trt depends on the token
circulation algorithm, it is bounded by Ptc. After Trt amount of time, the base
station reports its color to the sensors within distance 2 of it. As mentioned in
Section 4, the primitive report distance 2 nbrs ensures collision-free update since
the sensors within distance 2 have stopped. Then, it forwards the recovery token.

When a sensor (say, j) receives the recovery token, it waits until the sensors
in the distance 3 neighborhood of j have stopped. Then, j follows the algorithm
in Section 4 to compute its color and report it to its distance 2 neighborhood.

Lemma 5.2. Whenever a sensor (say, j) forwards the recovery token, sensors
within distance 2 of j are updated with color.j without collision. ��
The pseudo-code and illustration for stabilization are shown Figure 5. Once a
sensor recomputes its color, it can determine its TDMA slots (cf. Section 4).

Theorem 5.3. With the above modification, starting from arbitrary initial
states, the TDMA algorithm in WAC model recovers to states from where
collision-free communication is restored. ��
Time Complexity for Recovery. Suppose Trt = Ptc, i.e., the base station
waits for one token circulation before forwarding the recovery token. Now, when
the base station forwards the recovery token, all the sensors in the network would
have stopped transmitting. Further, whenever a sensor receives the token, it can
report its color without waiting for additional time. To compute the time for
recovery, observe that it takes (a) at most one token circulation time (i.e., Ptc)
for the base station to detect token loss, (b) one token circulation for the sensors
to stop and wait for recovery, and (c) at most one token circulation for the
network to resume normal operation. Thus, the time required for the network
to self-stabilize is at most 2 ∗ Ptc+ time taken for resuming normal operation.
Since the time taken for resuming normal operation is bounded by Ptc, the time
required for recovery is bounded by 3 ∗ Ptc. We expect that depending on the

Self-stabilizing Deterministic TDMA for Sensor Networks 79

token circulation algorithm, the recovery time can be reduced. However, the
issue of optimizing the recovery time is outside the scope of this paper.

Optimizations for Token Circulation and Recovery. Whenever the token
is lost, it is possible that the slots are still collision-free. This could happen if the
token is lost due to message corruption or synchronization errors. To deal with
this problem, the base station can choose to initiate recovery only if it misses
the token for a threshold number of consecutive attempts.

Additionally, to ensure that the token is not lost due to message corruption,
whenever a sensor (say, j) forwards the token, it expects its successor (say,
k ∈ N.j) to forward the token within a certain interval. If j fails to receive such
implicit acknowledgment from k, j retransmits the token (in its TDMA slots) a
threshold number of times. If a sensor receives duplicate tokens, it ignores such
messages. Thus, the reliability of token circulation can be improved.

Optimizations for Controlled Topology Changes. Whenever a sensor is
removed or fails, the slots assigned to other sensors are still collision-free and,
hence, normal operation of the network is not interrupted. However, the slots
assigned to the removed/failed sensors are wasted. We refer the reader to [21]
on how the sensors can reclaim these slots.

Suppose a sensor (say, q) is added such that the maximum degree assumption
is not violated. Towards this end, we require that whenever a sensor forwards
the token, it includes its color and the colors assigned to its distance 1 neighbors.
Before q starts transmitting application messages, we require q to learn the colors
assigned to its distance 2 neighborhood. One way to achieve this is by listening
to token circulation of its distance 1 neighbors. Once q learns the colors assigned
to sensors within distance 2, it can choose its color. Thus, q can determine the
TDMA slots. Now, when q sends a message, its neighbors learn q’s presence and
include it in subsequent token circulations. If two or more sensors are added
simultaneously then these new sensors may choose conflicting colors and, hence,
collisions may occur. Since our algorithm is self-stabilizing, the network self-
stabilizes to states where the colors assigned to all sensors are collision-free.
Thus, new sensors can be added to the network. However, if adding new sensors
violates the assumption about the maximum degree of the communication graph,
slots may not be assigned to the sensors and/or collisions may occur.

6 Conclusion

In this paper, we presented a self-stabilizing deterministic TDMA algorithm
for sensor networks. Such algorithm suffice in transforming existing programs in
shared memory model into WAC model. This is useful since many of the problems
in sensor networks (e.g., routing, data diffusion, synchronization, leader election)
have been extensively studied in distributed computing. Thus, this algorithm
helps in quickly prototyping a sensor network application.

To our knowledge, this is the first algorithm that demonstrates the feasibility
of deterministic transformation of shared memory distributed programs into a
program in WAC model while preserving the property of self-stabilization on an

80 M. Arumugam and S.S. Kulkarni

arbitrary topology (where maximum degree of a node is known). By contrast,
previous algorithms [9, 10, 11, 12] are limited to certain topologies (e.g., grid) or
generate programs that are probabilistically correct.

There are several possible future directions for this work. One future direction
is to develop a TDMA algorithm that (in addition to being deterministic and
self-stabilizing) provides concurrency during recovery. Another future direction
is to quantify the efficiency of the transformed program in WAC model using
the TDMA algorithm proposed in this paper.

References

1. M. Gouda and F. Haddix. The alternator. Workshop on Self-Stabilizing Systems,
1999.

2. G. Antonoiu and P. K. Srimani. Mutual exclusion between neighboring nodes in an
arbitrary system graph tree that stabilizies using read/write atomicity. Euro-par’99
Parallel Processing, 1999.

3. M. Nesterenko and A. Arora. Self-stabilization preserving atomicity refinements.
Journal of Parallel and Distributed Computing, 62(5):766–791, 2002.

4. K. Ioannidou. Transformations of self-stabilizing algorithms. Conference on Dis-
tributed Computing, 2002.

5. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 1974.

6. S. Dolev. Self-Stabilization. The MIT Press, 2000.
7. S. S. Kulkarni and M. Arumugam. Transformations for write-all-with-collision

model. Computer Communications (Elsevier), 2005, to appear.
8. T. Herman. Models of self-stabilization and sensor networks. In Proceedings of the

International Workshop on Distributed Computing (IWDC), 2003.
9. S. S. Kulkarni and M. Arumugam. SS-TDMA: A self-stabilizing MAC for sensor

networks. In Sensor Network Operations. IEEE Press, 2005, to appear.
10. T. Herman and S. Tixeuil. A distributed TDMA slot assignment algorithm for

wireless sensor networks. Algorithmic Aspects of Wireless Sensor Networks, 2004.
11. C. Busch, M. M-Ismail, F. Sivrikaya, and B. Yener. Contention-free MAC protocols

for wireless sensor networks. 18th Conference on Distributed Computing, 2004.
12. V. Claesson, H. Lönn, and N. Suri. Efficient TDMA synchronization for distributed

embedded systems. IEEE Symposium on Reliable Distributed Systems, 2001.
13. M. Ringwald and K. Römer. BitMAC: A deterministic, collision-free, and robust

MAC protcol for sensor networks. European Workshop on Sensor Networks, 2005.
14. T. Herman. A comprehensive bibliography on self-stabilization - a working paper.

http://www.cs.uiowa.edu/ftp/selfstab/bibiography.
15. A. Arora et al. ExScal: Elements of an extreme scale wireless sensor network.

International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2005.

16. T. Herman. NestArch: Prototype time synchronization service. http://www.
ai.mit.edu/people/sombrero/nestwiki/index/ComponentTimeSync, 2003.

17. C. Johnen, G. Alari, J. Beauquier, and A. K. Datta. Self-stabilizing depth-first
token passing on rooted networks. Workshop on Distributed Algorithms, 1997.

18. F. Petit and V. Villain. Color optimal self-stabilizing depth-first token circulation.
Symposium on Parallel Architectures, Algorithms, and Networks, 1997.

Self-stabilizing Deterministic TDMA for Sensor Networks 81

19. A. K. Datta, C. Johnen, F. Petit, and V. Villain. Self-stabilizing depth-first token
circulation in arbitrary rooted networks. Distributed Computing, 13:207–218, 2000.

20. F. Petit. Fast self-stabilizing depth-first token circulation. In Proceedings of the
Workshop on Self-Stabilizing Systems, Springer, LNCS:2194:200–215, 2001.

21. M. Arumugam and S. S. Kulkarni. Self-stabilizing deterministic TDMA for sensor
networks. Technical Report MSU-CSE-05-19, Michigan State University, 2005.

22. E. L. Lloyd and S. Ramanathan. On the complexity of distance-2 coloring. Inter-
national Conference on Computing and Information, 1992.

23. S. Ramanathan and E. L. Lloyd. Scheduling algorithms for multihop radio net-
works. IEEE/ACM Transactions on Networking, 1(2):166–177, April 1993.

24. S. O. Krumke, M. V. Marathe, and S. S. Ravi. Models and approximation algo-
rithms for channel assignment in radio networks. Wireless networks, 2001.

25. M. G. Gouda and N. J. Multari. Stabilizing communication protocols. IEEE
Transactions on Computers, 40(4):448–458, 1991.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 82 – 92, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Effect of Mobility on Communication Performance in
Overloaded One-Dimensional Cellular Networks

Michihiro Inoue1, Noriaki Yoshiura2, and Yoshikuni Onozato1

1 Department of Computer Science, Gunma University,
1-5-1 Tenjin-cho, Kiryu City, Gunma Prefecture, Japan
{inoue, onozato}@nztl.cs.gunma-u.ac.jp

2 Computer Center, Gunma University,
1-5-1 Tenjin-cho, Kiryu City, Gunma Prefecture, Japan

yoshiura@lab.cc.gunma-u.ac.jp

Abstract. In this paper, we investigate the communication performance of one-
dimensional cellular networks from the viewpoint of the mobile node’s speed with
the simulation method assuming various types of speed distributions. Simulation
results are measured as blocking probabilities of both new and handoff calls and
call completion probability. We can observe the phenomenon that blocking
probabilities of both new and handoff calls are not related to the mobile node’s
speed distribution, but the call completion probability concerns with that under
overloaded situation when the blocking probabilities are not small.

1 Introduction

In voice communication through the cellular networks, the speed of mobile nodes has
influences on the communication performances. Because the mobile nodes with high
speed have to make a successful handoff processes through its communication.
Mobility of the mobile nodes in cellular networks is an important factor to execute
location registration, reference, paging and so on. It is indispensable to understand
accurately about the mobility of mobile nodes to utilize the radio resources efficiently
and design the mobile communication networks appropriately.

In real mobile cellular communication systems, generally we can find that each
mobile node moves with different speeds in the systems and its range of each speed
will be different as time passes by. Therefore, we could suppose that the speed
distribution of mobile nodes will not follow a constant speed. Many research papers
related to mobile communication field have been done with the assumption that all
mobile node move with constant speed.

Many researchers have studied the communication performances in the cellular
networks considering the mobility of the mobile user. In Reference [4], the authors
supposed that the mobile speed is constant and investigated the features of mobile
communication traffic in the cellular networks by proposing the analytical
approximation method and simulation method, especially in order to obtain the
probability of handover between two cells and the mean holding time of a call in one
cell. In References [1,2], the authors supposed the ring-shaped cellular networks and
used the change of mobile user density to represent the investigated the time
dependencies of the mobile communication traffic and executed the simulation.
Moreover, some researches have assumed the probability of the mobile speed follows

 Effect of Mobility on Communication Performance 83

the uniform distribution. For example, the Random Way-point [5,6,7] method to
represent the detail mobility of mobile user in the simulation of ad-hoc networks also
gives that the mobile speed follows the uniform distribution. Then it has been
explained that the mean speed of the mobile user will deviate from the initial mean
value according to the simulation time gain. It is also pointed out to take care to
execute the simulation by using the Random Way-point method.

Usually in the wireless cellular networks, the distribution of the call completion
time can be assumed. Its characteristics were investigated analytically in Reference
[4]. However, when the model of the wireless cellular networks is given, it may be
difficult to calculate the distribution of the completed time of a call analytically.
Therefore, in this paper, we will take a simulation method.

In this paper, we assume that the mobile users only move to one direction from
right to left in one-dimensional cellular networks, and investigate the communication
performances of mobile users by executing the simulation experiment changing the
distribution of the speed of the mobile users. We consider the effect of the differences
of the distribution of the speed of mobile users for the communication performances
such as the number of completed call, the mean holding time of completed call and
the blocking probability.

In the following, we will explain our simulation model in the chapter Two, and
show the simulation results in the chapter Three. Next, we will consider the
simulation results in the chapter Four and conclude our research in the chapter Five.

2 Simulation Model

In our simulation experiment, we apply the simulation conditions shown in the Table 1.
We use the ring-shaped cellular system as the simulation model for one-dimensional
cellular networks, which continue on the one line infinitely by connecting N cells as
shown in Fig.1. We assume cells are of length of L and homogeneous. We also assume
each cell has M channels. We investigate steady state behavior.

The mobile users are assumed to arrive following the Poisson distribution with

parameter newλ . In addition, the new calls arrive in the one cell on the one-

dimensional cellular networks randomly and select the initial start position randomly
from the edge of left side of the cell. At the same time, the mobile user selects the
speed following the one speed distribution randomly. The average speed of mobile
users is defined as V if the mobile users do not change their speed during a call. The
call holding time follows the exponential distribution with the mean H .

The arrival call will start its communication if there is left one available channel at
least in the arrived cell, but if there is left no available channel, the arrival call cannot
start communication and quit it. If the mobile user starts to communicate with one
available channel, then it will be supposed to start to move with the speed V from the
initial position to right direction without changing its direction.

When the mobile user reaches to the border to the neighboring cell, it will ask one
available channel for the neighboring base station to hand over the on-going call to
continue the communication in neighboring cell. Then if there is left no available

84 M. Inoue, N. Yoshiura, and Y. Onozato

Table 1. Simulation conditions

Cell Length L)600(mL =

Number of Cells N Cells)30(=N

Number of Channels M Channels per cell)32(=M

New Call Arrival Rate Poisson Distribution with newλ

Call Holding Time Exponential Distribution with Mean H sec)120(=H

Speed Distribution Uniform Distribution,
Truncated Exponential Distribution,
Reverse Truncated Distribution

Minimum Speed
minV)/10(min hkmV =

Maximum Speed
maxV)/70(max hkmV =

Speed Range [)hkmhkm /20,/10 , [)hkmhkm /30,/20 , [)hkmhkm /40,/30 ,

[)hkmhkm /50,/40 , [)hkmhkm /60,/50 , [)hkmhkm /70,/60

Simulation Time sec10000

Fig. 1. Ring shaped cellular networks model to represent one-dimensional cellular networks

channel in the neighboring cell, the on-going call will be terminated by force and quit
to communicate. If there is left more than one available channel at least in the
neighboring cell, the handover will be done successfully and the mobile user will
continue its call in the new neighboring cell. In the new neighboring cell, the mobile
user will communicate the rest of the intended holding time until the new handover
will occur. If the rest of the intended holding time will be expired in the cell, the call
will be ended.

As the evaluation parameters of the communication performances, we consider the
blocking probability of new call, the number of completed call and the mean holding
time of completed call. In our simulation, the blocking probability of new call is
defined as the ratio of the number of the blocked new calls for the number of arrival
new calls. And the completed calls is defined as the arrival new calls which start to

 Effect of Mobility on Communication Performance 85

communicate and end the whole intended holding time without failures of all
handovers which the calls experiences. The mean holding time of the completed calls
is defined as the average of the intended holding time of the all completed calls.

In this paper, we consider the uniform distribution as the ordinal speed distribution.
Further, we apply the truncated exponential speed distribution, and the reverse
truncated exponential distribution defined as follows.

In the following, we will show the probability density functions of each four speed

distributions, when we define the minimum and maximum speeds as minV and

maxV respectively.

2.1 Uniform Distribution

),(

)(

0

1

)(
maxmin

maxmin

minmax

VvVv

VvV
VVvfu

><

≤≤
−= (1)

We set the mean speed as 2)(maxmin VV + .

2.2 Truncated Exponential Distribution

We set the mean speed as λ1 , and define the normalization constant C to put the

random value between minimum and maximum speeds.

><
≤≤

=
−

),(

)(

0
)(

maxmin

maxmin

VvVv

VvVeC
vf

v

t

λλ

1)(maxmin −−− −= VV eeC λλ .

(2)

2.3 Reverse Truncated Exponential Distribution

We set the mean speed as λ1 . The normalization constant C is chosen to put the

random value between minimum and maximum speeds.

)(

)(

0
)(

maxmin,

maxmin
)(min

VvVv

VvVeC
vf

vVV

r

man

><
≤≤

=
−+−λλ

1)(maxmin −−− −= VV eeC λλ .

(3)

3 Simulation Results

We will show several graphs and explain the detail of the shapes of graphs. In the
following graphs, “15”, “25”, “35”, “45”, “55”, and “65” represent the speed ranges
from 10 km/h to 20km/h, “25”, from 20km/h to 30km/h, from 30km/h to 40km/h, from
40km/h to 50km/h, from 50km/h to 60km/h, and from 60km/h to 70km/h respectively.

86 M. Inoue, N. Yoshiura, and Y. Onozato

3.1 Uniform Distribution

In Fig.2, we can find that graphs of blocking probability of new calls for different
speed range have almost the same shapes. Because no channel allocation schemes are
applied in our model and because handoff calls for each speed range are treated
equally, there are almost no differences between the blocking probabilities of new and
handoff calls for three speed distributions respectively.

On the other hand, in Fig.3 we can find the differences among the graphs of the
call completion probabilities for different speed ranges. Until the arrival rate of new
calls takes about 0.2, the call completion probabilities among different speed ranges
are almost the same constant value. After the arrival rate of new calls increases over

Fig. 2. Blocking probability of new calls for each speed range in the case that the mobile node’s
speed is the uniform distribution

Fig. 3. Call completion probability for each speed range in the case that the mobile node’s
speed is the uniform distribution

 Effect of Mobility on Communication Performance 87

Fig. 4. Handoff times of handoff calls for each speed range in the case that the mobile node’s
speed is the uniform distribution

Fig. 5. Channel utilization rate for each speed range in the case that the mobile node’s speed is
the uniform distribution

about 0.2, the graphs of the call completion probabilities for high speed range have a
steep slope, the one for middle speed range have a middle slope and the one for low
speed range goes down slightly. This is because of the number of handoff times for
each speed range. Since the number of handoff times for low speed mobile nodes is
fewer than the number of handoff times for high speed mobile nodes, the high speed
mobile nodes need to succeed the more handoff executed through their
communication, as shown in Fig.4.

In Fig.5, the graphs of the channel utilization rates among different speed ranges
have the same shape until the arrival rate of new calls takes about 0.2. After the

88 M. Inoue, N. Yoshiura, and Y. Onozato

arrival rate of new calls takes over about 0.2, the graphs of those rates among differ-
ent speed ranges have different shapes. The graph for low speed range has higher rate
than the graph for higher speed range.

3.2 Truncated Exponential Distribution

In the case that the mobile node’s speed follows the truncated exponential
distribution, the graphs of call completion probabilities, mean expected handoff times
of handoff calls, and channel utilization rate are shown in Figs.6, 7, and 8,
respectively.

Fig. 6. Call completion probability for each speed range in the case that the mobile node’s
speed is the truncated exponential distribution

Fig. 7. Handoff times of handoff calls for each speed range in the case that the mobile node’s
speed is the truncated exponential distribution

 Effect of Mobility on Communication Performance 89

Fig. 8. Channel utilization rate for each speed range in the case that the mobile node’s speed is
the truncated exponential distribution

3.3 Reverse Truncated Exponential Distribution

In the case that the mobile node’s speed follows the reveres truncated exponential
distribution, the graphs of the call completion probabilities, mean executed handoff
times of handoff calls, and channel utilization rate are shown in Figs.9, 10, and 11,
respectively.

3.4 Comparison

Blocking probabilities of each arrival new or handoff calls for each speed range take
almost the same value respectively, until the arrival rate of new calls takes about 0.2.

Fig. 9. Call completion probability for each speed range in the case that the mobile node’s
speed is the reverse truncated exponential distribution

90 M. Inoue, N. Yoshiura, and Y. Onozato

Fig. 10. Handoff times of handoff calls for each speed range in the case that the mobile node’s
speed is the reverse truncated exponential distribution.

Fig. 11. Channel utilization rate for each speed range in the case that the mobile node’s speed is
the reverse truncated exponential distribution

The graphs of the call completion probability for each speed range will have same
shape because enough channels are left for both new and handoff calls. After the
arrival rate of new calls exceeds about 0.2, the demand of new and handoff call
exceed the available channels. From the graphs of the channel utilization rates
among different speed ranges, we can suppose that the blocking probability will
begin to increase when the total channel utilization rate exceeds about 0.9 because
the total of channel utilization rate of all speed ranges is about 0.9 in each speed
distribution.

Channel utilization rate of each speed range will differ according to the speed
distributions. Since the number of mobile nodes for each speed range will be different

 Effect of Mobility on Communication Performance 91

among three speed distributions, the number of new and handoff calls will also be
different.

Call completion probability of each speed range will have different value because
the number of handoff times will be changed by the mobile node’s speed.

We also have investigated the call completion probability applied ordinal
channel allocation systems to our simulation model. In ordinal channel allocation
systems, new calls can use the rest of all channels without the reserved some
channels for handoff calls. Handoff calls can use all channels in the cell including
reserved channels. New calls will be restricted using the channels. Therefore the
blocking probability of handoff calls will be improved compared to the systems
without channel allocation systems. Especially, there are some differences of the
call completion probability among the different speed ranges. The call completion
probability for high-speed range will have higher probability than that for lower
speed range. Therefore, in the heavy traffic situation, the fairness of the service
provided from the cellular systems will not keep among the users with different
mobile speed.

4 Conclusion

We have investigated the communication performances among the different speed
distributions. Assuming the same mean call holding time for various speeds, we can
find higher call completion probabilities, higher channel utilization rate for the
lower speed of mobile node, in the overloaded traffic situation. Because once the
call occupies the channel, the channel can be used until the call will have been
completed.

In the future, we will propose a new channel allocation method to provide the same
call completion probability among all users with different mobile speed by allocating
the available reserved channels according to the demand of each mobile node with
each speed range.

References

1. H.Ohtsuka., M.Sengoku., Y.Yamaguchi., T.Abe.: Basic study on mobile flows and
telephone traffic. IEICE, Tech.Rep. CAS, No.249. (1987-3) 81-88

2. G.Montenegro., M.Sengoku., Y.Yamaguchi., T.Abe.: Time-dependent analysis of mobile
communication traffic in a rig-shaped service area with nonuniform vehicle distribution.
IEEE Transactions on Vehicular Technology, Vol.41. (1992) 243-254

3. S.Thipchaksurat., K.Kawanishi., U.Yamamoto., Y.Onozato.: Impact of Mobility on
Blocking in One-dimensional Cellular Networks with New Call Channel Limiting Scheme.
Proceedings of IEEE Global Telecommunications Conference (IEEE, Globecome2002).
(2002-12)

4. P.V.Orlik., S.S.Rappaport.: A Model for Teletraffic Performance and Channel Holding
Time Characterization in Weireless Cellular Communication with General Session and
Dwell Time Distributions. IEEE Journal on Selected Areas in Communications, Vol.16,
No5. (1998) 788-803

92 M. Inoue, N. Yoshiura, and Y. Onozato

5. C.Bettstetter.: Mobility Modeling in Wireless Networks. ACM Mobile Computing and
Communications Review, Vol.5, Number3. (2001-7) 55-67

6. C.Bettstetter., H.Hartenstein., X.Perez-costa.: Stochastic Properties of the Random
Waypoint Mobility Model. Wireless Networks. (2004-10) 555-567

7. J.Yoon., M.Liu.: Random Waypoint Considered Harmful. The Conference on Computer
Communications, Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE INFOCOM2003). (30 March - 3 April, 2003)

Distributed Time Slot Assignment in Wireless
Ad Hoc Networks for STDMA

Subhasis Bhattacharjee and Nabanita Das

Advanced Computing and Microelectronics Unit,
Indian Statistical Institute,

203, B T Road, Kolkata 700108, India
{subhasisb t, ndas}@isical.ac.in

Abstract. In this paper, a distributed technique is proposed to assign
time slots to the nodes of an ad hoc network for Spatial Time Division
Media Access (STDMA) to facilitate collision-free communication. An
upper bound is established on the length of the time cycle assuming a
constant bound on the degree of each node. The proposed algorithm is
augmented to adapt with incremental changes in the topology.

1 Introduction

Since wireless ad hoc networks require no backbone infrastructure they can be
flexibly and quickly deployed for many applications such as automated battle-
field, search and rescue, and disaster relief. A communication session is achieved
either through a single-hop radio transmission when the communicating nodes
are within one another’s transmission range, or by relaying through some inter-
mediate nodes. As the nodes in ad hoc networks are free to move arbitrarily,
the network topology may change frequently and unpredictably. Also resources
like bandwidth and battery power are limited in many applications. Another
major concern in ad hoc networks is that all nodes of the network use the same
frequency channel for radio transmission. This along with the absence of central
control makes the task of controlling the access to physical medium the most
challenging issue. Poor control leads to collision among packets when two or more
nodes with overlapped transmission region transmit simultaneously, whereas a
very strict control leads to low throughput. The IEEE 802.11 MAC protocol pro-
vides some guidelines for accessing the physical medium based on CSMA/CA
(Carrier Sense Multiple Access with Collision Avoidance) mechanism. This sim-
ple protocol is very effective when the medium is not heavily loaded. However,
the protocol suffers form collision in transmitting control packets due to the fact
that more than one node may sense the medium free and may decide to transmit
simultaneously.

STDMA (spatial time division media access) [1] is a reasonable technique
for managing wireless media access that substantially reduces collisions and im-
proves fairness. Unlike TDMA, STDMA allows more than one node to transmit
in the same time slot if their transmission regions are non-overlapping. Moreover,

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 93–104, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

94 S. Bhattacharjee and N. Das

STDMA allows ad hoc devices to conserve power by switching off the transceiver
during those time slots where no message is expected. The challenges for imple-
menting STDMA in ad hoc networks are that the time slot assignment algorithm
should be distributed, scalable and adaptable to topology changes.

The problem of assigning TDMA time slots can be directly mapped to the
standard problem of graph coloring [2]. There the coloring constraint is to en-
sure that no two nodes within the interfering distance may have the same color.
However, in [3], it has been shown that this simple reduction of TDMA time
slot assignment problem actually does not consider some additional opportuni-
ties of time division, and hence even a solution to minimum coloring does not
necessarily produce the best result for TDMA. In that sense, the problem of
optimum TDMA time slot assignment is harder than optimizing the number of
colors. Many such problems are NP-complete and the approximation algorithms
proposed so far are mostly not distributed [4]-[6].

Several Time Division Multiple Access (TDMA) based MAC protocols for ad
hoc networks have been proposed in [7]-[9]. In STDMA time slot assignment
[10]-[12], the length of the time cycle, i.e., the number of slots per cycle plays
an important role. Earlier works on STDMA, in general keeps the length quite
large, so that one slot is ensured per node. However, it may cause a large number
of free unutilized slots per cycle, making inefficient use of channel. Also a node
may have to wait for a long time before getting its turn.

In this paper, a distributed STDMA slot assignment technique is developed
assuming that each node has a unique ID. An upper bound M on the number
of neighbors within 2-hop distance of any node is established for an ad hoc net-
work with a constant bound Δ on node degree. It dictates a limited number
of slots O(Δ) (compared to O(Δ6) [3]) in every cycle to ensure collision-free
communication. Also, the scheme is augmented to rearrange the slots to adapt
with limited perturbations in network topology. Besides collision free communi-
cation, the STDMA technique determines a transmission schedule for the nodes
and hence enable the nodes to remain in the sleep mode in idle slots, saving
energy significantly.

The rest of this paper is organized as follows. Section 2 describes the proposed
model of the network. Section 3 derives the upper bound on the length of the
time cycle. Proposed algorithm for STDMA is developed in section 4. Section 5
describes the rearrangement of STDMA scheduling when topology changes.
Section 6 presents the concluding remarks.

2 Network Model

In this paper it is assumed that the system initializes with a set V of n ad
hoc devices {v1, v2, · · · , vn}, deployed over a two dimensional region. All devices
have equal transmission range r. The network is represented by a topology graph
G(V, E), an edge (vi, vj) ∈ E if and only if the Euclidean distance of vi and vj

is ≤ r. In this paper it is assumed that G(V, E) is always connected. Fig.1(a)
shows a typical topology graph G(V, E) with 15 nodes.

Distributed Time Slot Assignment in Wireless Ad Hoc Networks for STDMA 95

1

2

13

12

10

11

14

15

5

4

3
6

7

8

9

(a) (b)

1

2

14

15

5

4

3
6

7

Fig. 1. (a) Topology graph (b) 2-hop Partial Graph as seen by node 5

2.1 Definitions and Assumptions

Definition 1. For a given topology graph G(V, E), for two nodes vi, vj ∈ V the
hop-distance d(vi, vj) is the length of the shortest path between the two nodes in
G(V, E). vi and vj are said to be h-hop away if d(vi, vj) = h.

Definition 2. The h-hop neighbors of vi in G(V, E), Nh(vi) is the set of nodes
V ′ ⊂ V , V ′ = {vi1, · · · , vik} such that d(vi, vij) ≤ h for 1 ≤ j ≤ k.

Definition 3. The h-hop partial graph of vi, PGh(vi) is a subgraph G′(V ′, E′)
of G induced by the node set V ′ = Nh(vi) ∪ {vi} but deleting the edges between
any two h-hop away nodes of vi.

Example 1. For the topology graph G(V, E) shown in Fig.1(a), the 2-hop partial
graph of node 5, PG2(5) is shown in Fig.1(b).

The underlying assumptions of the model considered here are:

- Each device is identified by unique ID.
- Each device repeats the same time cycle divided into a fixed number of slots.
- Each device may start time cycles arbitrarily, but the slot boundaries are

synchronized.
- The node degree is bounded by a constant Δ.

The time is slotted with each slot of a fixed time interval τ units. Each slot
contains a short header H of τh units (τh � τ). The header is generally used
for control purposes and T , the rest of the slot of duration (τ − τh) is used for
message transmission. Fig.2 shows the time cycles at two different nodes vi and
vj with different cycle boundaries.

2.2 Time Cycle Structure

For the given network model, an upper bound is established on the cardinality
of N2(vi), ∀vi ∈ V , based on the node-degree bound Δ. This in turn limits the
maximum number of slots required in a time cycle for STDMA.

96 S. Bhattacharjee and N. Das

Cycle

H T

vi

vj

Slot

Cycle

Fig. 2. The slots and cycles

Lemma 1. Given a topology graph G(V, E), any two nodes vi and vj of V can
transmit during the same time slot without any collision only if d(vi, vj) ≥ 3.

Proof. Let the nodes vi and vj transmits during the same time slot. If
d(vi, vj) = 1, both vi and vj will detect collision.

If d(vi, vj) = 2, there exists at least one node vk, where vk ∈ N1(vi)∩N1(vj).
So, vk will detect a collision.

If d(vi, vj) ≥ 3, any path between these two nodes will contain at least two
intermediate nodes, say, vki and vkj such that d(vi, vki) = d(vj , vkj) = 1. If vi

and vj transmit during the same time slot, vki can receive the packet from vi

and vkj can receive the packet from vj without any collision. If there exists more
than two intermediate nodes, then also it will be true. This proves that vi and
vj can transmit simultaneously only if d(vi, vj) ≥ 3.

Lemma 2. For any topology graph G(V, E), |N2(vi)| =min{(19Δ− 18), (Δ2 +
1)}, where Δ is the upper bound on the degree of any node vi ∈ V , Δ ≥ 2.

Proof. Let a node vc be placed at C(0, 0) as shown in Fig. 3(a). Consider two
circles A and B with radius r and 2r, respectively, centered at C, r is the range
of each node. Consider a chord PP ′ of B of length r perpendicular to x-axis
such that x-axis bisects the line PP ′. Hence, the co-ordinates of P and P ′ are
(
√

15
2 r, r

2) and (
√

15
2 r,− r

2) respectively. Two circles E and F each with radius
r are drawn centered at P and P ′ respectively. E and F intersect each other

T

T’

P

P’

QC

T

T’

P

P’

QC

Q

Q1

2

(a) (b)

B
A

Z

E

F

B A

E

F

D

H

Fig. 3. Diagram for finding region boundaries in Lemma 1

Distributed Time Slot Assignment in Wireless Ad Hoc Networks for STDMA 97

on the x-axis at Q = (
√

15−√
3

2 r, 0) inside the circle B. Consider the circle Z of
radius r centered at Q intersecting the circle A at two points T and T ′ with

coordinates (
√

15−√
3

4 r,

√√
45−1
8 r) and (

√
15−√

3
2 r,−

√√
45−1
8 r), respectively, as

shown in Fig. 3(a).
Another circle D of radius r is drawn centered at T . It intersects the circle F

at two points Q and Q1(
√

15+
√

3
4 r,

√
3
√

5−1−√
2

2
√

2
r) as shown in Fig. 3(b). Similarly,

the circle H of radius r centered at T ′ intersects the circle E at two points Q

and Q2(
√

15+
√

3
4 r,−

√
3
√

5−1−√
2

2
√

2
r) as shown in Fig. 3(b). The angle α subtended

by ray −−→CQ1 with the x-axis equals tan−1
√

2(
√√

45−1−√
2)√

15+
√

3
≈ 13.82◦.

Knowing the points Q, Q1 and the angle α, the annular area between the
circles B and A is partitioned into a set of regions as shown in Fig. 4. Two
circles CI and CO of radius CQ and CQ1 are drawn centered at C. Taking a
point G on the circle A, the line segment −−→CG is drawn that intersects the circles
CI , CO and B at points K, L and M respectively. Consecutively, 26 rays are
drawn CG1, · · · , CG26 on both sides of CG0, each making an angle α with the
previous one as shown in Fig. 4. Using the points of intersection of the rays with
the circles A, CI , CO and B, we mark 13 regions of E type and 13 regions of I
type as shown in Fig. 4. Let these regions be denoted as Ei and Ii, 0 ≤ i ≤ 12.
Finally there will be a residual area R making an angle β of approximately
0.8204◦ (less than 1◦) as shown in Fig. 4. These E and I regions together with
R cover all the regions where the 2-hop away nodes of vc may lie. Let n(x)
denotes the number of nodes in a region x.

C
vf

Region I

Region E

E0

E1

E12

E11

I4

I 0

I1

I12

E5

CO

CI

A

B

LK Mα
G

G2

0
G1R

Fig. 4. The regions E and I to partition the annular region between circles A and B

98 S. Bhattacharjee and N. Das

Based upon the construction of E and I regions, following two observations
can be made:
(a) all nodes in any Ei, or Ii region are connected to each other, and
(b) a node in Ii is connected to all nodes in the neighboring regions Ii−1 and

Ii+1, ∀i = 0, · · · , 12 (I−1 ≡ I12 and I13 ≡ I0). It implies that
∑12

i=0 n(Ii) <
6(Δ− 1) as degree of any node is bounded by Δ, assuming that each node
in I regions are connected to at least one node in N1(vc).

Let vf be one of the farthest 2-hop away node of vc. Without loss of generality, let
us assume that vf is placed anywhere in the residual region R, as shown in Fig. 4.
Then node vf remains connected to all nodes within the regions E0, E12 and R.
It implies that n(E0) + n(E12) + n(R) < (Δ− 1). So,

∑12
i=0 n(Ei) < 12(Δ− 1).

Hence, at most 18(Δ − 1) nodes can exist as 2-hop away neighbors of vc

assuming that each one is connected to vc via at least one 1-hop neighbor within
circle A. Therefore, |N2(vc)| = (19Δ−18). It will be true for any node. However,
for any network with a node-degree bound Δ, |N2(vi)| ≤ (Δ2 + 1). Hence it is
evident that |N2(vi)| = min{(19Δ− 18), (Δ2 + 1)}, for any vi ∈ V , Δ ≥ 2 .

Theorem 1. For a topology graph with a node degree bound Δ ≥ 2, min {(19Δ−
18), (Δ2 + 1)} slots are sufficient in a cycle to assign at least one slot to each
node for collision-free transmission.

Proof. Follows directly from Lemmata 1 and 2.

In this paper it has been assumed that the time cycle includes M = min {(19Δ−
18), (Δ2 + 1)} slots.

3 Proposed Solution

The proposed methodology consists of two phases described below.

3.1 Initialization

As a set of ad hoc devices wake up they try to discover their neighbors during a
predefined time td. Any node vi may transmit a HELLO message with a small
probability p, during the slot-header H of a time slot and listens during the
remaining portion T of the slot. In the HELLO message, node vi sends the ID’s
of all its 1-hop neighbors it has already discovered. Each node vi repeatedly
switches between the roles of sender and receiver randomly during this phase
and gather knowledge about its 2-hop partial graph PG2(vi).

Procedure Initialization(vi, td) begin
N1(vi) = φ
for slot=1 to td

if rand(0, 1) < p then transmit HELLO message in header
else wait to receive message

if HELLO msg received from vj , N1(vi) = N1(vi) ∪ {vj}; update PG2(vi)
end

Distributed Time Slot Assignment in Wireless Ad Hoc Networks for STDMA 99

3.2 TDMA Slot Assignment

Each node starts slot assignment after completing the initialization procedure.

Definition 4. The slot assignment vector Si of a node vi is a vector of length M
where, Si(j) = ID(vk) if node vk ∈ (N2(vi)∪ {vi}) uses slot j for transmission,
otherwise Si(j) = φ, 1 ≤ j ≤M .

Example 2. Let us consider the node 5 of the network shown in Fig.1(a). Its 2-
hop neighbor set is N2(5) = {1, 2, 3, 4, 6, 7, 14, 15}. Assuming M = 16, a possible
slot assignment vector S5 is shown in Fig. 5. It indicates that, node 15 transmits
during the time slot 2 and so on.

Definition 5. The offset vector F s
i with respect to a time slot s at a node vi is a

vector of length at most (Δ +1) where each element of F s
i is a tuple of the form

(node, offset) computed from Si and N1(vi) as follows: ∀vj ∈ (N1(vi)∪ {vi}), if
∃k, such that Si(k) = vj then (vj , k − s) ∈ F s

i .

Example 3. Fig.5 shows F 9
5 , the offset vector at node 5 with respect to current

time slot 9. The F 9
5 contains 5 elements, one for each neighbor of 5. The element

(15,−7) in F 9
5 denotes that node 15 transmits on a slot which precedes 7 slots

from the current slot 9 in node 5.

S5

15, -7 3, 0 4, +2 6, +6

Offset Vector of Node 5 at slot=9

15 1 7 14 3 64 5

of Node 5

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5, +3

Slot Index

Fig. 5. The slot assignment vector and offset vector at node 5

Definition 6. A slot assignment is consistent at node vi if the slot selected by
node vi (i.e., slot(vi)) is not used by any node vi ∈ N2(vi). The slot assignment
of topology G is consistent if the slot assignment is consistent at every node in G.

During this phase, each node vi can assign a slot if and only if all {vj : vj ∈
N2(vi) and ID(vj) > ID(vi)} have already selected their slots. After a node
selects its slot it broadcasts its offset vector and a Forward-Schedule message
(FSM) asking a subset of its 1-hop neighbors in ascending order of their ID’s to
broadcast their offset vectors in successive slots, to inform the 2-hop neighbors
who are yet to select their slots. The details of the procedure is given below.

Lemma 3. A node sends at most (Δ+2) messages each of length O(Δ) during
slot assignment.

100 S. Bhattacharjee and N. Das

Proof. The ASSIGNING operation is performed at any node only once, so at
most one Forward-Schedule message is generated by any node. Each Forward-
Schedule message contains an ordered set of at most Δ nodes who need to forward
their offset vectors. Thus any node sends its offset vector at most (Δ +1) times;
once just after its own slot assignment and at most Δ times after slot assignment
of each of its neighbors. Again, both the offset vector and Forward-Schedule
message contains O(Δ) elements. So, each node sends at most (Δ +2) messages
of length O(Δ).

Procedure Slot-Assignment(vi) begin
assigned = false; ready = false;
hN = {vj : vj ∈ N2(vi) and ID(vj) > ID(vi)} // List of higher neighbors of vi

do in each slot s
if assigned = false and hN = φ then

do ASSIGNING - select free slot, update Si, F s
i , FSM

send offset vector and Forward-Schedule message
assigned = true

else
if scheduled to FORWARD at s

do FORWARDING - send offset vector F s
i

else
do WAITING - listen for incoming message
if received offset vector message from vj

update Si and hN
if received Forward-Schedule message

schedule to send offset vector message if required
until Si contains an entry for each vj ∈ N2(vi)
ready = true;
end

4 Dynamic Topology

The proposed time-slot assignment algorithm allocates slots to individual nodes
and ensures collision-free communication assuming that the topology is static.
However, as the nodes in ad hoc networks are mobile, it is obvious that the
topology may change due to the mobility and/or failure of nodes. These changes
in topology may happen due to the following reasons: (a) a new node is switched
on, (b) a node is switched off, or (c) a node moves from one location to other.
Case (c) can be considered as a combination of cases (a) and (b). Obviously, if a
node switches off, its neighbors just make that slot free, keeping the remaining
assignments unaltered. But if there is an addition of a new node slot assign-
ments may have to be rearranged in the 2-hop neighborhood of the new node
to avoid collision. The proposed algorithm is augmented to adapt with changes
in topology provided there is no more additions within the 2-hop neighborhood
of a new node until the system stabilizes. Some collisions may occur during the

Distributed Time Slot Assignment in Wireless Ad Hoc Networks for STDMA 101

transition period. However, after some message exchanges among the 2-hop
neighbors of the new node, finally the slots are rearranged, if necessary, and
makes all communications conflict-free again.

4.1 A Node Is Switched On

Let the new node be vnew . It proceeds in the following way:

(1) sends a NEW message during header of each slot for its first cycle, and
listens during the rest of the slots.

(2) on receiving offset vector from its 1-hop neighbors, vnew updates Snew and
PG2

new .
(3) if vnew does not detect any collision, it selects a free time slot, else, it waits

for the colliding nodes to reassign their slots, and finally selects its own
slot.

(4) intimates all its 2-hop neighbors, and the system starts normal operation.

Receiving a NEW message, the static neighbors of vnew send offset vector to
vnew and send HOLD message to their 1-hop neighbors, requesting them to
withhold normal data transfer and not to entertain any new node further.
Once the slot assignment of vnew is over all the neighbors return back to normal
operations.

The situation becomes complicated when collision is detected at vnew while
receiving the offset vector from any neighbor. One such case is shown in Fig. 6.
Let us assume that nodes 8 and 10 were not 2-hop neighbors of each other
in the initial topology graph shown in Fig. 6(a). They use same time slot for
transmission. Now the node vnew appears and the nodes 8 and 10 becomes
2-hop neighbors of each other through vnew as shown in Fig. 6(b). Now, the
slots of 8 and 10 become inconsistent.

8
10

4

7

6
2

vnew
8

10

4

7

6
2

(a) (b)

Fig. 6. Collision occurs at new node vnew

The new node vnew on detecting some collisions modifies the subsequent
NEW messages by adding the offset of the slots where it has detected collisions.
This allows the set of colliding nodes to identify themselves. Each colliding node
vi ∈ N1(vnew) proceeds in the following way:

(1) sends INCONSISTENT message to all nodes in N2(vi). The slot assignment
of all nodes in N2(vi) should remain unaltered until slot reassignment of
vi is over.

102 S. Bhattacharjee and N. Das

(2) broadcasts a SEARCH message with the ID of vi and the ID of vnew

(3) wait for sufficient time to listen all incoming SEARCH messages
(4) collect the ID’s of all colliding nodes from SEARCH messages, arrange in

descending order, and reassign slot in its appropriate turn
(5) sends CONSISTENT message to all nodes in N2(vi)

The details of the procedures followed at the new node vnew and at any node
vi ∈ N1(vnew) are given below.

Procedure New-Node(vnew) begin
C = φ // C: set of colliding slots
for slot = 1 to M

send NEW and C in header
listen during T of the slot
if collision is detected

C = C ∪ slot
else

offset vector is received from vi

update N1(vnew), PG2(vnew) and Si

if C �= φ // collision is detected
wait until colliding neighbors reassign slots

do ASSIGNING and send offset vector to neighbors
end

Theorem 2. After the new node vnew is switched on, the slot reassignment
procedure completes in (1) (M + 1) slots if no collision is detected at vnew, and
(2) at most ((D + 1)M + 2Δ + 2) slots when collision is detected at vnew, where
D is the diameter of the topology graph G in hops.

Proof. First of all, it is guaranteed that the NEW messages are received by all
nodes within the range of vnew as each of them listens during the H period of
the slot assigned to it, in every cycle. This also ensures that vnew will eventually
receive offset vectors from all nodes in N1(vnew).

Let us assume that there is no collision during the first M slots of new node
vnew. This implies that the slot assignment in G is consistent in presence of new
node vnew . Also, vnew has received the slot assignment of nodes in N2(vnew) via
offset vector from N1(vnew). Then vnew can immediately select a free slot and
finish the slot assignment procedure in the next time slot. Therefore, the whole
procedure completes in (M + 1) slots.

When collisions are detected at vnew , the colliding nodes identify themselves
within the first (M + 1) slots. The SEARCH message initiated at a node vi is
received by all other colliding nodes within at most D.M slots. Therefore, the
colliding nodes can reassign their time slots after ((D + 1)M + 1) slots. Even
if all 1-hop neighbors (at most Δ) of vnew need reassignment, their assignment
can be finished within 2Δ slots as all other 1-hop neighbors of any colliding

Distributed Time Slot Assignment in Wireless Ad Hoc Networks for STDMA 103

node vi remain silent until vnew selects its own slot. This implies that the slot
reassignment is completed within ((D +1)M +2Δ+2) slots in the worst case.

Procedure OnReceivingNewMsg(vi, vnew) begin
ready = false; N1(vi) = N1(vi) ∪ {vnew}
during T of slot(vi)

send offset vector to vnew and HOLD message to N1(vi)
wait to listen from vnew for next M slots
if collision at slot(xi)

assigned = false; consistency := false;
R = {vi} // R: set of nodes to reassign slots
send INCONSISTENT to vj , ∀vj ∈ N2(vi)
wait until no NEW message
broadcast SEARCH(vi, vnew) message
do for next D cycles

if received SEARCH message from vj

R = R ∪ {vj}
update PG2(vi) by adding vj as a neighbor of vnew

hN = {vj : vj ∈ R, ID(vj) > ID(vi)}
do in each slot of a cycle

if hN = φ
do ASSIGNING - select first free slot and send offset vector
assigned = true; consistency := true;
send CONSISTENT message to all nodes in N2(vi)

else
do WAITING - listen for incoming message from vnew

if received offset vector from vnew

update S2
i and hN

wait until vnew assigns slot
ready = true and send READY to N1(vi)
end

4.2 A Node Is Switched Off

Before the node vi is switched off, it sends a switching off message in its slot.
Knowing that vi is getting switched off all nodes in N1(vi) mark corresponding
slot as available and inform their 1-hop neighbors to do the same thing. This
also allows all 2-hop neighbors of vi to mark the slot free.

5 Conclusion

A distributed technique for assigning time slots to the nodes of an ad hoc net-
work is proposed here, assuming time is slotted and slot boundaries are syn-
chronized. This allows collision-free transmission of packets by Spatial Time Di-
vision Media Access (STDMA) technique. An upper bound of min{(19Δ−18),

104 S. Bhattacharjee and N. Das

(Δ2 + 1)} is established on the length of the time cycle assuming a constant
bound Δ on the degree of each node for Δ ≥ 2. The assigned time slots are
adjusted locally when topology changes due to mobility allowing a single ad-
dition within the 2-hop neighborhood of any node. The STDMA makes the
scheduling predetermined and hence enables the nodes to remain in the sleep
mode during the idle slots, saving energy significantly.

References

1. R. Nelson and L. Kleinrock: “Spatial-TDMA: A collision-free multihop channel
access protocol”, IEEE Trans. Commun., vol. 33, no. 9, pp. 934-944, Sept. 1985.

2. S. Ramanathan: “A unified framework and algorithm for channel assignment in
wireless networks”, Wireless Networks 5(2) :81-94, 1999.

3. T Herman and S Tixeuil: “A distributed TDMA slot assignment algorithm for
wireless sensor networks”, Proc. of the 1st Int. Workshop on Algorithmic Aspects
of Wireless Sensor Networks, ALGOSENSORS 2004, Springer LNCS 3121, pp.
45-58, July 2004.

4. H. L. Bodlaender, T. Kloks, R. B. Tan and J. van Leeuwen: “Approximations
for coloring of graphs”, University of Utrecht, Department of Computer Science,
Technical Report 2000-25, 2000 (25 pages).

5. S. O. Krumke, M. V. Marathe and S. S. Ravi: “Models and approximation algo-
rithms for channel assignment in radio networks”, Wireless Networks, vol. 7, no.
6, pp. 575-584, 2001.

6. S. Ramanathan and E. L. Lloyd: “Scheduling algorithms for multi-hop radio net-
works”, IEEE/ACM Transactions on Networking, vol. 1, no. 2, pp. 166-177, 1993.

7. A.-M. Chou and V. O. K. Li: “Slot allocation strategies for TDMA protocols in
multihop packet radio networks”, Proc. of IEEE INFOCOM 1992, pp. 710-716,
1992.

8. C. Zhu and M. S. Corson: “A five-phase reservation protocol (FPRP) for mobile
ad hoc networks”, Wireless networks, vol. 7, pp. 371-384, July 2001.

9. K. Sohrabi and G. J. Pottie: “Performance of a novel self-organization protocol
for wireless ad hoc sensor networks”, Proc. of the IEEE 50th Vehicular Technology
Conference, pp. 1222-1226, 1999.

10. P. Bjrklund, P. Vrbrand and D. Yuan: “Resource Optimization of Spatial TDMA
in Ad Hoc Radio Networks: A Column Generation Approach”, Proc. of IEEE
INFOCOM 2003, pp. 818-824, 2003.

11. J. Gronkvist: “Assignment methods for spatial reuse TDMA”, Proc. of IEEE An-
nual Workshop on Mobile and Ad Hoc Networking and Computing (MobilHOC),
pp 119-124, 2000.

12. I. Chlamtac, A. Farago: “Making transmission schedules immune to topology
changes in multi-hop packet radio networks”, IEEE/ACM Trans. on Networking,
vol. 2, pp. 23-29, Feb. 1994.

Efficient Algorithm for Placing Base Stations by
Avoiding Forbidden Zone

Sasanka Roy1, Debabrata Bardhan2, and Sandip Das1

1 Indian Statistical Institute, Kolkata - 700 108, India
2 LSI Logic India Pvt. Ltd., Kolkata - 700 091, India

Abstract. Let P be a polygonal region which is forbidden in order
to place a base station in the context of mobile communication. Our
objective is to place one base station at any point on the boundary of
P or two base stations at some specified edge and assign a range such
that every point in the region is covered by those base stations and
the maximum range assigned to these base stations is minimum among
all such possible choice of base stations. Here we consider the forbidden
region P as convex and base station can be placed on the boundary of the
region. We present optimum linear time algorithms for these problems.

1 Introduction

Sometimes fixing a base station for mobile communication is difficult on some
region say, water bodies, etc. However, we need to provide mobile service on that
region. Here, in this paper we consider the region as convex.

Let P be a convex polygon. The vertices are v0, v1, . . . , vn−1 in anticlockwise
order and the edge (vi, vi+1) is denoted by ei.

In this paper, we are considering the following two problems in context of
placing base station on boundary of polygon for covering that polygonal region.
Main objective is to locate the position of base station with some additional con-
straints such that every point on that polygon is covered by those base stations
and to minimize the maximum range of these base stations.

Problem P1: Locate a point α on the boundary of the polygon P such that
the maximum distance from α to any point p inside polygon P is minimized.

Problem P2: Find two points γ and δ on a given edge e of the polygon and a
length l such that every point x on the boundary of the polygon P is covered
by the circles centered at γ or δ of radius l and the length of l is minimum for
such choice of γ and δ.

We address these two problems in next two sections and proposed two different
linear time algorithms described in each section. Although we consider these two
problems as separate one, but solution technique in problem P1 gives some basic
ideas for solving problem P2.

2 Problem P1

The motivation of this problem is to identify a location α on the boundary of
a forbidden zone represented by convex polygon P for covering the region for

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 105–116, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

106 S. Roy, D. Bardhan, and S. Das

mobile communication with minimum power consumption by reducing the size
of radius of covering circle.

Euclidean 1-center problem is an well known similar type of problem which has
a long history and was originally posed in 1857 by Sylvester [16]. The problem is
to find the smallest circle that encloses a given set of n points. In that problem,
there is no restriction on placement of the center of that circle. Shamos [12],
Shamos and Hoey [13] and Preparata [11] initially proposed an O(n log n) time
algorithms which are a considerable improvement over O(n2) solution proposed
in [6]. Lee [9] proposed the furthest point Voronoi diagram structure and using
that structure, the 1-center problem can be solved in O(n log n) time. Finally
Megiddo [10] found an optimal O(n) algorithm for solving this problem using
prune-and-search technique.

While much has been done on such unconstrained versions of the classical
problem, little has been done in constrained version. Megiddo in [10] stud-
ied the case where the center of the smallest enclosing circle must lie on a
given straight line. In [7], Hurtado, Sacristan and Toussaint provided an O(n +
m) time algorithm for finding minimum enclosing circle with its center con-
strained to satisfy m linear constraints with the help of linear programming
problem.

The constraints in the problem P1, we are addressing here are different. In-
stead of placing the center inside the convex region, we consider the center on
the boundary of the region. A similar problem was first addressed in [4] where
the center of the minimum enclosing circle lies on the boundary of a convex
polygon of size n and cover a set of m points which may not lie on or inside
the polygon, and provided an O((n + m) log(n + m)) time algorithm for that
problem. Here we derive some interesting geometric characterizations and pro-
pose an O(n) time algorithm for problem P1 that avoids the linear programming
techniques.

Let the smallest circle that cover the polygonal region P and have center on
boundary of the convex region be C. Suppose the radius of circle C is l and center
lies at α on the boundary of convex polygonal region. Then we have the following
observations.

Observation 1. Circle C of radius l centered at α must passes through a vertex
of polygon P , and all other points lie on or inside the circle.

Observation 2. Let e be the edge of polygon P that contains the point α. If the
circle C is passing through a single vertex v of polygon P , then the line vα is
perpendicular to edge e at point α.

Consider the furthest point Voronoi diagram V(V) for the set of n vertices
V of the given polygon P . It partition the plane into convex regions, V (p1),
V (p2), . . ., V (pn), such that any point in V (pj) is farther from point pj than
from any other point in V . From observation 1, we can conclude that if pi is on
boundary of C then pi is farthest vertex from α and hence α must be in V (pi).
Sometimes the circle C may pass through more than one vertices of polygon P
and in that case we have the following observation.

Efficient Algorithm for Placing Base Stations by Avoiding Forbidden Zone 107

Observation 3. If the circle C is passing through two vertices of polygon P , then
α must be at some intersection point between an edge of farthest point Voronoi
diagram V(V) and an edge of polygon P .

From the above observations, we can conclude the following lemma.

Lemma 1. If center α of circle C lies on edge e then α must be either a per-
pendicular projection of some vertex of P on edge e or an intersection point of
edge e with an edge of furthest point Voronoi diagram.

Proof: Lemma follows from observation 2 and 3. ��
Therefore, to locate the circle C, we will identify the set of points A generated due
to the intersection of the edges of furthest point Voronoi diagram with the edges
of polygon P . We also consider each edge e of P , and identify those vertices of
P , whose projection on e lie completely inside the edge e. That set of projected
points on edges of the polygon is represented by set B. Note that, if the point α
is from set B, then it must be a projection of some vertex v on some edge e and
α is on the cell that corresponds v in farthest point Voronoi diagram. So, we only
consider those points of B which lie in the farthest point Voronoi region of the
corresponding projected vertex of the polygon. Hence, it becomes essential to
construct the farthest point Voronoi diagram of the vertex set of polygon P and
identify the intersection points with the edges of polygon P . These intersection
points partition the boundary of polygon into a set of polygonal chain formed
by consecutive sequence of polygonal edges bounded by points from set A. Each
polygonal chain must lie on a single Voronoi region. Let us denote the set of
polygonal chain as B(P).

While locating the point α, construction of Voronoi diagram itself will take
O(n log n) time. Although the farthest point Voronoi diagram for the vertices
of a convex polygon can be computed in linear time [1], computation of all the
intersection points of Voronoi edges with polygonal boundary of convex polygon
P needs O(n log n) time (as stated in [4]).

In [2], A. Aggarwal and Kravets introduce a linear time algorithm for finding
all farthest neighbors for every vertex of a convex polygon. This result was
obtained using quadrangle inequality that says, the sum of the diagonals of a
quadrangle is strictly greater than the sum of two opposite sides. Using this fact,
it can be shown that the matrix M = {mij} where mij = dist of i to (jmod n),
i < j < i+n and mij = −∞ for other j corresponding to this convex polygon is a
monotone matrix. Hence, using matrix searching technique all farthest neighbors
of each vertex can be computed in linear time.

Here, instead of computing the farthest point Voronoi diagram, we present
a simple O(n) time algorithm for finding the set A. Let u0, u1, . . . , uk be the
points of set A and they are in anticlockwise order on the boundary of polygon
P . These intersection points generate the set of polygonal chains B(P). Any
chain c in B(P) is bounded by two consecutive points of ui’s and each one must
lie on a single Voronoi cell. These will generate k polygonal chains c0, c1, . . . , ck,
where chain ci is bounded by points ui and ui+1. Each Voronoi cell can be
represented by the respective farthest point which is a vertex of polygon P . Let

108 S. Roy, D. Bardhan, and S. Das

the farthest vertex corresponds to the cell containing ci be v′i ∈ {v0, v1, . . . , vn}
for 0 ≤ i ≤ k. Here we like to introduce a new function index() as index(v′i) = j
whenever v′i = vj . Below, we characterize the farthest point Voronoi diagram for
the vertices of a convex polygon.

Lemma 2. Each cell of a farthest point Voronoi diagram is unbounded convex
region.

Proof: Let any point in cell V (pj) be farther from point pj than from any other
point of the vertex set of polygon P . Therefore the point pj must not be on
that cell. Any point p on the boundary b of the cell identifies another vertex
say, pk of polygon P , such that distances between p to pj and pk are same. Here
pj must lie on opposite side of cell V (pj) along the boundary b. Therefore, pj

must lie on the intersection of all the half-planes defined by the lines generating
the boundary of cell V (pj) and in opposite side of the cell. In case of bounded
cell, no such region exists. For the proof of convexity, consider two points u and
v in that cell. From simple geometry, it can be shown that any point on the
joining line segment of u and v is farther from pj than any other points of vertex
set of P . ��
Lemma 3. Let e be any edge for the vertices of polygon P . The perpendicular
bisector of e must define a boundary of a Voronoi cell V(V). Furthermore, this
boundary is a half-line.

Proof: Let the edge e be bounded by vertices u and v of polygon P . Consider
l be the perpendicular bisector of edge e intersects e at point w. While moving
along l from w on the direction where the polygon P belongs, the distance of
u or v increases and after a certain point z, distance from u, v becomes farther
than any other vertex of P . Hence, we can conclude that the half line of l from
z is a Voronoi edge separating Voronoi cells correspond to vertices u and v. ��
Lemma 4. Let u, v and w be three consecutive vertices and e1 = (u, v) and e2 =
(v, w) are two consecutive edges of the convex polygon P . If the perpendicular
bisector of those two edges intersects outside the polygon, then there does not
exist any point on boundary of P from which v is the farthest among all vertices
of P .

Proof: Let l1 and l2 be the perpendicular bisectors of e1 and e2 respectively and
they intersect at point q outside the polygon. The Voronoi cell corresponds to
point u and the Voronoi cell corresponds to point v are in the opposite half planes
generated by line l1. Similarly, the Voronoi cell corresponds to point w and the
Voronoi cell corresponds to point v are in the opposite half planes generated by
line l2. Therefore the Voronoi cell corresponds to point v must be in the common
region of two half plane as shown in Fig. 1. ��
From the above lemma, we also conclude that the cardinality of set A is less than
the cardinality of set V , that is, k is less than or equal to n. The following lemma
indicates the arrangement of Voronoi cells along the boundary of the polygon.

Efficient Algorithm for Placing Base Stations by Avoiding Forbidden Zone 109

l1

l2

l12

q

l1

l2

u

v

w V(u)

V(w)

V(v)

Fig. 1. Illustrating the proof of lemma 4

Lemma 5. If index(v′r) is the least value among all index values of v′i(0 ≤ i ≤
k), then index(v′r) < index(v′r+1) < . . . , < index(v′k) < index(v′0) < . . . <
index(v′r−1)

Proof: The common boundary of the polygonal chains cr and cr+1 is the point
ur+1 on the perpendicular bisector (say l) of the line segment formed by joining
vertices v′r and v′r+1. The vertex v′r must lie on the half-plane generated by
line l along the side containing polygonal chain cr+1. The vertex v′r+1 is on
anticlockwise direction of v′r along the boundary of the polygon P as shown in
Fig. 2. So, a circle centered at ur+1 with radius dist(ur+1, v

′
r) must pass through

v′r, v′r+1 and polygon P is inside the circle. As the index of v′r is least among all
index values of v′i(0 < i < k), so index(v′r) < index(v′r+1). Note that any circle
with center at boundary of P and contains polygon P does not intersect the arc
(v′r, v′r+1) in the direction v′r to v′r+1 (Fig. 2). If index(v′r+1)−index(v′r) > 1, then
for all β ∈ [index(v′r), index(v′r+1)], there does not exist any point on boundary
of polygon P from which vβ is farthest among all vertices of polygon P . Hence
the lemma follows. ��

v’
r

v’
r+1

v0

v
1

v
n l

ur+1

cr+1
cr

Fig. 2. Illustrating the proof of lemma 5

110 S. Roy, D. Bardhan, and S. Das

2.1 Algorithm

Now we devise an algorithm that generates the points u0, u1, . . . , uk. Using mono-
tone matrix searching technique as in [2], we can compute the farthest among
vertices of polygon P from each vertex of P in linear time. For each vertex v
of V , we can map the representing vertex of Voronoi cell that contain vertex v
using the allotment of farthest vertex from each vertices of P . Instead of locating
the boundary of Voronoi cell, here we demarcate the Voronoi cell by the vertex
which is farthest from any point on that cell. Note that some cell in farthest
point Voronoi diagram may not contain any vertex of polygon P , and in that
case, corresponding polygonal chain (if exists) is a straight line segment bounded
by two consecutive points of u0, u1, . . . , uk on some edge of P .

Let vγ be the farthest point from v0 and therefore, v0 must be in the Voronoi
cell that corresponds to vertex vγ . Without loss of generality, we can assume that
the vertex v0 is in polygonal chain c0. So, u1 is a boundary of the polygonal chain
c0 which is in counter-clockwise direction of v0. Here, u1 is on the perpendicular
bisector of the line segment joining vγ and some vertex say vδ of polygon P
in counter-clockwise direction of vγ . Then from lemma 4, we can conclude that
the boundary of the polygon P is not intersected by the cells corresponding to
vertices vγ+1, vγ+2, . . . , vδ−1. To identify the point u1, proceed along the vertices
of P in anticlockwise direction from vertex v0 until we locate vi which is not in
Voronoi cell of vγ but vi−1 is in Voronoi cell of vγ . Let us assume that vi is in
Voronoi cell corresponding to vψ. Let e denotes the edge between vertices vi−1
and vi. To locate vδ for computing u1 and also to identify other ui’s on e, we
proceed as follows:

Consider the vertices vγ+1, vγ+2, . . . , vψ−1, vψ in that order. Maintain a link-
list L that stores the intersection points generated due to intersection between
the edge e = (vi−1, vi) and the boundary of Voronoi cells which are actu-
ally perpendicular bisectors of the joining line segments of two vertices from
vγ , vγ+1, vγ+2, . . . , vψ−1, vψ . For generating this list L, initially consider the per-
pendicular bisector of line segment vγ , vγ+1. Store the intersection point of per-
pendicular bisector with e in list L. Consider next vertex vγ+2. Compute the in-
tersection point between perpendicular bisector of line segment vγ+1, vγ+2 with
e. If the intersection point is in anticlockwise direction then push the intersection
point in list L and repeat the process by considering next vertex say vγ+3 and
so on. On the contrary, if the intersection point is on clockwise direction of last
inserted point in the list L, then from lemma 4, we conclude that the Voronoi
cell corresponding to vertex vγ+1 must not intersect the polygon boundary and
hence does not correspond any polygonal chain. In that case we pop the last
inserted intersection point from list L and consider the perpendicular bisector of
line segment joining vγ+2 and vγ which one is the previous vertex (in clockwise
direction) of the dropped vertex. Here, in each such cases, we are effectively drop-
ping one vertex from set vγ+1, vγ+2, . . . , vψ−1, vψ. This process continues until
we find list L empty or no more pop is required from list L. If the list becomes
empty after some pop operation, push the current intersection point into the list
and consider next the vertex in set vγ+1, vγ+2, . . . , vψ−1, vψ and repeat the pro-

Efficient Algorithm for Placing Base Stations by Avoiding Forbidden Zone 111

cess. After consideration of all such vertices, list L outputs intersection points
u0, u1, . . . , um generated due to intersection between the edge e = (vi−1, vi) and
the boundary of Voronoi cells in anticlockwise order. Note that, we can drop
at most n − k vertices, which are not contributing any chain, so this sorts of
modification will be needed in at most n− k cases and that will take O(n − k)
additional time. Therefore we can conclude the following theorem.

Theorem 1. The intersection points between the edges of a convex polygon of n
vertices with the Voronoi edges of the farthest point Voronoi diagram constituted
by the vertices of the polygon can be determined in O(n) time

Proof: Follows from above discussion. ��

3 Problem P2

Here we consider other variations of this problem. Instead of placing one center
on the boundary, we like to place two circles in order to cover the region. Given
a set S, of n points, the 2-center problem for S is to cover S by two closed
disks whose radius is as small as possible. In [14], Sharir presents a near-linear
algorithm running in O(n log9 n) time. Currently best algorithm for its solution
is proposed by Chan [5]. They suggest a deterministic algorithm that runs in
O(n log2 n(log log n)2) and a randomized algorithm that runs in O(n log2 n) time
with high probability. In general, the Euclidean p-center problem is NP-hard. A
variation of this problem is the discrete two-center problem that finds two closed
disks whose union cover the point set S and whose centers are at points of S.
This problem is solved in O(n4/3 log5 n) time by Agarwal et al. [3]. Recently,
Kim et al. [8] solve both of the standard and discrete two-center problem for a
set of points that are in convex positions in O(n log3 n log log n) and O(n log2 n)
time respectively.

In this paper, we consider different variation of constraints in placing two
circles for covering the convex polygonal region P . We consider the case, where
only one side of the convex polygon is available for placing base stations in
order to cover the region. Placement of a single base station on that edge with
minimum range for covering that region can be done using the same technique as
described in Problem P1 and therefore the base station location can be identified
in O(n) time. Now our objective is to find two points on that specified edge e for
placing base stations such that the maximum range required for base stations
to communicate any point on that region from at least one of these two base
stations is minimum among all such possible choice of pair of points on edge e.
Here we propose an O(n) time algorithm for this problem P2.

Without loss of generality, we may assume that the edge e is on x-axis and
e is the joining line segment of vertices v0 and v1, where v0 is on left side of v1
(see Fig. 3). Let x(v) denotes the x-coordinate of vertex v. The distance function
dist(v, v′) outputs the Euclidean distance between two points v and v′. Suppose
C1 and C2 are two equal radius circles of optimum size covering the region P with
their centers constrained to lie on edge e say at α and β respectively. Without

112 S. Roy, D. Bardhan, and S. Das

v0 v1

v2

v3

vm

vm+1

vm+2

vn

r’

vl

r

e

Fig. 3. Illustrating the proof of Observation 4

loss of generality, we also can assume that x(α) is less than x(β), that is, C1 is
on left side of C2. Then we have the following observations.

Observation 4. Let r be the maximum distance from v0 among all vertices of
P whose x-coordinate is less than x(v0), and r′ be the maximum distance from
v1 among all vertices of P whose x-coordinate is greater than x(v1). Then the
radius of each circle C1 and C2 is greater than equal to max(r, r′).

Observation 5. If a vertex v is in C1 but not in C2 and a vertex v′ is in C2 but
not in C1, then x(v) < x(v′).

Note that, if a single minimum radius circle with center on e encloses the polygon
P , then its radius is greater than equal to r and the radius of the circle is exactly
equal to r if it is passing through only one vertex of P . This can be detected
in linear time using the techniques described in previous. Now onwards, assume
that the circles C1 and C2 are smaller than the single circle that covered the
entire polygon P with center on edge e.

Let k and k′ be the maximum and minimum index of v respectively such that
vk is not in C1 and vk′ is not in C2. That is, the vertices v0, vn, vn−1, . . . vk+1
of P are in C1 and v1, v2, . . . vk′−1 are in C2. Then from observation 5, we can
conclude that x(vk′) < x(vk).

The following lemma indicates the position of the centers of the enclosing
circles.

Lemma 6. Let C′ and C′′ be two minimum radius circles enclosing point set
{v1, v2, . . . vs} and point set {v1, v2, . . . vs′} respectively among all such circles
having center on edge e.

1. If s′ > s then the x-coordinate of the center of circle C′ is greater than or
equal to the x-coordinate of the center of circle C′′.

2. If s′ > s then the radius of circle C′ is less than or equal to the radius of
circle C′′.

Efficient Algorithm for Placing Base Stations by Avoiding Forbidden Zone 113

3. Suppose both the circle is passing through exactly two vertices of polygon P
and s′ > s. If C′ is passing through the vertices va and vb of polygon P with
a < b and C′′ is passing through the vertices vz and vw of polygon P with
z < w then z ≤ a < b ≤ w.

Proof: First two statements follows from simple Euclidean geometry. Third
statement can be proved using statement 2 and observation 3. ��
Hence from lemma 6, we can conclude that if the radius of circle C′ enclosing
point set {v0, vn, vn−1, . . . vs} with s ≥ k + 1 is minimum among all such circles
having center on edge e, then the center of the circle C′ is on left side of point
α. Similarly, if the radius of circle C′′ enclosing point set {v1, v2, . . . vs′} with
s′ ≤ k′ − 1 is minimum among all such circles having center on edge e, then the
center of the circle C′′ is on right side of point β.

Again from Lemma 1, we can conclude that the center of circle C′′ is either
on edge e with x-coordinate x(vi), 1 ≤ i ≤ s′ or it is at some intersection point
of e with an edge of the farthest point Voronoi diagram constituted by the point
set {v1, v2, . . . vs′}. Similar things can be concluded for the center of circle C′
covering point set {v0, vn, vn−1, . . . vs}. Therefore we are interested about the
intersection points of e with the edges of two farthest point Voronoi diagrams
with point sets {v0, vn, vn−1, . . . vs} and {v1, v2, . . . vs′}.

Initially while preprocessing the point set, we do not have any prior infor-
mation of s and s′. Therefore below we would like to propose a technique of
dynamic updation of the intersection points of Voronoi edges with edge e while
introducing a new point in the point set of farthest point Voronoi diagram.

Lemma 7. Let {u1, u2, . . . um} be the set of points generated due to intersection
between edge e and the edges of the farthest point Voronoi diagram constituted by
{v1, v2, . . . vl} where x(u1) ≤ x(u2) ≤ . . . ≤ x(um). After introducing the vertex
vl+1 in the point set of farthest point Voronoi diagram, if the intersection points
of e with edges of farthest point Voronoi diagram constituted by {v1, v2, . . . vl+1}
are {u′

1, u
′
2, . . . u

′
t}, where x(u′

1) ≤ x(u′
2) ≤ . . . ≤ x(u′

t) then
(1) m + 1 ≥ t
(2) u1 = u′

1, u2 = u′
2, . . . , ut−1 = u′

t−1.
Furthermore, if ut−1 is generated by the perpendicular bisector of the line segment
joining vertices vi and vi+j (i, j > 0), then u′

t is the point generated due to
intersection of edge e with the perpendicular bisector of line segment joining
vertices vi+j and vl+1.

Proof: Follows from the property of farthest point Voronoi diagram and from
Lemma 4 and 5. ��
Lemma 8. The amortized time complexity for reporting the intersection points
between e and edge of the farthest point Voronoi diagram while introducing the
vertices {vl+1, vl+2, . . . , vn} in that order one at a time in the point set of a
farthest point Voronoi diagram constituted by {v1, v2, . . . vl} is O(n).

Proof: Proof follows from above discussion and from similar arguments for proof
of Theorem 1. ��

114 S. Roy, D. Bardhan, and S. Das

3.1 Algorithm

Now we are in position to describe the algorithm for computing minimum radius
circles C1, C2 with centers α and β respectively on edge e for covering the region P .
First we try to locate two minimum radius circles C′ and C′′ with centers on edge
e such that all the vertices of P are on or inside one or both the circles C′ and C′′.
In order to locate C′ and C′′, we follow an iterative method and have at most O(n)
iteration steps. We consider initial solution by circles C′0 and C′′0 centered at vertices
v0 and v1 respectively. C′0 covers all the vertices v ∈ V with x(v) ≤ x(v0) and C′′0
covers all the vertices v ∈ V with x(v) ≥ x(v1). Suppose the circle C′0 having radius
r′0 is passing through vertices a and b with x(a) ≤ x(b) and the circle C′′0 having
radius r′′0 is passing through vertices z and w with x(z) ≤ x(w). Let w′

1 and w′′
1

be two vertices among the uncovered vertex set that have minimum and maximum
x-coordinate respectively. If r′0 is smaller than r′′0 , then we try to include w′

1 along
with points of C′0 as next iterative step and form a new minimum radius circle C′1
having center at an edge e covering vertices {v0, vn, vn−1, . . . w

′
1}. Circle C′1 must

passes through vertex w′
1. The center of circle C′1 is either at projection of w′

1 on e
or on left of that point and passing through another vertex η of P . From lemma 6,
we can conclude that x(a) ≥ x(η). While determining the vertex η, we compute
the intersection point of farthest point Voronoi diagram constituted by vertex set
{v0, vn, vn−1, . . . w

′
1}with edge e. From lemma 8, we conclude that the complexity

for generating these intersection points over all iteration is of O(n). Here the center
of C′1 must be on edge e at Voronoi cell corresponds to vertex w′

1 and the center is
on rightmost boundary of the partition on e due to cell representing vertex w′

1.
Hence we can compute the radius of circle C′1. If r′0 is greater than r′′0 , then w′′

1 is
included along points of C′′0 and form a new circle C′′1 using similar type of technique
described above.This process continues until no vertex remains uncoveredby these
two circles.

While considering the last uncovered vertex, a typical situation may arise.
Let C′k and C′′k be two circles with radius r′k and r′′k respectively after k iterative
steps, covers all vertices except the last one. Without loss of generality, assume
that r′k ≤ r′′k . Therefore in the next iteration, after consuming the last uncovered
vertex, the circle C′k turns a bigger circle and its radius may become even larger
than the radius of modified circle C′′k after absorbing the last uncovered vertex.
Therefore, we need to consider this case and generate the minimum radius circles
C′ and C′′ with centers on edge e that cover all the vertices of polygon P .

Theorem 2. A pair of circles C′ and C′′ with centers on edge e cover all the
vertices of polygon P and maximum radius of these two circle is minimum among
all such possible cover. Then these two circles can be located in O(n) time.

Proof: Result follows from above discussion and from Lemma 6, 7 and 8. ��
But there is no guarantee that these two circles C′ and C′′ covers the polygonal
region completely.

Observation 6. Either circles C′ and C′′ together cover the polygon P com-
pletely, or only a segment of an edge among the boundary of polygon P is un-
covered by these two circles.

Efficient Algorithm for Placing Base Stations by Avoiding Forbidden Zone 115

If the circles C′ and C′′ do not cover the the polygon completely, then the un-
covered edge e′ can be detected while computing these two circles. Therefore,
for locating the optimum circles C1 and C2 covering the region P having centers
at α and β respectively on edge e, we first identify the edge e′ of P . Note that
the circles C1 and C2 are of same size and must intersect at some point on edge
e′. Let that point be denoted by π and the equation of the line corresponding to
edge e′ be y = m.x + c. Suppose a be the vertex of P which is on the boundary
of circle C′ having least x-coordinate value and w be the vertex of P which is on
the boundary of circle C′′ having greatest x-coordinate values. From Lemma 6,
we can conclude that C1 is passing through either vertex a or some other vertex
on left side of a and similarly, C2 is passing through either vertex w or some
other vertex with greater x-coordinate value than w.

Observation 7. The point π is the intersection point between the perpendicular
bisector of the line segment joining point α and β with the edge e′

Consider the coordinate of π as (x, y) and the coordinate of α is (ε, 0). From above
observation, we can say that the coordinate of β is (2x− ε, 0). Assume that the
circles C1 and C2 is passing through a and w respectively, whose coordinates are
known constants. As both the circles are passing through π and have centers α
and β respectively, we can solve x, y and ε by finding the roots of a four degree
polynomial. In case the point α and β are not in the Voronoi cells correspond to
vertex a and w respectively, then using the iteration technique described above
we can locate the vertices on left of a or to the right of w that are on the circles
C1 and C2. Hence we have the following theorem.

Theorem 3. The minimum radius circles C1 and C2 covering the region P with
centers on edge e can be computed in O(n) time.

References

1. A. Aggarwal, Leonidas J. Guibas, J. Saxe and P. Shor, A linear time algorithm
for computing the Voronoi diagram of a convex polygon, Proc. 19th Annu. ACM
Sympos. Theory Comput., pages 39-45, 1987.

2. A. Aggarwal and Dina Kravets, A linear time algorithm for finding all furthest
neighbours in a convex polygon, Inf. Proc. Let., pp. 17-20, 1989.

3. P.K. Agarwal, M. Sharir and E. Welzl, The discrete 2-Center problem, Proc. 13th
Anno. ACM Sympos. Comput. Geom., pp. 147-155, 1997.

4. P. Bose and G. Toussaint, Computing the constrained Euclidean, geodesic and link
center of a simple polygon with applications, Proc. of Pacific Graphics Interna-
tional, pp. 102-112, 1996.

5. T.M. Chan, More planar two-center algorithms, Computational Geometry: Theory
and Application, vol. 13, pp 189-198, 1999.

6. J. Elzinga and D. W. Hearn, Geometrical solutions to some minimax location
problems Transp. Sci., vol. 6, pp. 379-394, 1972.

7. F. Hurtado, V. Sacristan and G. Toussaint, Facility location problems with con-
straints, Studies in Locational Analysis, vol. 15, pp. 17-35, 2000.

116 S. Roy, D. Bardhan, and S. Das

8. S.K. Kim, and C-S Shin, Efficient algorithms for two-center problems for a convex
polygon, Proc. 6th Int. Conf. Computing and Combinatorics, pp. 299-309, 2000.

9. D.T. Lee, Furthest neighbour Voronoi diagrams and applications, Report80-11-FC-
04, Dept. Elect. Engrg. Comput. Sci., Northwestern Univ., Evanston, IL, 1980.

10. N. Megiddo, Linear-time algorithms for linear programming in R3 and related
problems, SIAM J. Comput., vol 12, pp. 759-776, 1983.

11. F. Preparata, Minimum spanning circle, Technical report, Univ. Illinois, Urbana,
IL, in Steps into Computational Geometry, 1977.

12. M. I. Samos, Computational geometry, Ph D. thesis. Dept. Computer Sci., Yale
Univ., New Haven, CT , 1978.

13. M.I. Shamos and D. Hoey, Closest-point problem, Proc. 16th Annual IEEE Sympos.
Found. Comput. Sci., pages 151-162, 1975.

14. Micha Sharir, A Near-Linear Algorithm for the Planar 2-Center Problem, Sympo-
sium on Computational Geometry, pp. 106-112, 1996.

15. Chan-Su Shin, Jung-Hyun Kim, Sung Kwon Kim and Kyung-Yong Chwa, Two-
Center Problems for a Convex Polygon, Proc. of the 6th Annual European Sympo-
sium on Algorithms, pp. 199-210, 1998.

16. J. J. Sylvester, A question in the geometry of situation, Quarterly Journal of
Matthematices, pp. 1-79, 1857.

Secure Two-Party Context Free Language
Recognition

Anshuman Singh, Siddharth Barman, and K.K. Shukla

Dept. of Computer Sc. and Engg., Institute of Technology, Banaras Hindu University,
Varanasi, India - 221005

anshum4n@yahoo.com, siddharth.barman@cse05.itbhu.org,
shukla@ieee.org

Abstract. The growth of the internet provides opportunities for coop-
erative computation, it also requires development of protocols that can
accomplish this task among mutually untrusting parties. The aim is to
develop methods which ensure both the correct evaluation of the func-
tion and privacy of individual inputs. Multiparty Computation protocols
help to achieve the aim without using a trusted third party.

In this paper we consider the problem of context-free language recog-
nition in a two-party setting. Alice has the description of a context-free
language L while Bob has a secret string whose membership in L is to be
checked. Neither Alice nor Bob is ready to disclose his/her input to the
other. Here we propose a protocol which accomplishes secure two party
context-free language recognition. The novelty of this paper lies in the
use of formal languages based approach for multiparty computations.

1 Introduction

The development of computer networks and consequently the Internet has
opened the wide area of distributed computation. Internet allows computers
from far off places to interact and opens possibilities that were unknown before.
A scenario is conceivable where some parties want to compute a function over
data which is distributed among the parties, but none of the parties want to dis-
close their private data. A naive solution would be to send the data to a trusted
party who performs the computation and returns the results to respective par-
ties. However a trusted agency may not be available or affordable. In such a case
we can use cryptographic techniques of Secure Multiparty Computation.

Secure multi-party computation (MPC) was introduced by Yao in [1]. It deals
with the problem of securely computing an arbitrary function f over the private
inputs of n players. Here security means guaranteeing the correctness of the
output as well as the privacy of the player’s inputs, even when some players
cheat. Assuming we have inputs x1, x2, . . . xn where player i knows xi, we want
to compute f(x1, x2, . . . xn) = (y1, y2, . . . yn) such that player i is guaranteed to
learn yi, but can get no more information. A number of cooperative computation
problems have been shown to be plausible, in a secure way, using multi party
computational techniques [2, 5]. Generic solutions have been developed [3, 8] and

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 117–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

118 A. Singh, S. Barman, and K.K. Shukla

much effort has been directed towards reducing the communication complexity
[7] and round complexity [6] of these solutions.

In this paper we are concerned with Context Free Language Recognition
(CFLR) in a two-party setting. In a traditional setting the problem of CFLR is
to determine the membership of a string w in a context free language L. In the
two party setting the problem remains the same but the inputs are distributed
among two different parties, Alice and Bob. Now Alice has a private context free
grammar G while Bob has a private string w. Bob wants to check the mem-
bership of w in L(G), the language generated by G. Also neither of the two is
willing to disclose his/her private input to the other.

CFLR is an interesting problem and has various applications. For instance,
the problem of checking the syntactic correctness of a program can be posed as
CFLR. Also pattern matching and recognition queries can be posed as CFLR.
Numerous other decision problems can be solved using CFLR. The basic method-
ology is to describe some class of objects using a context free grammar G. When
a new object is encountered, we determine it’s membership in L(G). This tells
us whether the new object belongs to the same class or not. A solution for the
two-party version of CFLR can be used to solve the above problems in a secure
two-party manner.

It is the first time that a formal language based approach has been used
for solving multiparty computation problems. The completeness of multiparty
protocols has been shown in [2]. The solution given in [2] can be used to solve the
membership question for recursive languages, i.e. the languages recognized by
a turing machine. Since context free languages are a proper subset of recursive
languages, CFLR can also be solved using such a method. However, the protocol
that we present here generates a more efficient solution of membership question
for context free languages than promised by the generic approach. This is because
our solution utilizes the specific properties of context free grammars, used in
description of a context free language.

2 Preliminaries

In this section we give the notation and definitions of the terms used in this
paper. Most of the content of this section from basic formal language theory.
We have endeavored to use standard notations throughout. A superscript on a
vector, such as Sm, denotes the mth bit of it. Also |V | represents the size of
set V.

Formal Language Basics. A grammar G = (V, T, S, P) is said to be context-
free if all its productions are of the form A→ x where A ∈ V and x ∈ (V ∪ T)∗.
Here V is the set of variables, T is the set of terminals, S is the starting symbol
and P are the production/rewrite rules. A language L is said to be context-free
if and only if there exists a context-free grammar G, such that L = L(G). Here
L(G) denotes the set of strings that can be produced by the grammar. This can
also be written as “L = {w ∈ T ∗|S ⇒∗ w}?” where the symbol ‘⇒∗’ stands for
‘derives’.

Secure Two-Party Context Free Language Recognition 119

Given a context grammar G and a string w the problem of CFLR is to de-
termine the answer to the following question ”Does w ∈ L(G)?”. We now give a
definition for the two-party version of CFLR.

Secure Two-Party Context Free Language Recognition Protocol. Alice
and Bob, determine whether Bob’s secret string w is present in Alice’s secret
Context Free Language L(G). At the end of the protocol the following properties
must hold.

– Bob knows whether w∈ L(G)
– Alice gains no information about w
– Bob gains only as much information about L(G) as can be determined from

the output, i.e. whether w is accepted by L(G) or not.

Solving Context Free Language Recognition: The CYK Membership
Algorithm. There are many existing algorithms for solving CFLR. One of the
standard methods is the CYK membership algorithm [11]. It’s time complexity is
cubic in the size of the input. There exist some efficient (linear time) membership
algorithms that can solve some restricted versions of CFLR. We selected CYK
for it’s generality. The CYK algorithm requires the context free grammar to be
converted to chomsky normal form. A context free grammar G = (V, T, S, P)
is in chomsky normal form if all it’s productions are of the form A → BC
or A → a where A, B, C ∈ V and a ∈ T . Any context-free grammar can be
written in chomsky normal form following a straightforward set of rules [11].
The CYK algorithm first converts a given grammar in CNF and then utilizes it
to determine membership. We now describe the CYK algorithm.

Assume that we have a grammar G = (V, T, S, P) in Chomsky Normal Form
and a string w = w1w2...wn. We define sub-string wij = wi...wj and subsets
of V, Sij = {A ∈ V : A ⇒∗ wij}. Clearly w ∈ L if and only if S ∈ S1n.
To compute Sii, observe that A ∈ Sii if and only if G contains a production
A→ wi. Therefore Sii can be computed for all 1 ≤ i ≤ n by inspection of w and
the productions of the grammar. To continue notice that for j > i, A derives wij

if and only if there is a production A → BC, with B ⇒∗ wik and C ⇒∗ wk+1j

for some k with i ≤ k < j. In other words

Sij =
⋃

k∈{i,i+1,...,j−1}
{A : A→ BC, with B ∈ Sik, C ∈ Sk+1j} (1)

An inspection of indices show that the above equation can be used to compute
all the Sijs if we proceed in the sequence

1. Compute S11, S22, ..., Snn

2. Compute S12, S23, ..., Sn−1n

3. Compute S13, S24, ..., Sn−2n

and so on.

120 A. Singh, S. Barman, and K.K. Shukla

Cryptographic Assumptions and Oblivious Transfers. The security of
our protocol is based on oblivious transfers. Oblivious Transfers are a basic
cryptographic primitive that has proved necessary for many of the protocols [10].
It allows multiple parties to get individual secrets from a single seller. There are
different definitions of oblivious transfers [4, 12]. In it’s most primitive form, the
sender has an input (b1, b2, ..., bk) and the receiver has an input i ∈ {1, 2, ..., k}.
The goal is to transfer the ith bit to the receiver without letting the receiver
obtain knowledge of any other bit and without letting the sender obtain the
knowledge of the identity of the bit required by the receiver. Assuming the
existence of trapdoor permutation, a protocol for the above functionality can be
constructed as given in [12]. The above version of Oblivious transfer functionality
is a main ingredient of our construction. The existence of trapdoor permutation
[12] is the only assumption we make for security of our protocol.

3 The Protocol

Our protocol is a secure two-party version of the CYK Algorithm. Observe that
if we can securely compute Sii for 1 ≤ i ≤ n and provide a secure protocol to
compute Sij given Sik and Sk+1j where i ≤ k < j we can use them to carry out
CYK in a two party setting.

Let the context free grammar with Alice be G = {V, T, S, P} where V =
{V1, V2, . . . V|V |}, T = {T1, T2, . . . T|T |}, S is the starting symbol and P is the
set of rewrite rules in chomsky normal form. The sets Sij , as defined in (1),
are maintained as a |V | length 0/1 vector Γij where Γ m

ij = 1 if and only if
Vm ∈ Sij . Note that here (and in the remainder of the paper) a superscript m
denotes the mth bit of the corresponding vector. These vectors are shared by a
simple xor scheme such that if Aij is Alice’s share and Bij is Bob’s share, then
Aij ⊕ Bij = Γij . The Γiis in the first step are constructed using a 1-out-of-n
Oblivious Transfer protocol as shown next.

Alice builds up a vector St for each of the terminal t. Sm
t is 1 if and only if

Vm → t. She also chooses a random 0/1 vector Aii for each 1 ≤ i ≤ n which
forms her share of Γii. Aii when xored with the St for each t ∈ T , yield a set
of vectors Bii = {Bt1

ii , Bt2
ii , . . . B

t|T |
ii }. Bob is allowed to select Bwi

ii from this set
(depending upon his character wi) using 1-out-of-|T | oblivious transfer protocol.
This forms his share of Γii. Thus S11, S22, ..., Snn are shared between Alice and
Bob.

The protocol now proceeds in phases and after each phase the new Γij , as
given in the sequence for CYK, are computed. Shares of Γij can be computed
provided Γik and Γk+1j for all k ∈ i, i + 1, ..j − 1 have already been shared. For
each production of the form VX → VY VZ Alice and Bob co-operatively update
the xth bit of shares Aij and Bij . Let the new shares be called Ax

ij
new and

Bx
ij

new . Then the xth bit of the updated share can be written as

Bx
ij

new =
(
[(Ay

ik ⊕By
ik) ∧ (Az

k+1j ⊕Bz
k+1j)] ∨ [Ax

ij ⊕Bx
ij]

)⊕ rA (2)

Ax
ij

new = rA, where rA is chosen randomly by Alice (3)

Secure Two-Party Context Free Language Recognition 121

Equations (2) and (3) are the same as (1), except for the notations. (Ay
ik ⊕By

ik)
gives whether Vy ∈ Sik while (Az

k+1j ⊕Bz
k+1j) gives whether Vz ∈ Sk+1j . If both

the above expressions evaluate to true Γ x
ij must be one and otherwise it should

remain as it is, as is emphasized by oring the above expression with [Ax
ij ⊕Bx

ij].
Finally, we xor it with a random term rA chosen by Alice, which forms her
private share(Ax

ij) for Γ x
ij .

Equations (2) and (3) can be calculated using the general circuit evaluation
protocol [3]. Finally, Alice and Bob check out whether Γ1n contains the starting
symbol S or not.

3.1 Initialization Step

1. Alice prepares vectors St for each t ∈ T such that Sk
t = 1 if and only if

Vk → t.
2. Alice prepares random |V | length vectors Aii for each 1 ≤ i ≤ n. These form

her share of Γii.
3. Alice constructs a set of vectors Bj = {Bt1

jj , B
t2
jj , . . . B

t|T |
jj } for all

j ∈ {1, 2, ..., n} where Btk

jj = Stk
⊕Ajj .

4. For each j ∈ {1, n}, Bob selects a vector B
wj

jj from Bj using oblivious transfer
protocol. This forms his share Bjj .

5. Thus Alice and Bob share the initial Γjj as Ajj and Bjj for j ∈ {1, n}. This
completes the initialization step.

3.2 Computing Γ1n

We now describe the crux of the protocol, the computation of Γ1n. We give the
description in pseudocode as it is easier to understand and more expressive this
way.

1. for d= 1 to n-1 do
2. for i = 1 to n-d do
3. j=i+d
4. for k = i to j-1 do
5. for each Production x→ yz with Alice do
6. Alice chooses a random bit rA

7. Alice and Bob use secure circuit evaluation protocol to compute

Bx
ij

new =
(
[(Ay

ik ⊕By
ik) ∧ (Az

k+1j ⊕Bz
k+1j)] ∨ [Ax

ij ⊕Bx
ij]

)⊕ rA (4)

Ax
ij

new = rA (5)

8. endfor
9. endfor

10. endfor
11. endfor

122 A. Singh, S. Barman, and K.K. Shukla

3.3 Final Step

Using the initialization step and then computing each of Γij as above, Alice and
Bob obtain the shares for Γ1n. At this point Alice sends her share of the bit
corresponding to the starting symbol S from A1n to Bob. Bob xors it with the
corresponding bit in his share. The result tells Bob whether S ∈ S1n and hence
whether w is generated by Alice’s grammar or not.

4 Security

We prove the security of our protocol in the semihonest model with passive
adversary. Such a protocol can be compiled into a protocol secure against a
dishonest party and in presence of malicious adversary [9] using verifiable secret
sharing and zero-knowledge proofs [2]. It is a standard procedure to construct a
secure protocol in semihonest model and then convert it to a secure protocol in
malicious model. However such a conversion increases the communication and
computation cost of the protocol. Below we give an informal proof of security
for the proposed protocol.

The protocol consists of three distinct phases the initialization step, the up-
dation step and the final step. Without loss of generality we can consider the
case where the language L(G) consists of only two alphabets 0 and 1. In the
initialization step, Alice prepares B0

jj and B1
jj for j ∈ {1, 2, ..., n}. One of this

is selected by Bob based on his input wj using 1-out-of-2 oblivious transfer pro-
tocol. If oblivious transfers were carried out correctly, there is no information
gain for Alice as she doesn’t know whether Bob has chosen B0

jj or B1
jj . Also Bob

remains ignorant of the variables in Sjj as Bjj has been xored with a random
vector Ajj which forms Alice’s share. Hence there is no gain of information for
either parties in the initialization step.

The updation step is based on the secure circuit evaluation protocol. During
the computation of the circuit no information is revealed to either party. Finally
the result of the evaluation Bx

ij
new is revealed only to Bob. But this is xored

with a random bit rA, known only to Alice. Hence the information content in
Bx

ij
new is nil for Bob.
In the final step Alice sends the bit corresponding to S (starting symbol) in

her share A1n to Bob. This transfer doesn’t increase her information in any way.
Bob then xors this bit with the corresponding bit in his share to obtain one bit
of information namely whether w ∈ L(G). Hence during whole of the protocol
the information gained by Bob is one bit.

Other Security Issues. One can say that after the protocol, Alice knows the
length of Bob’s string while Bob knows the exact number of variables, produc-
tions in Alice’s automaton. This gives them some idea of the complexity of the
other’s input. However such information can easily be hidden. Alice can add
some dubious variables and productions in G that do not affect the language
L(G) generated by G. Bob can also add some random symbols after/before his
actual input string. In such an instant Alice allows Bob to choose one of the bits

Secure Two-Party Context Free Language Recognition 123

corresponding to S in Aij for all 1 ≤ i, j ≤ n using 1-out-of-N oblivious transfer
protocol. Bob will choose the bit in Aij , wij being his actual string.

5 Analysis

The number of communication rounds required is O(|w|3) for each of Sij . Also
for the calculation of each Sij the communication required is O(|P |) where |P |
gives the number of productions in the grammar. Each round requires O(|V |)
communication for carrying out 1-out-of-|V | oblivious transfers. Hence the total
communication complexity of the protocol is O(|w|3|P ||V |). Thus the multiparty
version of CYK is slower by a factor of O(|V |).

In an implementation over a data network, instead of running the protocol in
a step by step manner, we can run steps 4 to 9 at once. Hence all the updates
are made to the vectors concurrently. We can parallelize these steps because
they are independent from each other and can be carried in any order we please.
Taking network latency into account, this gives performance benefits over a
network as sending chunks of data is more efficient than sending it bit by bit.
The round complexity of the protocol is reduced to O(|w|) without affecting
the communication complexity. Thus the actual running time of the protocol is
reduced.

6 Applications

A two-party CFLR, as discussed in this paper, can be used for providing web
services over internet. It can also help in protecting intellectual property for
both the parties. Consider a case where Alice has discovered the context free
grammar that can accurately describe a disease. Using the protocol she can keep
the discovery to herself while making it available for use through a web service.
The interesting part of such a service would be that the patient can be diagnosed
without revealing his syndromes. Also the result of the diagnosis would be known
only to him. Such a protocol can be useful in a social scenario.

Another use for the protocol can be for providing a compilation service over
the network where a user can submit his program to get it syntax checked. Our
protocol is stricter than required for this case. In such a case the CFG is public
and it is only the input that needs to be hidden.

References

1. A. Yao. Protocols for secure computations: In Proceedings of the twenty-third
annual IEEE Symposium on Foundations of Computer Science, pages 160-164.
IEEE Computer Society, 1982.

2. M. Ben-Or, S. Goldwasser, and A. Wigderson: Completeness theorems for non-
cryptographic fault- tolerant distributed computation. In Proc. of 20th STOC, pp.
1-10, 1988.

124 A. Singh, S. Barman, and K.K. Shukla

3. A. Yao: How to generate and exchange secrets. In Proceedings of the twenty-seventh
annual IEEE Symposium on Foundations of Computer Science, pages 162-167.
IEEE Computer Society, 1986

4. Bruce Schneier: Applied Cryptography, 2nd Ed., John Wiley & Sons Pte Ltd, pp.
96, pp. 543

5. David Chaum, Claude Cropeau, and Ivan Damgard: Multiparty unconditionally se-
cure protocols. In Proceedings of the twentieth annual ACM symposium on Theory
of computing, pages 11-19. ACM Press, 1988.

6. D. Beaver, S. Micali, and P. Rogaway: The round complexity of secure protocols.
In Proc. of 22nd STOC, pp. 503-513, 1990.

7. M. Franklin and M. Yung. Communication complexity of secure computation. In
Proc. of 24th STOC, pp. 699-710, 1992.

8. O. Goldreich, S. Micali, and A. Wigderson: How to play any mental game (extended
abstract). In Proc. of 19th STOC, pp. 218-229, 1987.

9. R.Canetti, U.Fiege, O.Goldreich and M.Naor: Adaptively Secure Computation,
Proceedings of STOC 1996.

10. J.Kilian: Founding Cryptography on Oblivious Transfer, Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, pages 2031, Chicago,
Illinois, 24 May 1988.

11. Peter Linz: An Introduction to Formal Languages and Automata, Narosa Publica-
tions.

12. O. Goldreich: Secure Multiparty Computation, Version 1.4, available at http://
www.wisdom.weizmann.ac.il/˜oded/PS/prot.ps

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 125 – 131, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Autonomous Agent Based Distributed Fault-Tolerant
Intrusion Detection System

Jaydip Sen and Indranil Sengupta

Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur-721302

sen_jaydip@yahoo.com, isg@iitkgp.ac.in

Abstract. Because all vulnerabilities of a network cannot be realized, and
penetration of the system cannot always be prevented, intrusion detection
systems have become necessary to ensure the security of a network. The
intrusion detection systems need to be accurate, adaptive, and extensible. Given
these requirements and the complexities of today’s network environments, the
design of an intrusion detection system has become a very challenging task. A
great deal of research has been conducted on intrusion detection in a distributed
environment to circumvent the problems of centralized approaches. However,
distributed intrusion detection systems suffer from a number of drawbacks e.g.,
high rates of false positives, low efficiency etc. In this paper, we propose the
architecture of a fully distributed intrusion detection system that uses a set of
autonomous but cooperating agents. The system has also the capability of
isolating compromised nodes from intrusion detection activity thereby ensuring
fault-tolerance in computation.

1 Introduction

An Intrusion Detection System (IDS) is a security mechanism that can monitor and
detect intrusions into the computer systems in real time. IDSs can be either host-based
(sources of data are operating system and applications audit trails), or network-based
(monitor and analyze network traffic). Conventional approaches to intrusion detection
involving a central unit to monitor the entire system have several disadvantages [1].
To circumvent the demerits of centralized IDSs, the research in the field of intrusion
detection, over the last decade, has been heading towards a distributed framework of
monitors that do local detection, and provide information to perform global detection
of intrusions. In these systems, the local intrusion detection components look for local
intrusions and pass their analysis results to the upper levels of the hierarchy. The
components at the upper levels analyze the refined data from multiple lower level
components and seek to establish a global view of the system state. Such intrusion
detection systems are not truly distributed systems, because of the centralized data
analysis performed at the higher levels of the hierarchy [1]. Moreover, these systems
suffer from the problem of single point of failure.

In this paper, we describe the model of a distributed intrusion detection with the
help of a large number of autonomous, but cooperating agents. The system performs

126 J. Sen and I. Sengupta

intrusion detection activity by incorporating inter-agent communication, and distrib-
uted computation by the agents. The two primary goals of our model are: detection of
intrusive activities, and identification and isolation of compromised hosts in the net-
work. The rest of the paper is organized as follows. Section 2 describes the system
architecture and various components of the system. Section 3 describes the distributed
intrusion detection mechanism using Bayesian network framework. Section 4 pre-
sents the trust management among the peer hosts. Section 5 contains a very brief
overview of the proposed implementation and testing of the model, and Section 6
concludes the paper.

2 Architecture of the System

In this section we describe the architecture of the overall system very briefly with
particular attention to the agents.

2.1 System Architecture

We propose a distributed, lightweight, agent-based intrusion detection mechanism.
Our model architecture is almost similar to what have been proposed in [3], but dif-
fers completely in the mechanism of trust management and fault-tolerance.

The agents are put into several subdomains. While the agents in the same subdo-
main communicate actively and frequently, communication between agents belonging
to adjacent subdomains happens quite infrequently. The agents have knowledge about
a Bayesian network model of the structures of well-known attack types as well as
normal usage pattern, which is constructed offline from data repositories containing
system logs from ongoing attacks. This global Bayesian network has been partitioned
into multiple subnets based on the spatial locations of the agents. To ensure fault-
tolerance in the system, every host has one special agent, called the Distributed Trust
Manager (DTM), which continuously sends messages to its peers in other hosts. We
will discuss more about this in Section 4.

Supervisor
Module

Knowledge ase
Update Module

Perception
Module

Action
Module

Deliberation
Module

Communication
Module

Fig. 1. Architecture of an agent embedded in a node

B

 Autonomous Agent Based Distributed Fault-Tolerant Intrusion Detection System 127

Figure 1 depicts the architecture of an agent. Each agent consists of six modules.
The supervisory module coordinates the tasks of the other modules. The perception
module collects the audit or network data from the agent’s subdomain. The delibera-
tion module analyzes the data collected by the perception module. The communica-
tion module allows an agent to communicate its belief, decisions, and knowledge to
its peer agents. The action module takes appropriate actions when a possible intrusion
is detected. The knowledge-base update module updates the attack signature knowl-
edge base when an anomaly is detected for the first time.

2.2 Agent Communication Architecture

Figure 2 shows the interactions among different types of agents. The System Monitor-
ing Agents collect, transform, and distribute intrusion specific data upon request. The
Intrusion Monitoring Agents subscribe to beliefs published by the system monitoring
agents. A registry maintains information about the monitored variables of each agent.
For agents in the same host, we propose to use shared memory implementation of
agent communication because of its efficiency.

Fig. 2. Major components of the system

3 Intrusion Detection Using Bayesian Hypothesis

In this section we describe the use of Bayesian networks and Multiply Sectioned
Bayesian Networks (MSBNs) in our model. We use Bayesian networks to model our
system because a Bayesian network can represent causal dependency among a set of
variables, which can help our system to combine a priori knowledge and observed
data in taking a probabilistic decision. Also, a Bayesian network can allow us to
detect novel attacks by the mechanism of belief updates. A global Bayesian network

 Register Register

 Agent
 Search

 Agent Communication

Intrusion
Monitoring

Agents

Registry
Agent

System
Monitoring

Agents

Log
Files

 Bayesian
Networks

Intrusion
Probability

128 J. Sen and I. Sengupta

is first constructed from a database of known attacks, and then this network is
partitioned into several subtrees following the principle of Multiply Sectioned
Bayesian Networks (MSBNs) [4], and distributed among the agents.

Existing methods for multiagent inference in MSBNs are extensions of a class of
methods for inference in single-agent Bayesian networks: message passing in junction
trees [7]. The linked junction forest (LJF) method [5,6] compiles each subnet of a
multiply connected network into a junction tree (JT). The algorithm performs mes-
sage propagation over the JT or the linkage tree between a pair of adjacent nodes.

Figure 3 shows an MSBN with three subnets G0, G1, G2 each having some agents
in it. The LJF method has compiled each subnet into a JT (called a local JT), and has
converted each d-sepset into a JT (called linkage tree). Figure 3 also illustrates the
three local JTs and two linkage trees of the monitoring system. Local inference is
performed by message passing in the local JT. Message passing between a pair of
adjacent subdomains is performed using the linkage tree.

 G2 G0 G1

Fig. 3. The DAGs of the three subnets of an MSBN and JTs constructed from the subnet

4 Fault-Tolerance by Trust Mechanism Among Hosts

The agents in a distributed intrusion detection system are always vulnerable to attacks
by intruders. If an intruder can compromise any host in the system, the detection ca-
pability of the entire system will be severely affected. The agents in a compromised
host will attempt to influence the JT and their effect will be propagated in the entire
system by the message passing mechanism among the agents unless the compromised
host is detected and isolated promptly. To ensure early detection of any compromised
host(s), we have developed a trust mechanism among the peer hosts using Byzantine
Agreement Protocol. In the following section we briefly describe the protocol.

o.m

i.j

a.b

b.c

m G2

 o

 i

n

 l j

 k a

i g

 h

 b

 j c

 G1

a d

 e f

 b

 c

o.n.l

g.k

a.b.g

b.c.h

h.i.j

a.b.d

b.e.f

b.c.e o.i.j

 Autonomous Agent Based Distributed Fault-Tolerant Intrusion Detection System 129

4.1 Byzantine Agreement Protocol –Signed Message Algorithm

Lamport et.al. described the Byzantine Generals Problem in [9]. Specifically, the
problem formulation is as follows: Imagine that several divisions of a Byzantine army
are camped outside an enemy city, each division commanded by its own general. The
generals can communicate with each other only by messengers. After observing the
enemy, they must decide upon a common plan of action. However, some of the gen-
erals may be traitors, trying to prevent the loyal generals from reaching an agreement.
The generals must have an algorithm to guarantee that: All loyal generals decide upon
the same plan of action. The loyal generals will all do what the algorithm asks them to
do, but the traitors may do anything they wish. The loyal generals should not only
reach an agreement, but should agree upon a reasonable plan.

The Byzantine Agreement Protocol (BAP) is essentially an algorithm designed to
achieve consensus among a set of processes participating in a distributed computa-
tion. These processes achieve consensus if they all agree on some allowed values
called the ‘outcome’. A consensus algorithm terminates when all non-faulty (not
compromised) processes know the outcome. If we substitute the generals for the
hosts in the distributed system, and consensus for the need to agree on which agents
are sane, then the problem of identifying and isolating compromised host(s) can be
described as follows: Imagine in a distributed system with several hosts, and each
host having a set of agents in it. The agents cooperate to detect intrusions into the
system. Each host runs a special agent, the Distributed Trust Manager (DTM), which
continuously sends messages to other hosts. The message that it sends has two possi-
ble values. They are: i) Message A1: “Keep sane” or “0”. ii) Message A2: “ I am po-
tentially compromised” or “1”.

The Signed Message Algorithm (SMA) proposed by Lamport [9] for solution of
Byzantine Generals Problem, requires O(n2) messages to achieve a consensus. It
works effectively if there are at most n-2 number of traitors (compromised hosts).
However, it will work correctly if we can guarantee certain conditions [9]. The com-
munication mechanism between peer hosts in our system is secure enough to guaran-
tee that all of those conditions are satisfied. Thus, SMA can be implemented in our
system to establish a trust mechanism. In SMA, one of the hosts acts as the leader and
sends an order to the other hosts. Whenever a host receives a message, it takes the
order and puts it in a list. Then the receiver signs the message with its own signature
and forwards it to all the hosts whose signature is not on the order. If a host receives a
message with an order that is already in its list, it ignores the message. When message
communication completes, the hosts all choose an order from the list of orders they
have received. If only one order has been received, that order is chosen. Because any
order that reaches a sane host will be forwarded to all other hosts who have not seen
the order, all the sane hosts will have the same set of orders to choose from.

4.2 Distributed Trust Manager

The Distributed Trust Manager (DTM) is responsible for forming and maintaining
trust domains. A trust domain is a set of hosts that share a charter and a security pol-
icy, and behave consistently according to the security policy. The hosts in the trust

130 J. Sen and I. Sengupta

domain work together to prevent compromised hosts from joining the trust domain. If
any host becomes compromised after joining the trust domain, other hosts in the trust
domain will be able to detect it and isolate it from the trust domain.

We assume that at the beginning, the trust domain consists of hosts that are all
sane. DTM tries to detect and remove any host that becomes compromised after it
has joined the trust domain. Compromised host(s) in the trust domain is (are) identi-
fied by running n instances (n is the maximum number of hosts in the trust domain) of
the SMA in parallel, assuming that the majority of the hosts in the trust domain are
not compromised. If the “leader” of the SMA is not compromised, then after running
the algorithm in parallel, all the hosts that are not compromised will know that the
leader is not compromised. If the leader of an execution of the SMA is compromised,
then any of the following cases can happen: (i) The leader sends 0 messages to all the
sane hosts. In this case, all the sane hosts will assume the leader host to be compro-
mised or dead. (ii) The leader sends 1 message to only some of the hosts are sane. In
this case, the sane hosts that received 1 message from the leader are able to detect that
there is a compromised host in the system. These hosts, then, send messages to other
hosts informing about this suspected compromised host. On further investigation by
message communication, the status of the suspected host will be understood. (iii) The
leader sends 1 message to all the sane hosts. All the sane hosts understand that the
message is wrong, and the leader host is compromised, if it contradicts the majority.
If the message does not contradict the majority, it is not possible to conclude about
the status of the leader, unless it sends a different message to at least one compro-
mised host, which in turn forwards the message to a sane host. In this case the leader
is compromised, and should be removed. However, it is not a critical problem, as it is
not causing any damage at present. (iv) The leader sends two or more different mes-
sages to some sane hosts. All the sane hosts eventually see contradictory instructions,
and understand that the leader is compromised. Thus the DTM can identify compro-
mised hosts in the system in all possible cases.

5 Implementation and Experiments

We propose to develop a proof-of-concept prototype of our model using Java, C, and
JADE. We plan to test its performance using the KDD Cup 1999 intrusion detection
contest data [8]. We will select a large sample from this dataset, and use Bayesian
Network Power Constructor (BNPC) [2] to generate a Bayesian network to distribute
it among agents.

6 Conclusions

In this paper, we have presented the model of a distributed IDS that uses a collection
of agents. By distributed computation and message passing between the agents, the
model can detect intrusions and can identify and isolate compromised hosts in the
system. We will build a prototype of the system, and evaluate its performance.

 Autonomous Agent Based Distributed Fault-Tolerant Intrusion Detection System 131

References

1. Gopalakrishna, R., Spafford, E.: “A Framework for Distributed Intrusion Detection System
using Interest Driven Cooperating Agents.” In Proceedings of Recent Advances in Intrusion
Detection, 4th International Symposium (RAID 2001), October 2001.

2. Cheng, J., Bell, D., Liu, W.: ”Learning Bayesian Networks from Data: An efficient ap-
proach based on Information Theory.” Technical Report, University of Alberta, Canada,
1998.

3. Ghosh, A., Sen, S.: “Agent-based Distributed Intrusion Alert System.” In 6th International
Workshop on Distributed Computing, Kolkata, India, December 2004.

4. Xiang, Y., Poole, D., Beddoes, M.: “Multiply Sectioned Bayesian Networks and Junction
Forest for Large Knowledge-Based Systems.” Computational Intelligence, 9(2): 171-220,
1993.

5. Guo, H., Hsu, W.H.:”A Survey of Algorithms for Real-time Bayesian Network Inference.”
In AAAI/KDD/UAI-2002 Joint Workshop on Real-time Decision Support and Diagnosis
Systems, Edmonton, July 2002.

6. Xiang, Y.: “Belief Updating in Multiply Sectioned Bayesian Networks without Repeated
Local Propagation.” International Journal of Approximate Reasoning 23: 1-21, 2000.

7. Jensen, F.V., Lauritzen, S.L., Oleson, K.G.: “Bayesian Updating in Causal Probabilistic
Networks by Local Computations.” Computational Statistics Quarterly, 4: 269-282, 1990.

8. Kddcup 99 Intrusion Detection Data Set. DARPA Intrusion Data Repository.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data_10_percent.gz.

9. Lamport, L., Shostak, R., Pease, M.: “The Byzantine General Problem.” ACM Transaction
on Programming Languages and Systems, 4(3): 382-401, July 1982.

Cleaning an Arbitrary Regular Network with
Mobile Agents�

Paola Flocchini, Amiya Nayak, and Arno Schulz

School of Information Technology and Engineering,
University of Ottawa,

800 King Edward Avenue,
Ottawa, ON K1N 6N5, Canada

{flocchin, anayak, aschulz}@site.uottawa.ca

Abstract. In this paper, we consider a contaminated network with an
intruder. The task for the mobile agents is to decontaminate all hosts
while preventing a recontamination and to do so as efficiently as possi-
ble. We study under what conditions and what cost a team of mobile
agents can do this in synchronous arbitrary regular graphs using the
breadth-first-search strategy. Due to the nature of the experiment we
use a genetic algorithm to find the minimum number of agents required
to decontaminate a given network. The results show that there is a rela-
tion between the degree, the size of the graph, and the number of starting
locations of the mobile agents. in particular, this relation demonstrates
the possibility of improvements in reducing the number of mobile agents
used depending on the number of starting location in arbitrary regular
graphs.

Keywords: Mobile Agents, Intruder Capture, Graph Search, Mesh.

1 Introduction

1.1 The Problem

Consider a network where nodes represent hosts and edges represent connections
between hosts. An intruder is a dangerous piece of software (e.g., a virus) that
moves arbitrarily fast from host to host contaminating the nodes. The intruder
capture problem consists of deploying a team of collaborative software agents to
capture the intruder.

We can formulate the intruder capture problem equivalently in terms of a
decontamination (or cleaning) problem in which each node of the network can
be in one of three possible states: clean, contaminated, guarded. Initially all nodes
are contaminated except for the nodes containing an agent (which are guarded). A
node becomes clean when an agent passes by it, and an unguarded node becomes
contaminated if one of its neighbors is contaminated. A guarded node is also
� Work partially supported by Natural Sciences and Engineering Research Council of

Canada.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 132–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Cleaning an Arbitrary Regular Network with Mobile Agents 133

clean. The decontamination problem consists of reaching a situation where all
the nodes are simultaneously clean. In particular, we are interested in monotone
strategies of decontamination; i.e., we want that a node that becomes clean
will never be contaminated again. In other words, we have to design cleaning
strategies that “protect” clean node from recontamination; once a node is clean,
all its neighbors must be clean or guarded.

An agent is a mobile entity that can move from node to a neighboring node.
Agents can communicate by accessing local small whiteboard located at the
nodes (whiteboards of size O(log n) are enough for our purposes). The white-
board of a node will contain the state of the node (clean, contaminated or guarded
and any other information the agents need to communicate to the other agents).
Finally, we assume that an agent can “see” the state of its neighbors. The pos-
sible actions of an agent are:

– local computations (or local actions): Each agent is provided with
O(log n) of local memory to be used when performing local computations,
where n is the number of nodes. Particular local action are: the observation
of the neighbors’ states; cloning (the agent can clone several copies of itself);
termination (an agent can terminate its execution).

– movements from a host to a neighboring host: In this paper, we consider
synchronous movements, i.e., it takes one unit of time for an agent to traverse
a link. Moreover, we assume that the agents start simultaneously.

When designing a decontamination strategy, the efficiency is measured in terms
of the number of agents deployed (maximum number of agents simultaneously
active), number of moves, and the time it takes to clean a network. To determine
the minimum number of mobile agents required to decontaminate a given net-
work using this strategy, we use a genetic algorithm to find which combination of
starting home bases will reduce the number of mobile agents used. The genetic
algorithm provides a good estimate of the number of mobile agents required to
clean a given network of fixed degree, size, and the number of starting home
bases for the mobile agents.

1.2 Related Work

A variation of the intruder capturing (or decontamination) problem has been
widely studied in the literature under the name of graph search problem. This
problem was first introduced by Breish [3] and Parson [12] and was studied
extensively under different variations (edge search, node search, mixed search)
(e.g., see [4, 8, 9, 10, 11, 13]). The main goal of all these investigations was to
determine the minimum number of agents required to perform the search. De-
termining such a number (“searching number”) in an arbitrary network is an
NP -complete problem.

In all the graph search variations studied in the literature, searchers may be
removed from a node and placed on any other node of the graph being searched,
i.e., they are allowed to “jump” while they perform the searching task.

134 P. Flocchini, A. Nayak, and A. Schulz

However, in a networked environment, agents cannot jump, but can only move
from node to neighboring node. Simulating the jump by neighboring moves may
make the strategy non monotone.

A variation of the node/edge-search problem is called the contiguous search
problem [1, 2] which adds the requirement that 1) the agents can move only from
node to neighboring node without jumping, 2) the strategy is monotone, and
3) the decontaminated area is connected. This problem is harder than the non-
contiguous one as it has been shown in [2] that there are networks where the
contiguous searching number is strictly greater then the non-contiguous search-
ing number. Finding the contiguous searching number is still an NP -complete
problem for general graphs. A few specific topologies have been studied; for ex-
ample, it has been shown that the problem can be solved in linear time in trees
[1], meshes and tori [5]. Moreover, strategies and upper bounds have been stud-
ied only in hypercubes [6]. All the previous investigations have been carried out
in asynchronous environment.

1.3 Our Result

In this paper, we consider the contiguous decontamination problem in a syn-
chronous arbitrary regular network without the restriction that the decontami-
nated must be connected. We first describe a general strategy in which the agents
perform the decontamination by moving in a breadth-first manner, making sure
that no recontamination will occur. This technique can be applied to any arbi-
trary topology. This general strategy can be initiated by an arbitrary number
of starting locations, and its efficiency depends on the number of starting places
and their location.

Generally, starting from more locations will increase the number of agents
but will decrease the time. An interesting question is: given a network and a
number of starting agents what is the optimal placement of the agents? Even in
symmetric networks, increasing the number of starting locations, the problem
becomes quite complex; thus, in order to obtain minimum number of agents
we resorted to simulations using a genetic algorithm. In fact, to choose good
starting locations, we design a genetic algorithm that will find the solution that
will use the least number of agents in a single step, for a given graph and a fixed
number starting locations. Through experiments, we show that as the number
of home bases increases, the number of agents required decreases in all network
topologies considered.

2 The Strategy

The cleaning strategy (protocol clean illustrated in Figure 1) is very simple.
Initially, the agents are placed in arbitrary starting location. Each starting agent
will try to move its clones on a breadth-first-search (BFS) tree of the network
rooted at its starting position. More precisely, at each step, if an agent arrives
to a node alone, it cleans the node, clones itself as many times as the number of
contaminated neighbors, and sends them on the corresponding links. If, however,

Cleaning an Arbitrary Regular Network with Mobile Agents 135

more than one agent arrives at a node simultaneously, only one of them survives,
cleans the node, clones itself as many times as the number of contaminated
neighbors, and sends them on the corresponding links; the other agents terminate
here.

Protocol Clean (for an agent a arriving at node x)

If a is alone:
Clean x.
Check the state of neighbors.
Let ND(x) be the set of decontaminated neighbors of x.
Clone |ND(x)| agents.
Send the cloned agents to the decontaminated neighbors.

If a is not alone:
Locally choose a leader.
If I am the leader:

Clean x.
Check the state of neighbors.
Let ND(x) be the set of decontaminated neighbors of x.
Clone |ND(x)| agents.
Send the cloned agents to the decontaminated neighbors.

Otherwise
Terminate.

Fig. 1. Protocol Clean

The procedure locally choose a leader in Figure 1 consists in selecting one of
the agents to continue the cleaning operation, the leader is the agent that first
accesses the local whiteboard.

In a clean area, internal nodes are the nodes whose neighbors are all clean,
border nodes have some clean neighbors and some contaminated neighbors.

Theorem 1. Protocol Clean performs a monotone decontamination of the net-
work.

Proof. We want to prove by induction that once a node is clean, it will never be
re-contaminated.

Basis. The starting locations of the agents are clean and since, by definition,
enough agents are sent simultaneously to all their contaminated neighbors, they
will not be re-contaminated in the subsequent step. Moreover, the border nodes
are all guarded (in this case border nodes are just single nodes).

Induction. At step k, some nodes are clean and the border nodes are guarded.
At step k + 1 the agents that are on the border nodes will clone themselves,
by definition of the algorithm, and then proceed to the contaminated nodes.
As all contaminated neighbors receive at least one agent, the old border nodes
become internal nodes, and thus cannot be re-contaminated in the subsequent
step, while the border node are all guarded.

136 P. Flocchini, A. Nayak, and A. Schulz

We have shown that once a node is clean, it will never be re-contaminated.
Since the graph is connected, we have that all nodes will eventually be decon-
taminated. ��
Notice that, for some specific topologies, it can be easy to compute the number of
agents needed for decontamination, when considering a single starting location
(“home base”). In this case, the number of steps is always equal to the diameter
of the network, while the number of agents clearly depends on the topology.
For example, in the case of the hypercube, the maximum number of agents
simultaneously active would be equal to the maximum number of edges between
levels of the broadcast tree (which is (�n

2 �+ 1) · (� log n
2 �+ 1)).

However, when we have more than one home base for the mobile agents, the
nature of the problem becomes more complex with the added difficulty of finding
the optimal configuration. Even in symmetric networks, adding multiple starting
locations increases the complexity; thus, in order to obtain minimum number of
agents we resorted to simulations using a genetic algorithm.

3 The Genetic Algorithm

3.1 Genetic Algorithm Background

The genetic algorithm as described by Goldberg [7] is a process composed of
two elements: a population of strings and a fitness function. As can be seen in
Figure 2, at each round of the genetic algorithm, the fitness function allows to
pick the fittest individuals (the strings that achieve a better score according to
the fitness function) and then uses them as a basis to generate a new generation.
As each generation brings a new population generated from the fittest individ-
uals from the previous generation, over the course of several generations, the
individuals tend to get better and better fit, thus providing a good solution in a
relatively short period of time as the least fit individuals are no longer consid-
ered. However, evolving the optimal solution is more difficult and will take more
time as in the later generations. When there are many individuals with equal
fitness, there is no bias towards any particular individual.

3.2 Our Implementation

For our experiment, we use individuals where each individual represents the
starting positions of the mobile agents within the graph. The graphs are repre-
sented by a Boolean array where each entry of the array corresponds to a node
in the graph. If the Boolean value corresponding to a node is true it means that
the node is going to be a starting location for a mobile agent. These arrays are
stored in matrix composed of 1024 individuals (the population size used by the
genetic algorithm).

In order to have a starting point for the genetic algorithm, the initial popula-
tion is generated in a random manner. Each individual, having the same number
of agents, will place these agents in random positions of the array (if an agent

Cleaning an Arbitrary Regular Network with Mobile Agents 137

Genetic Algorithm:

For 52 generations do
Set total fitness TS to 0.
While there exists a candidate string out of 1024 candidates

s = next candidate string.
Evaluate s with the fitness function F (s).
Add F (s) to TS.

End While
Create a biased wheel of size TS where for each s,

a space corresponding to the F (s) fitness is allocated.
Pick randomly 1024 candidate strings from the wheel.

End For

Fig. 2. Genetic Algorithm

is already there, another random position is selected until an empty position is
found). Once the population has been generated, it is then passed on to the ge-
netic algorithm which then runs 52 times, each time generating a new population
(from the previous generation).

Each population that is passed on to the genetic algorithm is evaluated ac-
cording to a “fitness” function. The fitness function used is the maximum number
of agents that were used at any one step during the decontamination of the net-
work. The fitness obtained is then stored in order to determine the maximum
fitness and the best individual of each generation later on.

After all the fitnesses have been collected, the algorithm sets up a biased
evolutionary wheel, that gives to each individual a percentage of the wheel pro-
portional to its fitness compared to the total fitness of the population (note that
the wheel represents the total fitness of the population). This favors the fittest
individuals as they will represent a greater percentage. Thus, while creating a
new generation, as the selection is done in a random manner, the fittest indi-
viduals are most likely to be selected. The new generation is then created using
one of two techniques, mutation and cross-over, described below.

The mutation consists of selecting an individual randomly in the evolution-
ary wheel. We then change the position of one of the mobile agent’s start-
ing home base within the Boolean array which represents an individual (note
that it is still possible for a selected individual not to get changed during the
mutation).

The cross-over consists of selecting two individuals randomly in the evolu-
tionary wheel and then creating two new individuals by switching the second
half of each of the selected individuals. For example, if the two parts of the first
selected individual is (x1, x2) and the second selected individual is (y1, y2), the
cross-over process creates two new individuals with two parts as (x1, y2) and
(y1, x2).

After the new generation has been bred, the best of this generation is then
compared with the best of all previous generations; if the fitness is higher, the

138 P. Flocchini, A. Nayak, and A. Schulz

new champion individual is preserved. Finally the next generation is passed
to the genetic algorithm, and the process is repeated until we reach the 52nd
generation.

3.3 The Benefits and Restrictions of Genetic Algorithms

The advantage of using the genetic algorithm is that it allows us to narrow
down to an acceptable solution for a given topology. Most importantly, it gives
us a good approximation (if not the maximum number of agents required) for
a particular network. We are also able to use it instead of doing an exhaustive
search to evaluate each and every possible configuration of the mobile agents
starting home bases for a given network topology.

There are two limitations with this approach. First, without resorting to an
exhaustive search, it is not possible to confirm whether the results obtained by
the genetic algorithm truly represent the optimal solution for a particular graph.
Second, there is the possibility of premature convergence giving a local minima
as a result instead of finding a lower minimum. To minimize the effects of these
limitations, we run each configurations 300 times as explained in the following
section.

4 Experimental Results

4.1 Methodology

Using the described genetic algorithm we are able to test specific arbitrary reg-
ular graph groups of given size, degree with different number of starting home
bases for the mobile agents. For statistical significance, we run the genetic al-
gorithm over 60,000 individual experiments. The entire experiment uses 200
different graph groups (five graph sizes with 512, 768, 1024, 1576, 2048 nodes;
four degrees: 4, 8, 16, 32; and ten different numbers of home bases: 1, 2, 3, 4, 6, 8,
10, 12, 14, 16). Each graph group can be viewed as a set of graphs with param-
eters (size, degree, number of home bases); for example, (512, 4, 10) represents
a graph group where all graphs have 512 nodes, degree 4, and 10 home bases.
For each graph group, we run 300 experiments which is divided into 30 series of
experiments, each series uses a different graph with the same set of parameters.
Each series is then run 10 times. Each experiment yields two results: the number
of mobile agents used and the number of steps used.

We observed that within a graph group, the variation of results for the number
of mobile agents between individual experiments and between series of experi-
ments is less than 3%. Occasional abnormalities in the results due to pre-mature
convergence in the genetic algorithm are less than .5% and are ignored. For the
number of steps, we also observed less than .5% abnormality (considered when
the variation is not within ±1 step).

Once all the results have been collected for each graph group; the median is
taken for both sets of results for each series of experiments (i.e., the number of
mobile agents used and the number of steps used). We then take the median

Cleaning an Arbitrary Regular Network with Mobile Agents 139

of all the medians within a graph group which is then plotted (please refer to
Figure 4 for the number of mobile agents used and to Figure 3 for the number
of steps used).

4.2 Number of Steps Used

Given the synchronous nature of the experiments, one of the interesting facts
to consider is the number of steps taken by the mobile agents to decontaminate
the network, and how it relates to the size, the degree of the network, as well as
the number of starting home bases for the mobile agents.

The results are shown in Figure 3. These results were as expected due to the
BFS strategy used by the mobile agents. At each step, in this strategy, it is
possible to predict that the number of agents at the next step. For example, in a
network of degree 4 with 512 nodes and one starting base, the number of mobile
agents would roughly increase 4 fold at every step. One can then see that once
we are at a step where the number of agents exceeds the number of nodes in the
graph it would be the maximum of steps used for that graph.

Figure 3 shows that the number of steps varies between 2 and 9. The expected
behavior can be seen for all graph groups; that is, as the number of home bases
increases the number of steps taken decreases.

(a) Graph size 512 (b) Graph size 768 (c) Graph size 1024

(d) Graph size 1576 (e) Graph size 2048 (f) Legend

Fig. 3. Steps Used (x-axis: number of home bases; y-axis: number of steps)

140 P. Flocchini, A. Nayak, and A. Schulz

4.3 Number of Agents Used

The main goal of this experiment was to determine the minimum number of
mobiles agents used for decontaminating different networks with one or more
home bases. The results for different graph groups are shown in Figure 4. We
observe the following. First, for a given graph group, fewer agents are required
for certain numbers of home bases. For example, the graph group (2048, 32, 2)
uses fewer agents than the graph group (2048, 32, 1). Second, the variations
of the number of agents used depends on the degree of the graph groups. The
variation is larger for graph groups of higher degrees.

These results were expected. As we increase the number of home bases, we
see a drop in the number of agents. This is true for all graph groups.

Due to the nature of the decontamination strategy based on BFS technique,
there will always be an overuse of the number of agents. A contaminated node
will always receive an agent from all its decontaminated neighbors. The overuse

(a) Degree 4 (b) Degree 8

(c) Degree 16 (d) Degree 32

(e) Graph Sizes

Fig. 4. Agents Used (x-axis: number of home bases; y-axis: number of agents)

Cleaning an Arbitrary Regular Network with Mobile Agents 141

(a) Step 0 (b) Step 1 (c) Step 2

(d) Legend

Fig. 5. Overuse of mobile agents

of agents is proportional to the ratio of decontaminated and contaminated nodes.
Initially, the overuse is low as there are fewer decontaminated neighbors for each
contaminated node. The overuse is highest in the last stage of decontamination
as most of the neighbors of contaminated nodes have been decontaminated.

Figure 5 illustrates the propagation of the mobile agents, in the given graph
of degree 4 with 7 nodes and 1 home base, through the network using the BFS
technique. In the last step, while there are only 2 nodes left to be decontaminated,
6 agents are used by the algorithm. This example clearly shows the overuse of
agents when using the BFS technique in a synchronous network.

5 Conclusions

In this paper, we considered the problem of decontaminating synchronous net-
works with mobile agents using BFS technique. We used a genetic algorithm to
avoid exhaustive search. The genetic algorithm allowed to find a good approxi-
mation of the minimum number of agents needed to decontaminate the network.
We considered various networks with different number of home bases to study
the relationship between the number of home bases and the agents/steps re-
quired. The experiments allowed us to confirm that as the number of home
bases increases, the number of agents required decreases in all network topolo-
gies considered. We observed that as the number of home bases increases the
number of steps taken to decontaminate the network also decreases. The overuse
of agents due to the BFS strategy increases with the decrease in the number of
contaminated nodes.

Currently, we are investigating the use of global blackboard, other models to
coordinate mobile agents, and asynchronous networks to see which model further
reduces the number of mobile agents used. We will also consider simulating

142 P. Flocchini, A. Nayak, and A. Schulz

classic networks such as the hypercube, the mesh, and other networks to see if
the use of several home bases can reduce the number of mobile agents required
for one home base [6] when using the BFS strategy. Finally, we are considering
the use of genetic algorithm to find the optimal number of home bases for a
given network.

References

1. L. Barrière and P. Flocchini and P. Fraignaud and N. Santoro. Capture of an
Intruder by Mobile Agents. Proc. 14-th ACM Symposium on Parallel Algorithms
and Architectures (SPAA), 200-209, 2002.

2. L. Barrière and P. Fraignaud and N. Santoro and D.M. Thilikos. Searching is not
Jumping. Proc. 29th Workshop on Graph Theoretic Concepts in Computer Science,
(WG) LNCS, vol. 2880, 34-45, 2003.

3. R. Breish. An intuitive approach to speleotopology. Southwestern cavers, VI (5),
72-28, 1967.

4. J.A. Ellis and I.H. Sudborough and J.S. Turner. The vertex separation and search
number of a graph. Information and Computation, 113: 50-79, 1994.

5. P. Flocchini, L. Song, F. L. Luccio. Size Optimal Strategies for Capturing an In-
truder in Mesh Networks, Proc. of 2005 International Conference on Communica-
tions in Computing (CIC 2005).

6. P. Flocchini, M. J. Huang, F. L. Luccio. Contiguous Search in the Hypercube for
Capturing an Intruder. Proc. 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2005).

7. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley. , 1989.

8. L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theoretical Com-
puter Science, 47, 205-218, 1986.

9. A. Lapaugh. Recontamination does not help to search a graph. Journal of the
ACM, 40 (2), 224-245, 1993.

10. N. Megiddo and S. Hakimi and M. Garey and D. Johnson and C. Papadimitriou.
The complexity of searching a graph. Journal of the ACM, 35 (1), 18-44, 1988.

11. B. Monien and I.H. Sudborough. Min cut is NP-complete for edge weighted trees.
Theoretical Computer Science, 58, 209-229, 1988.

12. T. Parson. Pursuit-evasion problem on a graph. Theory and applications in graphs,
Lecture Notes in Mathematics, Springer-Verlag, 426-441, 1976.

13. S. Peng and M. Ko and C. Ho and T. Hsu and C. Tang. Graph searching on chordal
graphs. Algorithmica, 27, 395-426, 2000.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 143 – 153, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Multi-attribute Hashing of Wireless Data
for Content-Based Queries

Yon Dohn Chung1 and Ji Yeon Lee2

1 Department of Computer Engineering, Dongguk University, Seoul, Korea
ydchung@dgu.edu

2 E-Government Team, National Computerization Agency, Seoul, Korea
jylee@nca.or.kr

Abstract. In mobile distributed systems data broadcasting is widely used as a
data dissemination solution, where we need an indexing scheme in order to en-
ergy-efficiently access the wireless data. In conventional indexing schemes,
they use key attribute values and construct tree-structured index. Therefore, the
conventional indexing schemes do not support content-based retrieval queries
such as partial-match queries, range-queries, and so on. In this paper we pro-
pose an index method which supports content-based retrieval queries on wire-
less broadcast data stream. For this purpose, we construct a tree-structured in-
dex which is composed of bit-vectors, where the bit-vectors are generated from
data records through multi-attribute hashing.

1 Introduction

The wireless data broadcasting delivers data through public channels to unspecified
clients in mobile distributed systems. Compared with the peer-to-peer communication
between the server and mobile clients, the broadcasting approach is recognized as
energy and bandwidth efficient [9, 10, 11]. In wireless data broadcasting, we consider
two performance aspects, access time and tuning time. The access time is the duration
from the time of query submission to that of complete retrieval of required data. The
tuning time is the actual tune-in time for accessing the data, which is the duration
when the devices remain in the active mode (i.e., high energy consumption mode) [9].

There have been many studies on wireless data broadcasting: data caching[2, 12]
and non-uniform broadcasting approaches[2, 10] for reducing access time, broadcast
data clustering approaches[5, 6, 14] for improving access time performance of partial
and multi-point queries, indexing[3, 11] of wireless broadcast data stream for improv-
ing tuning time performance, the use of signatures[8, 10] for approximate retrieval of
wireless data, and so on.

This paper focuses on the indexing approach for reducing tuning time. The index
on the air means the addresses of data records, where the address is the time when the
target data record arrives. The use of index on the wireless data stream is the most
popular approach for improving tuning time performance. However, most of the con-
ventional indexing approaches [3, 11] consider only key-based point queries, and
hence they cannot effectively handle nonkey-based queries. In this paper, we propose

144 Y.D. Chung and J.Y. Lee

an index method for content-based retrieval queries (CBQ) such as partial-match
queries and range queries. For supporting content-based accesses, we represent data
records as bit-vectors using multi-attribute hashing, and construct a bit-vector tree for
wireless index structure.

2 Related Work and Motivation

There have been some index methods for wireless data stream, such as (1, M) Indexing,
Flexible Indexing, Distributed Indexing[9, 11] for uniformly data set and CF and VF
methods[3] for skewed data. Basically these index methods construct tree-structured
index, B-Tree [9, 11] and Huffman Tree [3] for uniform and skewed data sets respec-
tively, and organize the broadcast data stream with the data records and index records,
where the index records are intermixed with data through tree traversal. However,
these previous methods are not good at processing content-based queries (CBQ), where
content-based queries access the wireless data stream by specifying some (non-key)
attribute values or value ranges [1, 13, 14]. The CBQ is known as one of the most
widely used query types in database and information retrieval systems [1, 7, 13]. In the
below, we show an example of the use of CBQ in wireless information systems.

Example 1 [A Stock Information System for Mobile Clients]. The server repeat-
edly broadcasts current stock price records via a public channel. The stock record
consists of four attributes: A1 (Company Code), A2 (Amount of Sales), A3 (Amount of
Purchase) and A4 (Price). The clients possess portable terminals with wireless com-
munication modules. So, they can move around and frequently access the stock price
information via wireless communication. While some clients have interests on the
stock price information that they hold, others may have interests on the stocks that
have some specific patterns e.g., the stock whose price is greater than $50 and the
amount of sales is less than ten thousands. After retrieving the stock price informa-
tion, the mobile clients can issue some requests (i.e., sell or buy some stocks) via pre-
assigned P2P communication channels, which may be wireless or wired ones. (We
consider only the process of data retrieval. The remaining actions such as sending
requests are not addressed in the paper.)

In Example 1, the former clients use primary key (i.e., A1 Company Code)-based
point queries and the latter ones use CBQ. The CBQ is not applicable to the conven-
tional key-based index structures [3, 11], since they do not include non-key attributes
at all. If the broadcast data stream is indexed by a conventional one, we have to read
all data records and check whether the data records are satisfied by the query, which
requires huge tuning time.

3 The Proposed Method

In the proposed method, we define the bit-vector for each data record using the multi-
attribute hashing which is a well-known content-describing technique [7]. After gen-
erating the bit-vectors, we construct an index tree of bit-vectors. Then, the broadcast
data stream, intermixed with the bit-vector index information, enables the mobile clients
to access the data with content-based queries (CBQ) in an energy-efficient way.

Multi-attribute Hashing of Wireless Data for Content-Based Queries 145

3.1 Bit-Vector Representation Using Multi-attribute Hashing

Using multi-attribute hashing, we represent data records as data bit-vectors and user
queries as query bit-vectors. (We use the terms data vectors and query vectors for short.)

Definition 1. A data record Rj consists of k attributes A1, A2, ..., Ak. And, we assume
there is a predetermined hash function hi for each attribute Ai. Then, the data vector

dvj for data record Rj is h1(Rj(A1)) h2(Rj(A2)) … hk(Rj(Ak)), where ‘ ’ denotes
the bit stream concatenation operator.1

Definition 2. The query vector qvj for query Qj is h1(Qj(A1)) h2(Qj(A2)) …
hk(Qj(Ak)). Here, Qj(Ai) denotes the value of attribute Ai of the query. If the query does
not contain specified value for Ai, the hashed bit stream of hi(Qj(Ai)) becomes “**…*”,
where the size is equal to hi(Rj(Ai)) for any j. (The symbol ‘*’ means “don’t care”.)

We show an example of data and query vectors based on Example 1. Let us assume
there are four hash functions as follows: (The sizes of hashed bit streams for the at-
tributes are 2, 2, 2, and 3 respectively in this hashing scheme. And hence the size of
the data (also query) vector is 9.)

 otherwise

companyion communicat andcomputer a is x if

 company ingmanufactur a is x if

 company financial a is x if

11

10

01

00

)(=xhcompany

 x 30000 if

 30000x 2000 if

20000x10000 if

 10000 x if

11

10

01

00

)(purchase) ofamount (or sale ofamount

≤
<≤

<≤
<

=xh

 x 60 if

 60 x 50 if

 50 x 40 if

 40 x 30 if

 30 x 20 if

 20 x 10 if

 10 x 5 if

 5 x if

111

110

101

100

011

010

001

000

)(

≤
<≤
<≤
<≤
<≤
<≤

<≤
<

=xh price

Then the data vector for a data record [Company Code=150 (a code for manufactur-
ing company), Amount of Sale=13000, Amount of Purchase=2000, Price=22] is

“010100011 (= 01 01 00 011)”. The query vector can be generated similarly.

1 The proposed approach is different from previous signature methods [5, 8]. The bit-vector

uses the concatenation operator while the signature uses superimposed coding. And thus,
there is no false-drop in the proposed method.

146 Y.D. Chung and J.Y. Lee

The query vector for a query [Amount of Sale 30,000, 10 Price < 20] is
“**11**010”. Since the attributes Company Code and Amount of Purchase are not
specified in the query, the bit positions for the corresponding attributes are filled with
‘*’. Although the concept of ‘bit’ can represent only two states ‘0’ and ‘1’, we in the
paper assume that one bit represents ‘0’, ‘1’, and ‘*’ for the sake of convenience.

3.2 The Bit-Vector Tree (BV-Tree)

We construct a tree-structured hierarchical index with the data vectors generated in
Section 3.1. We call the tree the Bit-Vector Tree (the BV-Tree in short), which is de-
fined as follows:

Definition 3. Let l be the size of a bit vector. Then the BV-tree of l-bit bit-vectors is a
tree such that:

(1) The BV-tree is a full binary tree with the height of ‘l+1’.
(2) The root node is “***…*”, and the level of the root is ‘0’.
(3) A node in level ‘i’ is a bit-vector where upper (i.e., left) ‘i’ bits are ‘0’ or ‘1’ and

the remaining ‘l-i’ bits are ‘*’.
(4) A node in level ‘i’ (i<l) has two children at level ‘i+1’, where the children bit-

vectors are same to the parent bit-vector except that the left-most ‘*’ bit in the
parent is replaced by ‘0’ or ‘1’ in the children.

(5) The leaf nodes (level ‘l’) are fully-specified l-bit vectors (i.e., there is no ‘*’ in
the bit-vector).

3.3 The Structure of Index and Data Buckets

Since the basic unit of wireless communication is the bucket [11], we have to construct
the broadcast data stream (including index information) into buckets. Basically all
buckets (irrespective of their types) contain some control information such as the type
of bucket, the link to the next index, and the start address of the next broadcast cycle.

Definition 4. The index bucket is organized as follows:

- BUCKET_TYPE: the Boolean field for indicating the bucket type (i.e., index or data
bucket)

- ARRAY_OF_ADDRESS_TUPLES[M]: the array of M address tuples, where the
address tuple is a pair of (index bit-vector, address of the target bucket).

- LINK_TO_NEXT_INDEX: the address of the next nearest index bucket
- NEXT_BROADCAST: the start address of the next broadcast cycle.

Definition 5. The data bucket is organized as follows:

- BUCKET_TYPE: the Boolean field for indicating the bucket type
- ARRAY_OF_DATA_RECORDS[N]: the array of N data records
- CONTINUE_TO_NEXT_BUCKET: the Boolean field for indicating whether the data

records consecutively allocated in the next bucket; When the data records repre-
sented by a leaf node bit-vector are too many to fit into one data bucket, this field
set as TRUE.

- LINK_TO_NEXT_INDEX: the address of the next nearest index bucket
- NEXT_BROADCAST: the start address of the next broadcast cycle.

Multi-attribute Hashing of Wireless Data for Content-Based Queries 147

Fig. 1. The BV-tree for 4-bit bit-vectors - The leaf node of the BV-tree represents the data re-
cords whose contents are described by the corresponding bit-vectors through multi-attribute
hashing. The intermediate nodes cover2 their descendant nodes because each parent node cov-
ers their children nodes by the 4th condition in Definition 3. For example, the bit-vector ‘00**’
covers ‘000*’ and ‘001*’, each of which covers their two children ‘0000’ and ‘0001’ and
‘0010’ and ‘0011’ respectively. Consequently, the root node covers all nodes in the tree.

When some system parameters (such as the bucket size, the size of a bit-vector, etc.)
are determined, the value of M and N can be easily computed as follows:

=
record data a of size the

sizes) fieldn informatio control all of sum the-bucket a of size (the
 N

=
 tupleaddressan of size the

sizes) fieldn informatio control all of sum the-bucket a of size (the
 M

.

3.4 The Bucket-Based Bit Vector-Tree (B2V-Tree)

The B2V-Tree is constructed by merging BV-tree nodes according to the capacity M
of the index bucket. However, we cannot use the value M directly. Since we have to
preserve the property of tree, we set the fan-out of the B2V-tree as an exponential
value of 2. Note that in a tree, there exists a unique path from the root to each leaf
node. It means that a node covers all its children nodes and all children nodes are
covered by a unique parent node. Since the BV-Tree is a full-balanced binary tree, the
unique path property cannot hold when we use an arbitrary value (not an exponential
value of 2) for the fan-out of the B2V-Tree. With the tree property, mobile clients
effectively find their target data by traversing the B2V-Tree. Thus, we compute the
fan-out of the B2V-Tree as follows using the value of M determined previously:

f = Max. 2i such that 2i M, (where i is a positive integer).

2 The bit-vector v1 covers v2 if and only if all the ‘0/1’ bit representations of v2 is included by

those of v1, where the ‘0/1’ bit representations means the enumeration of bit streams by re-
placing ‘*’ bit positions of the given bit-vector into ‘0’ or ‘1’.

148 Y.D. Chung and J.Y. Lee

Using f, we group the BV-Tree nodes into buckets and construct the B2V-tree. For
brevity, the formal B2V-Tree construction algorithm is abbreviated in the paper. In-
stead, we show in Figure 2 a B2V-tree constructed from the BV-tree of Figure 1. Here,
we assume f to be 4. The white rectangles denote index buckets of the B2V-tree, and
the colored ones denote the data buckets.

We also show the wireless data stream intermixed with index information in the
bottom of the figure. We used the depth-first traversal of the B2V-Tree, which is a
common broadcast data generation method [2, 13]. Since the hierarchical structure of
the proposed indexing scheme is the same to that of the previous one, the index repli-
cation approaches [4, 10] previously studied for tree-structured index can also be
applied to our method. For example, if we apply the index replication strategy of the
Distributed Indexing [10], then the wireless broadcast stream becomes as follows:

<I1, I2, D1, ..., D5, I1’, I3, D6, ..., D13, I1’’, I4, D14, ..., D19, I1’’’, I5, D20, D21>,

where Ii’ is the second replica of Ii, Ii’’ is the third replica of Ii, and so on.
In Figure 2, the link between data buckets means that there are too many records to

fit into one data bucket, and thus they are stored contiguous buckets. The field
CONTINUE_TO_ NEXT _BUCKET in Definition 5 handles this situation. The data
bucket D20 is indicated by three address tuples, which is the result of post-optimization
i.e., saving the space. In the post-optimization, we can merge data buckets pointed by
some address tuples only when the address tuples are in one index bucket. We cannot
merge D19 and D20 in the figure, although they are sparse enough to be merged into
one, because their parents are in two distinct index buckets (I4 and I5).

… …

Fig. 2. The B2V-Tree for Figure 1 and its broadcast data stream - Since the height of BV-Tree is 5
and the fan-out is 4, the root node I1 consists of four address tuples whose bit-vectors are ‘00**’,
‘01**’, ‘10**’ and ‘11**’, and these addresses are the links to the children sub-trees

Multi-attribute Hashing of Wireless Data for Content-Based Queries 149

Fig. 3. Examples of data access steps

3.5 Accessing the Wireless Stream

For processing CBQs on the wireless data stream, the mobile client probes relevant
index buckets through the bit-vector comparison between the query vector (QV) of
the user query and the bit-vectors of address tuples in index buckets. Note that if the
QV is not fully-specified (i.e., to the leaf level), then we may have to follow (in paral-
lel) multiple paths of index probes, each of them reaching to corresponding leaf
nodes. Instead of fully describing the access algorithm, we show in Figure 3 some
examples based on Figure 2.

In Case (1) of Figure 3, a mobile client starts to retrieve data records for a CBQ
“0111” at the time of D5. Then the access steps are I5, D12, and D13. Since a bit-vector
(“0111”) of an address tuple in I5 is exactly matched with the QV, it can directly
access the data records which are in D12 and D13. In Case (2), the QV is “101*”, and
the query start time is at the time of I1. The access steps are I1, I4, D18, and D19. Here,
we have to follow two paths of index probing for D18 and D19. It is because the QV
“101*” includes two bit-vectors (“1010” and “1011”), and they are linked to D18 and
D19 respectively. In the figure, we depict the multiple paths with vertical arrows
whereas the horizontal arrows denote sequential probes. Case (3) shows the access
steps for processing a QV “****” at the time of I3. Because the current index bucket
contains four address tuples all of which are included by the QV, we have to follow
the four paths of index probes. And, for the bit-vectors not covered by I3, we have to
sequentially probe another relevant index buckets I4, I5 and I2

3. Arriving at each of the
index buckets, we follow the data links and retrieve the data records.

4 Analysis and Experiments

In this section we analyze some properties of the proposed method, and experimen-
tally evaluate its effectiveness with respect to the improvement of energy-efficiency

3 If we apply the index replication strategies of [4], such as SL(Sibling Link) or NL(Nephew

Link), the access steps for Case 3 in Figure 3 will be changed such that the step for index
bucket I1 is removed.

150 Y.D. Chung and J.Y. Lee

compared with the previous index. For convenience of analysis, we assume that the
data records are uniform, thus the number of data buckets pointed by each leaf-level
bit-vector is the same and the BV-tree is fully balanced.

Observation 1. Let l be the number of bits for a bit-vector, ndb be the number of data
buckets for a fully specified bit-vector, and f be the fan-out as computed in Section 3.4.
Then, we can observe the followings:

1. the height of the BV-tree is l+1
2. the height of the B2V-tree is

1
1 ++

i

l , where i = log2 f

3. the number of tuning steps for reading index buckets is 2
1 ++

i

l (i.e., the

height + 1) in the worst case and 1 in the best case
4. the number of tuning steps for reading data buckets for a CBQ q is

ndbw ×2 ,where w is the number of ‘*’ in q.

Now, we compare the proposed indexing scheme with the previous index method.
Firstly, in order to show the need of supporting CBQs, we compare the Distributed
Indexing method and the proposed one in Table 1, which is the qualitative comparison

Table 1. Tuning performance comparison for each query type

Query Type The Proposed Method The Distributed Indexing Method

Point queries with the
key attribute

- Partially Supported4 - Completely Supported

Point queries without

the key attribute

-Partially Supported

(same to the above; but
more efficient than

the Distributed Indexing

- Not Supported.

(i.e., all data buckets must be
read to be checked)

Partial-match queries
with the key attribute

- Partially Supported if the key
attribute is used for data access.

- Not Supported otherwise

Partial-match queries
without the key

- Not Supported

Range-queries
with the key attribute

- Partially Supported if the key
attribute is used for data access

- Not Supported otherwise
Range-queries

without the key attribute

- Efficiently Supported

- Not Supported

4 We can improve the efficiency by assigning more bits to the key attribute when designing

hash functions.

Multi-attribute Hashing of Wireless Data for Content-Based Queries 151

of tuning performance for various query types. (Signature techniques are not consid-
ered in this comparison since they are filtering approaches not indexing ones. Filter-
ing mechanism can be added to conventional indexing methods and also our proposed
method for further performance improvement.)

We consider 6 query types: (1) point queries with the key attribute, (2) point que-
ries without the key attribute, (3) partial-match queries with the key attribute, (4)
partial-match queries without the key attribute, (5) range-queries with the key attrib-
ute and (6) range-queries without the key attribute.

Now we experimentally compare the proposed method with the conventional Dis-
tributed Indexing method. We simulate the wireless media with a data stream on
disks, that is, the server generates the broadcast data stream into a file, and client
modules read the file according to the wireless data stream access protocol. The data
set used for the experiment is as follows:

 Number of data records: 4096

 The contents of a data record: 4 attributes - company code, amount of sale,
amount of purchase, and price (in this order), where the company code is the
unique primary key attribute. The domain of each attribute is:

 A1 (company code): 0 ~ 4096

 A2 (amount of sale), A3 (amount of purchase): 0 ~ 219-1

 A4 (price): 0 ~ 210-1

 The size of a data record: 16 bytes

We set the size of bucket as 128 bytes and the size of bit-vector as 16 bits. (We tested
other bit-vector and bucket sizes, but result patterns were similar.) For each method,
we measure the access time and tuning time performance for 10 test queries in Table 2.
We in this experiment measure the access and tuning time when assuming the query
processing begins at the root node.

Table 2. Queries used in the experiment

Query Description Remarks

Q1 code = 12 Point query with key attribute (low value)

Q2 code = 3210 Point query with key attribute (high value)
Q3 amount of sale = 100000 Point query with non-key (the 2nd) attribute
Q4 amount of purchase = 0 Point query with non-key (the 3rd) attribute
Q5 price = 100 Point query with non-key

(the 4th i.e., the least significant) attribute
Q6 100 < code < 300 Range query with key attribute
Q7 amount of sale < 50000 Range query with non-key attribute
Q8 100000 < amount of sale

< 200000
Range query with non-key attribute

Q9 code = 12 and
amount of sale < 10000

Pointed by key attribute and ranged
with non-key attribute

Q10 amount of sale = 100 and
100 < price < 200

Pointed by non-key attribute and ranged
with non-key attribute

152 Y.D. Chung and J.Y. Lee

Figure 4 shows the experiment results of our method and the conventional method.
As discussed in the above qualitative comparison, the proposed method outperforms
the previous method except some primary key-based queries (e.g., Q1, Q2, Q6, and
Q9). The results show that our method provides 80%~90% tuning time reduction with
only 20%~30% access time increase. In case of Q5, the performance of our method is
not so good. This is because the attribute ‘price’ is the least significant one, and hence
their bit representations are positioned at the right end in bit-vectors, which reduces
index probing efficiency.

Fig. 4. Experiment Results of Distributed Indexing (left) and Our Method (right)

6 Conclusion

The broadcasting strategy is widely used in wireless information systems due to its
various merits. However, the previous indexing methods for broadcast data mostly
considered key-based point queries, which are so restrictive in their usage. In the
paper we have proposed an index method for content-based queries on wireless data
stream. The content-based queries retrieve data records from the wireless stream by
specifying the contents of data not the key attribute values.

In the paper, we have used the multi-attribute hashing for bit-vector representation
of data records and queries. The multi-attribute hashing is known as a popular method
for content description. With the bit-vectors, we have constructed the BV-tree, which
includes data bit-vectors in the leaf level and partially-specified (i.e.,‘*’) bit-vectors in
the intermediate levels. After constructing the BV-tree, we have merged the BV-tree
nodes in the unit of bucket for the index on the air, called the B2V-tree.

Through the analysis and experiments, we have described some properties of the
proposed index structure and showed its effectiveness with respect to the improve-
ment of tuning performance compared with the previous index method. Since the
previous method uses the key attribute for tree-style index construction, they cannot
effectively support content-based queries. In contrast, with the proposed method, the
mobile clients are able to energy-efficiently process content-based queries such as
partial-match and range-queries.

In the future, we will comprehensively experiment the proposed method consider-
ing various environmental settings such as data distribution, caching policies of mo-

Multi-attribute Hashing of Wireless Data for Content-Based Queries 153

bile clients, error-rates of wireless communication and so on. The research on con-
tent-based query processing for non-uniform data streaming applications will also be
of importance.

Acknowledgement

This work was done as a part of Information & Communication Fundamental Tech-
nology Research Program, supported by Ministry of Information & Communication
in Republic of Korea.

References

1. Abdel-Ghaffar, K.A.S., Abbadi, A. E.: Optimal Disk Allocation for Partial Match Queries.
ACM Transactions on Database Systems, 18(1), (1993) 132-156

2. Acharya , S., Alonso, R. , Franklin, M., Zdonik, S.: Broadcast Disks : Data Management
for Asymmetric Communication Environments. In Proceedings of ACM SIGMOD Con-
ference (1995) 199 - 210

3. Chen, M. S., Wu, K. L., Yu, P. S.: Optimizing Index Allocation for Sequential Data
Broadcasting in Wireless Mobile Computing, IEEE Transactions on Knowledge and Data
Engineering, 15(1), (2003) 161-173

4. Chung, Y. D., Kim, M. H.: An Index Replication Scheme for Wireless Data Broadcasting,
Journal of Systems and Software, 51(3), (2000) 191-199

5. Chung, Y. D., Kim, M. H.,: A Wireless Data Clustering Method for Multipoint Queries,
Decision Support Systems, 30(4), (2001) 469-482

6. Chung, Y. D., Kim, M. H.: Effective Data Placement for Wireless Broadcast. Distributed
and Parallel Databases, 9 (2001) 133-150

7. Faloutsos, C.: Multiattribute Hashing Using Gray Codes. In Proceedings of ACM
SIGMOD Conference (1986) 227 - 238

8. Hu, Q, Lee, W.-C., Lee, D. L.,: A Hybrid Index Technique for Power Efficient Data
Broadcast. Distributed and Parallel Databases, 9 (2001) 151-177

9. Imielinski, T., Badrinath, B. R.: Data Management for Mobile Computing. SIGMOD
RECORD, (1993) 22(1)

10. Imielinski, T., Viswanathan, S., Badrinath, B. R.: Power Efficient Filtering of Data on Air.
In Proceedings of Extending Database Technology (1994)

11. Imielinski, T., Viswanathan, S., Badrinath, B. R.: Data on Air : Organization and Access.
IEEE Transactions on Knowledge and Data Engineering 9(3), (1997)

12. Jing, J., Bakhres, O., Elmagarmid, A., Alonso, R.: Bit-Sequences : An Adaptive Cache In-
validation Method in Mobile Client/Server Environments. Mobile Networks and Applica-
tions (MONET), 2(2), (1997)115 - 127

13. Kim, M. H., Pramanik, S.: Optimal File Distribution for Partial Match Retrieval. In Pro-
ceedings of ACM SIGMOD Conference, (1998)173-182

14. Lee, J. Y., Chung, Y. D., Lee, Y. J. Kim, M. H.: Gray Code Clustering of Wireless Data
for Partial Match Queries. Journal of Systems Architecture, 47 (2001), 445-458

A Tool for Automated Resource Consumption
Profiling of Distributed Transactions

B. Nagaprabhanjan and Varsha Apte

Indian Institute of Technology Bombay, India
nagaprabhanjan@it.iitb.ac.in, varsha@cse.iitb.ac.in

Abstract. In this paper, we present a tool, called Autoprofiler, that
automates the discovery of resource consumption by transactions on
distributed systems. Such information is required as input to perfor-
mance analysis tools, which may be used for capacity planning, for re-
architecting a distributed system, or to identify potential bottlenecks.
Deriving this information using existing tools is a tedious and error prone
process. In contrast, our tool requires minimal human intervention, and
brings down the time required to profile complex distributed systems
to a few minutes. It does this by co-ordinating the process of load gen-
eration and server resource profiling. Our tool also works with a Java
profiler, called LiteJava Profiler, which we have built, to fully automate
the process of resource consumption discovery for J2EE servers.

1 Introduction

With the advent of the Internet, the trend of business transactions between
customers and enterprises has changed drastically. Now, a customer expects to
perform a business transaction within seconds from home through the Internet.
The IT infrastructure of an enterprise should be robust enough to provide such
service to its customers. As distributed computing systems have been proven
to be a low cost and high performance alternative to centralized systems, most
of the Internet based services are supported by distributed systems. An enter-
prise can also choose to consolidate all their applications and services in high-
performance data centers. In either case, a typical transaction always accesses
multiple nodes before completion. For example, a transaction to transfer money
from one account to another may access the authentication server for verifying
the credentials of a person, the database server to access the accounts and the
application server for processing the business logic.

In such a scenario, it is necessary for an enterprise or the owner of a data
center to make sure that the user performance requirements of a service, such as
response time, throughput, connection loss rate etc. are met. At the same time,
it is desirable that the IT infrastructure is utilized well and the systems operate
close to their capacity. The process of sizing the infrastructure so that service
performance requirements are met, is called “capacity planning”. Capacity plan-
ning can be carried out if the resource requirements of individual applications
are known, along with the usage volumes (or load) that the applications need to
support.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 154–165, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Tool for Automated Resource Consumption Profiling 155

One way to answer a capacity planning question, such as how many machines
of a certain type are required to support a certain application, is the following:
If resource utilization and load measurements are available from a system where
this application is currently deployed, a simple linear scaling can be used for
future capacity planning. E.g. if it is known that application server A deployed
on Machine M, is supporting 1000 customers, with machine M’s utilization level
at 80%, then if the number of customers is projected to reach 2000, planning for
one more machine of the same type will be needed.

However, this approach works only if the nature, or the mix of transactions
coming to the system can be assumed to be unchanging. If the workload mix
on a system changes, then linear scaling methods do not work. In such cases,
a more detailed model of the system, and a fine-grained resource consumption
profile of the transaction is required. That is, we need to know what the resource
requirement of each type of transaction is, not the application server as a whole.
More specifically, a complete resource consumption profile, such as the CPU time
required by each transaction of the application, the memory requirement, the
disk and network I/O, is required, along with a characterization of the workload
(e.g. rate at which the requests for different transactions arrive). With these
inputs, analytical queueing models (or simulation models), can be used to arrive
at an optimal sizing and deployment configuration of the applications on the
infrastructure [13].

Several modeling tools exist that accept the resource requirements, the mes-
sage flows and the deployment configuration of applications on physical resources
as inputs, and solve an underlying queueing model to provide performance mea-
surements [13]. However, in realistic scenarios, these inputs may not be readily
available, and effort must be made to explicitly discover them. Of the three men-
tioned above, the deployment details are the easiest to obtain; however, deriva-
tion of the message flows and resource requirement may be more involved. The
process of discovering resource consumption for multiple transactions that access
multiple servers can be quite tedious and error prone. Thus, there is a need for
designing good software tools that make this process smoother, error-free and
requiring minimal human involvement.

In this paper, we describe a tool that automates this process of resource usage
profiling for distributed applications which have a Web-based front-end. Given
a simple deployment description, and the URIs of the Web-transactions, the
tool generates a resource consumption profile of all specified servers. The tool
includes two components: the wrapper component, which we call the Autoprofiler
which automates and co-ordinates the entire process; and a Java-specific profiler
called the LiteJava Profiler. This was required since direct interaction with JVM
internals is required to produce a fine-grained profile of a Java application.

We note here that none of the existing load generators are built for this
purpose; they are primarily “performance testing” tools - a purpose which is
distinctly different from resource profiling. In case of Java profilers, none of the
exisiting Java profilers fit into the automated framework that we were building,
therefore we built a custom profiler (LiteJava Profiler), which is flexible and

156 B. Nagaprabhanjan and V. Apte

scalable, to suit our requirements. In our experiments with Autoprofiler working
with the LiteJava Profiler, the time required to profile a sample J2EE application
called ECPerf reduced dramatically. Thus, our tool can significantly enhance the
productivity of an IT enterprise.

The rest of the paper is as follows. In Section 2, we present some commonly
available load generators and resource profilers and discuss their limitations. In
Section 3 we present Autoprofiler, a framework to automate the process of load
generation and resource profiling. We discuss the LiteJava Profiler in Section 4. In
Section 5, we present the results of some preliminary experiments conducted with
the tool and discuss some observations that we found in Java based applications.
We conclude in Section 6 with a discussion on future work.

2 Background and Motivation

In order to better understand the need for automating the process of resource
consumption profiling, consider the scenario in Figure 1. Here, we have deployed
the ECPerf [1] application on the JBoss application server on one machine and
the PostgreSQL database server on another machine. The ECPerf application
supports services such as creating a new order, getting the status of an order,
getting the status of a customer, cancelling an order, scheduling a work order,
updating a work order etc. [1].

Now in order to find, for e.g., the CPU time consumed by each of the above
transactions on each of the servers, we need to do the following:

– Generate the requests for a particular transaction using some load generator.
– After some warm-up time, start measurements on both machines to profile

the corresponding processes.
– When the load generation is over, stop profiling the processes on the server

machines.
– Collect the statistics from the load generator as well as the profiling pro-

cesses. Correlate it (e.g. at request rate x, CPU utilization is y).

Fig. 1. A Resource Usage Profiling Scenario

A Tool for Automated Resource Consumption Profiling 157

– Carry out the calculations required to get the resource consumption values
for a single request.

– Repeat these steps for each transaction that the application supports.

Currently, in order to carry out the above steps, we need two distinct kind of
tools viz. load generators which generate load on the system and server profiling
tools which give us the resource consumption measurements from the server.
However, the co-ordination between the load generation and the server resource
profiling process needs to be done manually. Furthermore, the actual calcula-
tions needed to derive per-transaction resource consumption, also must be done
manually. This increases the time required to generate a complete resource con-
sumption profile of the server and increases the possibility of errors that occur
in the co-ordination process. As the service becomes more distributed in nature,
with a large number of components, the process of manually profiling becomes
more time consuming, tedious and error prone.

Most of the work mentioned above can and should be automated. This is what
we have aimed for in our tool viz. Autoprofiler. The tool should generate the
load for the transaction. After detecting sufficient warm up for the transaction,
it should automatically start measurement at the server end. When the load
generation process is over, it should get the resource consumption details from
the servers, normalize the values and display the same. In case the server is a
Java based server, the tool should also interact with the Java profiler to get fine
grained details.

2.1 Existing Tools

There are a number of commercial Web load generators available in the market,
e.g. PureLoad [2], openSTA[6] and Httperf [3]. Products such as Silk Performer [4]
and Mercury LoadRunner[5] are commercially available enterprise class tools.
However, these are all primarily performance testing tools that focus on record-
ing and analyzing client-side performance measures. Although some do provide
consolidated views of client-side performance measures along with server side
resource utilization measures, none of them do any co-ordination or calculations
necessary to provide per-transaction resource consumption details.

Some common OS utilities provide comprehensive resource consumption in-
formation. Top displays the dynamic values of the system state, such as CPU
utilization, memory consumed etc. on a per process basis. Additionally, utilities
such as iostat, vmstat, netstat, sar, ps provide information similar to top. The
Linux Trace Toolkit [7] can give finer information such as time spent in I/O etc.
by a process.

There are a number of profilers available for the Java environment. The Ex-
tensible Java Profiler (EJP)[8] is a Java profiling tool that enables developers
to test and improve the performance of their programs running on the JVM. It
has filtering capability allowing one to log only methods of specified packages.
Yourkit Java Profiler (YJP) [9] gives useful profiling information regarding the
heap (memory). Using this profiler, one can get the CPU and memory alloca-
tion information about the application. It has support for partial profiling which

158 B. Nagaprabhanjan and V. Apte

means that profiling can be enabled or disabled as and when required. Details
about more profilers can be found in [10]. The main drawback of these profilers
is that they are written for simple to moderate-sized applications, and meant
to be used in an interactive manner by humans. Hence, for e.g., they have very
user-friendly graphical interfaces. However, they fail to scale up when deployed
and run in a J2EE environment, requiring overheads such as a long start-up
time and a large amount of disk space for the large amount of data generated.
Furthermore, they are not built for automation, which makes them unsuitable
for our purpose.

3 Autoprofiler

The Autoprofiler is a distributed tool with a master-slave architecture, that co-
ordinates the process of load generation and resource profiling. In master mode,
the tool generates the load and is responsible for co-ordinating the process. In
slave mode, the tool records the resource utilization information and sends this
to the master when asked for. This basic co-ordination process for a general
distributed system is depicted in Figure 2.

Here, the master resides at the client side and the slaves at the servers. The
client side is the one where load is generated and the server side is the one where
the application servers reside that serve the requests.

In the first version of the tool, we have focussed mainly on resource profiling.
We aim to get only raw service times for requests and do not want to put the
resources under contention. In order to ensure this, the tool generates the re-
quests sequentially; that is, only after the reply for a request arrives, it generates

Fig. 2. Autoprofiler: Architecture and process co-ordination

A Tool for Automated Resource Consumption Profiling 159

the next request. These raw service times will serve as input to queueing models
from which the performance attributes of the system such as the average number
of jobs, average waiting time etc. can be derived.

We now discuss the architecture of the tool in detail. As the tool works in
two modes viz. master and slave, we discuss their architectures seperately.

3.1 Master Architecture

The tool, as a master, does the following:

– Reads the information about the transactions from an XML file.
– Generates the corresponding HTTP requests.
– Co-ordinates the process of resource profiling by issuing commands to the

slaves.
– Displays the resource profile summary on the master terminal.

We elaborate further on some of the elements of the Master.

Input Specification Formats: The tool needs inputs such as the description
of the transactions, the software servers and their deployment details. We have
created an XML DTD that allows us to specify this information. Figure 3 shows
the XML DTD which we explain in detail as follows:

Transaction Specification: As can be seen from the DTD, the basic information
about a transaction comprises of:

– The transaction name.
– The Web interface for the transaction.
– The information about the applications, and their deployment information,

that are accessed by the transaction.

The Web interface comprises of the node and port on which the Web server is
running. This information is given as url and port respectively. It also includes
the Uniform Resource Identifier (URI) information which specifies what needs
to be accessed.

Specification of URI: A static URI is specified as uri in the XML file. If variable
URIs are to be sent (e.g. URIs with “name-value” pairs), the name of a file of
such URIs is given instead, as uriFile in the XML specification.

Node information: The tool also needs to know the information about the nodes
that are accessed by a particular transaction so that it can communicate with the
slaves at the respective nodes. The tool identifies two different types of nodes.
One is a Java node and the other one is a native node.

A Java node is one which hosts a Java based application server such as Tom-
cat, JBoss etc. On a Java node, we have the Java based profiler running inside
the JVM which does profiling on a per method basis. A native node is one which
hosts any other conventional application server. Irrespective of whether a node
is a Java node or a native node, the name of the process which serves the trans-
action on that machine needs to be specified. If there is more than one process

160 B. Nagaprabhanjan and V. Apte

<!DOCTYPE services [
<!ELEMENT services (TransInfo+)>
<!ELEMENT TransInfo (Name, WebInterface, NodesInfo+)>
<!ELEMENT WebInterface (url,port,(uri|uriInfoFile))>
<!ELEMENT NodesInfo (nativeNode|javaNode)>
<!ELEMENT nativeNode (Node, Process)>
<!ELEMENT javaNode (Node, Process, ComponentInfo?)>
<!ELEMENT ComponentInfo (Component+)>
<!ELEMENT Component (Name,Interface+)>
<!ELEMENT Node (#PCDATA)>
<!ELEMENT Process (#PCDATA)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT url (#PCDATA)>
<!ELEMENT port (#PCDATA)>
<!ELEMENT uri (#PCDATA)>
<!ELEMENT uriInfoFile (#PCDATA)>
<!ELEMENT Interface (#PCDATA)>
]>

Fig. 3. The XML DTD

serving the transaction on a given node, then the two processes are mentioned as
seperate entries. If the node is a Java node, then more information is specified.
We will discuss this in Section 4. If a node has both Java and native servers run-
ning on it and they need to be profiled, then they are specified as two separate
entries in the XML file.

Procedures Done by the Master: After reading the input in the XML
format, the Master carries out the following procedures:

Request Generation: The request generator generates the requests sequentially.
It reads the transaction information and frames the URL accordingly depending
on the type of transaction.

Warm up Detection: We use the technique of moving average to detect the
steady state of the server. As the request generator receives the responses from
the server, it records the response times. We define a window of size w and
calculate and store the average of the last w values. If the normalized difference
between the two averages is less than a given ε, then we conclude that the server
has sufficiently warmed up and we start taking measurements from that point
onwards.

If the value of w is small, then we may see too many fluctuations between
successive values and if the value of w is large, then we may not see any fluctu-
ations at all. We have chosen w to be 5, which successfully detected warm-up in
our experiments. This method is loosely based on Welch’s method for discarding
the initial transient and detecting the steady state [11].

If the successive moving averages do not differ by more than 15%(ε ≤ 0.15),
then we conclude that the server has sufficiently warmed up.

A Tool for Automated Resource Consumption Profiling 161

Master-Slave Co-ordination: The main purpose of Autoprofiler is to co-ordinate
the process of load generation with the resource profiling. When the load gener-
ator detects sufficient warmup of the server, commands are sent to the slaves to
start profiling. When the load generation process is over, the master again sends
commands to get the profiling data from the slaves.

The profiling process can be summarized as follows:

– Master reads the transaction information from the XML file.
– Master starts generating the load.
– When the server has warmed up, commands are sent to the slaves to start

profiling.
– When the load generation process is over, commands are again sent to slaves

to get Che profiling data.

As can be seen, the entire profiling process as described in Section 2, that was
being done manually is now fully automated by the Autoprofiler.

3.2 Slave Architecture

The tool when working as a slave, interacts with the OS tools as well as the
in-process Java profiler to control the profiling. It works in the passive mode;
that is, it waits for the master to send commands and then acts on them.

Interaction with the OS tools: The resources that are profiled by the tool are
CPU time consumed, disk I/O, network I/O. Since the tool is developed for a
Linux environment, we use tools that are available with every Linux distribution.
We use ps for the CPU time consumed, vmstat for the details about disk I/O
and netstat for the details about network I/O. Since the values given by the tool
are cumulative, the slave takes the snapshot of the values at the beginning of
the profiling process and at the end of the profiling process.

Interaction with the Java profiler: The slave controls the in-process Java profiler.
The slave is responsible for initializing and resetting the profiler state, sending
the necessary data to the profiler and receiving the data from the profiler. The
Java profiler is explained in detail in the next section. Figure 2 shows the overall
architecture of Autoprofiler integrated with the Lite Java Profiler.

4 Lite Java Profiler (LJP)

We have developed an in-process Java profiler, called the LiteJava Profiler,
(LJP), which can give fine grained information such as per method CPU in-
formation, memory allocated in the JVM and garbage collection information by
using JVMPI [12]. LJP interacts with the AutoProfiler slaves, and hence fits into
the overall automated framework. LJP is “lighweight”; i.e., it has low profiling
overhead, does not generate unreasonably large amounts of data, and does not
require disk I/O.

162 B. Nagaprabhanjan and V. Apte

4.1 Features

We wrote LJP to overcome the limitations of the existing Java profilers. The
enhanced features that are unique to our tool are:

– Partial profiling: This means that the profiling process can be stopped and
started whenever required. This is necessary especially in J2EE kind of envi-
ronments where continuous profiling can result in very large overhead which
can affect the measurement process.

– Remotely controllable:. LJP can be controlled from a remote machine. This
feature is required for automating the process of resource profiling.

– Dynamic filter support: LJP supports dynamic filtering. Filters are set to
profile only selected methods and hence reduce the profiling overhead. The
profilers we surveyed either had static filtering option where it obtains the
filtering information once at start-up or provided filtering only at the display
stage.

– No File I/O: LJP does not do any file I/O since it can cause unnecessary
overhead. It maintains in-memory data structures to store all the interme-
diary data.

– Garbage collection information: As the garbage collection process happens
asynchronously in the JVM, it can indeed affect the response time of a trans-
action. LJP separately profiles the garbage collection process and reports the
statistics.

4.2 Implementation Details

Partial Profiling and Remote Controllability. When the JVM is started,
the LJP spawns a separate thread and starts listening for commands from the
master. The LJP works with the JVMPI, which generates various events. Only
the class load event is enabled in the beginning (i.e. before LJP is asked to start
profiling). This lets LJP build the mapping between the method names and
method IDs. This is stored internally by the LJP as a hash map, which is required
because method events only include method IDs. Other events, such as method
entry and exit, object allocation and garbage collection that are used for the
actualy profiling are enabled and disabled based on commands from the master.
Thus there is no unnecessary start-up overhead. The master communicates with
the LJP through the slave. This “partial” profiling results in huge saving of
overheads, since one can choose not to profile the thousands of methods that
are called at start-up by the J2EE application server such as JBoss, and instead
start profiling only when transactions start coming to the server.

Dynamic Filtering Support. Filters are necessary to avoid unnecessary pro-
filing overhead, so that, for e.g., one can profile only the application-specific
methods, and not the internal methods called by the application server. How-
ever, when profiling the server with minimal human interaction, the flexibility of
changing the filter without re-starting the JVM and the application server, is re-
quired. Thus dynamic filtering support has been provided in LJP. It uses a set of

A Tool for Automated Resource Consumption Profiling 163

in-memory data structures to maintain the filter information, thus no files need
to be read. The filter information is provided in the form of class names and the
corresponding method names. Whenever such a method executes, its execution
time is recorded. The specific components and their corresponding methods are
specifed in ComponentInfo element in the XML file.

Garbage Collection. As already mentioned, garbage collection can happen
asynchronously during the load generation period and hence can affect the re-
sponse time. We capture the garbage collection information and report it along
with the other profile details. This is done by enabling the gc start and gc finish
events in the JVMPI.

5 Experiments and Observations

To test the tool, we profiled ECPerf, a sample J2EE application which was writ-
ten to serve as a benchmark for evaluating different J2EE servers. We deployed
ECperf application on the JBoss application server. The experimental setup is
as depicted in Figure 1.

The database server is hosted on a uni-processor Pentium 4 machine and the
JBoss application server on a dual processor Pentium 4 machine. All transactions
access the database server for retrieving data. The resource consumption details
of various transactions for ECPerf are as shown in Table 1.

Table 1. Results

TN Rt JBoss Server PostgreSQL
(ms) St Ni No Dr Dw St Ni No Dr Dw

(ms) (bytes) (ms) (bytes)
Order Status 492.6 480.5 147.4 25.6 962.5 120.0 7.5 143.1 15.5 798.7 87.7

Customer Status 654.5 633.3 196.7 26.3 131.5 70.0 9.4 195.1 96.5 146.7 50.7
Cancel Order 620.8 616.5 196.4 28.6 172.5 30.0 3.5 184.1 11.5 652.7 273.7

Schedule Work Order 560.6 533.5 164.4 24.6 137.5 89.0 10.5 160.1 13.8 555.7 69.7
Update Work Order 572.4 566.67 168.4 26.6 106.5 49.0 6.5 165.12 10.5 603.7 47.7

Complete Work Order 1041.4 1033.3 302.4 45.6 233.5 273.0 10.5 304.12 19.5 1156.7 1501.7
Cancel Work Order 577.9 540.5 178.4 26.6 150.5 18.0 12.5 172.12 19.5 528.7 38.7

Here St is the service time in milliseconds per transaction, Ni and No are
number of bytes sent and received on the network, Dr and Dw are number of
disk bytes read from and written to disk1. The values given by the Java profiler
for individual transactions are shown in Table 2.

The entire profiling process, which generated 8 set of resource consumption
measures, for 7 transactions, on 2 servers, took less than 10 minutes with the
1 vmstat and netstat give values on an overall basis - not per-process. Thus the values

obtained from vmstat and netstat include background disk and network activity. In
the future versions of the tool, this “noise” will be removed.

164 B. Nagaprabhanjan and V. Apte

Table 2. Results from Java Profiler

Transaction Method Info GC Time
Name Method Name CPU time Memory consumed (ms)

(ms) (kilobytes)
Order Status getOrderStatus() 32.7 16 43

Customer Status getCustomerStatus() 48 26 44
Cancel Order cancelOrder() 43.6 33 43

Schedule Work Order scheduleWorkOrder() 24 17 42
Update Work Order updateWorkOrder() 30.6 17 42

Complete Work Order completeWorkOrder() 81 45 42
Cancel Work Order cancelWorkOrder() 43 24 45

aid of the tool. If done manually, this experimentation, and the generation of
results, can consume days.

Resource profiles such as this one can lead to helpful insights about the bottle-
necks in a distributed system. For example, let us compare the CPU time taken
by the application methods in the JBoss server (as shown in Table 2), with the
total time consumed by the java process (as shown in Table 1). We can derive
the time taken by the JBoss server methods by calculating the difference in these
two measurements. We conclude that the JBoss application server contributes
a large CPU time overhead (90% of the total time) while servicing a request.
Similarly, we can observe that garbage collection time is more or less the same
for all transactions.

6 Conclusion and Future Work

In this paper, we presented a tool that automates the process of fine-grained
resource consumption profiling of distributed transactions. We believe that this
tool represents a different paradigm - one in which performance measurement
is done for the purpose of performance modeling and prediction, not simply for
the sake of performance “testing”. Existing tools do not significantly ease the
process of gathering inputs that a performance analyst or a modeling tool would
need, if performance is to be predicted beyond that which the load generator
can measure. Sophisticated capacity planning requires the use of performance
models, and performance models require inputs such as per-transaction and per-
server resource consumption details.

We have built such a tool, and demonstrated that it can significantly reduce
the time to produce such data, which will result in greater productivity of the
performance analyst, and ultimately will cut costs of running large data centers.

Our experimentation also showed that resource profiling can reveal valuable
insights about the performance characteristics of the applications under study -
e.g. that application server overhead in J2EE servers can be large.

The tool can be enhanced in several directions. First, we can add innumer-
able features to it which enhance its usability for realistic Web-based systems.

A Tool for Automated Resource Consumption Profiling 165

Second, the tool can be made more “intelligent” by having it automate several
tasks that are a part of a measurement study; e.g. automatically characterize
maximum throughput, find the bottleneck components, the maximum number
of users that can be supported by the system, etc. Third, we can extend the
tool so that it can work on high-level measurements obtained from a production
environment. Generating resource profiles from measurements made in an un-
controlled environment is an interesting research problem that can be pursued
further.

References

1. Sun Microsystems: The ECperf benchmark for evaluating J2EE servers (2003),
http://java.sun.com/j2ee/ecperf/index.jsp .

2. Minq Software AB: Pure load (2003), http://www.minq.se.
3. David Mosberger: httperf (2003),

http://www.hpl.hp.com/personal/David Mosberger/httperf.html.
4. Segue Software Inc: Silk performer (2002), http://www.segue.com.
5. Mercury Interactive Corporation: LoadRunner (2002),

http://www.mercury.com/us/products/.
6. openSTA: openSTA Software Testing Architecture (2002),

http://www.opensta.org/.
7. OperSys: Linux Trace Tool kit (LTT) (2002), http://www.opersys.com/LTT.
8. Sabastien Vauclair: Extensible Java Profiler (2003), http://ejp.soureforge.net.
9. Yourkit: Yourkit Java Profiler (2003) http://www.yourkit.com.

10. B Nagaprabhanjan: Automated and Fine grained Resource Consumption Dis-
covery of Distributed Transactions. Master’s thesis, K.R.School of Information
Technology, IIT Bombay (2004).

11. Law, A.M., Kelton, W.D.: Simulation modeling and analysis (2003).
12. Sun Microsystems: The Java Virtual Machine Programming Interface (JVMPI)

(2004) http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html.
13. Rolia, J.A., C.Sevcik, K.: The method of layers. In: IEEE Transactions on Software

Engineering archive. Volume 21, Issue = 8 (August 1995). (1995) 689 – 700.

An Efficient Algorithm for Removing Useless
Logged Messages in SBML Protocols

JinHo Ahn

Dept. of Computer Science,
College of Information Science, Kyonggi University,

San 94-6 Iuidong, Yeongtonggu,
Suwon-si Gyeonggi-do 443-760, Republic of Korea

jhahn@kyonggi.ac.kr

Abstract. To continuously log messages in the limited volatile memo-
ries of their sending processes, existing SBML protocols force the pro-
cesses to periodically flush the message log into the stable storage or
messages in the log to be useless for future failures and then removes
them. But, these garbage collection algorithms may result in a large num-
ber of stable storage accesses or high communication and checkpointing
overheads as inter-process communication rate increases. To address this
problem, we propose an efficient algorithm to autonomously remove use-
less log information in its volatile storage by piggybacking only some
additional information. It requires no extra message and forced check-
point. Additionally, the algorithm efficiently supports fast commit of all
output to the outside world. Simulation results show that our algorithm
considerably outperforms the traditional algorithm with respect to the
average elapsed time required until the memory buffer for message log-
ging of a process is full.

1 Introduction

As message-passing distributed systems scale up, their failure rate may also
increase. In particular, if long-running distributed and parallel applications are
executed on the systems, process failure may become the most critical issue
[1, 9]. To address the issue, the systems use log-based rollback recovery as a
cost-effective and transparent fault-tolerance technique, in which each process
periodically saves it local state by or without synchronizing with other processes
[2, 6], and logs each received message [5]. If a process crashes, the technique
creates a new process and allows the process to restore its consistent state and
replay its previously received messages beyond the state.

Message logging protocols are classified into two approaches, i.e., sender-based
and receiver-based message logging, depending on which process each message is
logged by [5]. First, receiver-based message logging(RBML) approach [8, 11] logs
the recovery information of every received message to the stable storage before
the message is delivered to the receiving process. Thus, the approach simplifies
the recovery procedure of failed processes. However, its main drawback is the
high failure-free overhead caused by synchronous logging.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 166–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Efficient Algorithm for Removing Useless Logged Messages 167

Sender-based message logging(SBML) approach [3, 4, 10] enables each mes-
sage to be logged in the volatile memory of its corresponding sender for avoiding
logging messages to stable storage. Therefore, it reduces the failure-free overhead
compared with the first approach. But, the second approach forces each process
to maintain in its limited volatile storage the log information of its sent messages
required for recovering receivers of the messages when they crash. Therefore, the
sender-based message logging approach needs an efficient garbage collection al-
gorithm to have the volatile memory of each process for message logging become
full as late as possible because, otherwise, the technique forces the message log in
the memory to be frequently flushed to stable storage or requires a large number
of additional messages and forced checkpoints for removing the log.

Existing SBML protocols use one between two message log management pro-
cedures to ensure system consistency despite future failures according to each
cost. The first procedure just flushes the message log to the stable storage. It
is very simple, but may result in a large number of stable storage accesses dur-
ing failure-free operation and recovery. The second procedure forces messages
in the log to be useless for future failures and then removes them. In other
wards, the procedure checks whether receivers of the messages has indeed re-
ceived the corresponding messages and then taken no checkpoint since. If so, it
forces the receivers to take their checkpoints. Thus, this behavior may lead to
high communication and checkpointing overheads as inter-process communica-
tion rate increases. This paper presents an efficient algorithm to autonomously
remove useless log information in its volatile storage by piggybacking only some
additional information. It requires no extra message and forced checkpoint. Ad-
ditionally, the algorithm efficiently supports fast commit of all output to the
outside world, which consists of everything that processes in the system can
interact with that cannot be rolled back.

2 Basic Idea

The sender-based message logging approach has the feature that each failed
process has to be rolled back to the latest checkpoint and replay the received
messages beyond the checkpoint by obtaining the recovery information from their
sender processes. From this feature, we can see that all the messages received
before process p takes its latest checkpoint, are useless for recovering p to a
consistent state in case of p’s failure. For example, there are three processes
p1, p2 and p3 in figure 1. In here, process p1 sends two messages msg1 and
msg3 to p2 after having saved the log information of the messages in its volatile
storage. Also, process p3 sends message msg2 to p2 in the same way. In this case,
we suppose that process p2 takes its i-th checkpoint after it received the three
messages like in this figure. Afterwards, even if p2 fails, it rolls back at most up
to the i-th checkpoint. Thus, the log information of the three messages msg1,
msg2 and msg3 becomes useless in case of future failures.

Therefore, our algorithm are designed to enable p to locally remove the useless
logged messages from the volatile storage without requiring any extra message

168 J. Ahn

p2

p3

time
p1

msg1

msg2

FailChk 2
i

msg3

Fig. 1. What is useless log information in SBML protocols?

and forced checkpoint. For this purpose, each process p must have the following
data structures in the proposed algorithm.

– Sendlgp: a set saving lge(rid, ssn, rsn, data) of each message sent by p.
In here, lge is the log information of a message and the four fields are the
identifier of the receiver, the send sequence number, the receive sequence
number and data of the message respectively.

– Rsnp: the receive sequence number of the latest message delivered to p.
– RsnV ectorp: a vector in which RsnV ectorp[k] is the receive sequence number

of the last message delivered to k before k has saved the last checkpointed
state of k on the stable storage.

Informally, our algorithm is performed as follows. Taking a local checkpoint,
p updates RsnV ectorp[p] to the receive sequence number of the latest message
delivered to p. If p sends a message m to another process q, the vector is piggy-
backed on the message. When receiving the message with RsnV ectorp, q takes
the component-wise maximum of two vectors RsnV ectorp and RsnV ectorq. Af-
terwards, q can remove from its message log Sendlgq all lge(u)s such that for
all k ∈ a set of all processes in the system, lge(u).rid is k and lge(u).rsn is less
than or equal to RsnV ectorp[k].

To explain the algorithm more easily, figure 2 shows an example of a dis-
tributed computation consisting of three processes p1, p2 and p3 communicating
with each other. In this example, the processes take their local checkpoints Chkw

1 ,
Chkx

2 and Chky
1 . In this case, they update RsnV ector1[1], RsnV ector2[2] and

RsnV ector3[3] to each rsn of the last message received before taking its respec-
tive checkpoint. In here, we assume that values of Rsn1, Rsn2 and Rsn3 are a,
b and c. Afterwards, p2 receives four messages, msg1 and msg5 from p1 and
msg2 and msg4 from p3. At this point, p1 keeps lge(msg1) and lge(msg5) in
Sendlg1, and p3, lge(msg2) and lge(msg4) in Sendlg3. On taking the next lo-
cal checkpoint Chkx+1

2 , p2 updates RsnV ector2[2] to rsn of msg5 as msg5 is
the last message received before the checkpoint. In this case, the value of Rsn2
becomes (b+4). Then, it sends a message msg7 with RsnV ector2 to p1. When

An Efficient Algorithm for Removing Useless Logged Messages 169

p2

p3

p1

msg3msg1

msg2 msg4

msg5
msg7 msg8

RsnVector1 = (a,b,c),
Sendlg1(lge(msg1), lge(msg5))

RsnVector3 = (i,j,c),
Sendlg3(lge(msg2), lge(msg4),lge(msg6))

msg6
msg9

RsnVector1 = (a,b+4,c), Sendlg1()RsnVector2 = (a,b+4,c),
Sendlg2(lge(msg3), lge(msg7))

RsnVector3 = (a+3,b+4,c), Sendlg3()

RsnVector2 = (a+3,b+4,c),
Sendlg2()

Rsn1 = a

Rsn2 = b

Rsn3 = c

Rsn2 = b+4

Rsn1 = a+3

p2

p3

p1

msg3msg1

msg2 msg4

msg5
msg7 msg8

RsnVector1 = (a,b,c),
Sendlg1(lge(msg1), lge(msg5))

RsnVector3 = (i,j,c),
Sendlg3(lge(msg2), lge(msg4),lge(msg6))

msg6
msg9

RsnVector1 = (a,b+4,c), Sendlg1()RsnVector2 = (a,b+4,c),
Sendlg2(lge(msg3), lge(msg7))

RsnVector3 = (a+3,b+4,c), Sendlg3()

RsnVector2 = (a+3,b+4,c),
Sendlg2()

Rsn1 = a

Rsn2 = b

Rsn3 = c

Rsn2 = b+4

Rsn1 = a+3

Fig. 2. An example of a distributed computation consisting of three processes p1, p2
and p3

receiving the message, p1 updates RsnV ector1[2] to (b+4). Thus, it can remove
useless log information, lge(msg1) and lge(msg5), from Sendlg1 because rsn
of message msg5 is equal to RsnV ector1[2]. Hereafter, it takes the next local
checkpoint Chkw+1

1 and so sets the value of RsnV ector1[1] to rsn of the last mes-
sage, msg7, received before taking the checkpoint. In this case, RsnV ector1[1]
becomes (a+3). After that, it sends a message msg8 with RsnV ector1 to p3. On
receiving the message, p3 updates RsnV ector3 to (a+3, b+4, c) by using the vec-
tor of p1 piggybacked on the message. It can remove lge(msg2), lge(msg4) and
lge(msg6) from Sendlg3 because rsns of messages msg4 and msg6 are less than
RsnV ector3[2] and RsnV ector3[1] respectively. Then, p3 sends p2 a message
msg9 with RsnV ector3. When p2 receives the message, RsnV ector2 becomes
(a+3, b+4, c) after updating it. In this case, p2 can remove useless lge(msg3)
and lge(msg7) from Sendlg2. From this example, we can see that the algorithm
allows each process to locally remove useless log information from its volatile
storage with no extra messages and forced checkpoints.

3 Discussion

To evaluate performance of our algorithm(PGCA) with that of traditional one
(TGCA) [4], some experiments are performed in this paper using a discrete-
event simulation language [7]. One performance index is used for evaluation;
the average elapsed time required until the volatile memory buffer for message
logging of a process is full(Tfull). The performance index Tfull is measured un-
der the condition that the two algorithms perform no forced garbage collection
procedure, i.e.,incur no additional messages and no forced checkpoints. A sim-
ulated system consists of 10 hosts connected by a network, which is modelled

170 J. Ahn

Fig. 3. Average elapsed time required until the volatile memory buffer for message
logging of a process is full according to Tinterval

as a multi-access LAN (Ethernet). The message transmission capacity of a link
in the network is 100 Mbps. Nodes connected to the network are identical and
uniformly distributed along the physical medium. For simplicity of this simula-
tion, it is assumed each node has one process executing on it and 10 processes
are initiated and completed together. For the experiments, it is also assumed
that the size of each application message ranges from 50 to 200 Kbytes and the
size of the memory buffer for logging of every process is 10Mbytes. Each process
takes its local checkpoint with an interval following an exponential distribution
with a mean Ckpttime=3 minutes. The simulation parameter is the mean mes-
sage sending rate, Tinterval, following an exponential distribution. All simulation
results shown in this section are averages over a number of trials.

Figure 3 shows the average elapsed time of the two algorithms required until
the volatile memory buffer for message logging of a process is full for the specified
range of the Tinterval values. In this figure, as their Tintervals of PGCA and
TGCA increase, their corresponding Tfulls also increase. The reason is that as
each process sends messages more slowly, the size of its message log also increases
at a lower rate. However, as it is expected, Tfull of PGCA is significantly higher
than that of TGCA. In particular, as Tinterval increases, the increasing rate of the
first rises more fast than that of the latter. This benefit of our algorithm results
from its desirable feature as follows: it enables a process p to autonomously
and locally eliminate useless log information from the buffer by only carrying a
vector RsnV ectorp on each sent message whereas the traditional algorithm does
not so.

An Efficient Algorithm for Removing Useless Logged Messages 171

References

1. A. M. Agbaria, R. Friedman. Starfish: fault-tolerant dynamic mpi programs on
clusters of workstations. In Proc. of the High Performance Distributed Computing
Symposium, pp. 31-40, Aug. 1999.

2. B. Bhargava and S. R. Lian. Independent checkpointing and concurrent rollback
for recovery - An optimistic approach. In Proc. of the Symposium on Reliable
Distributed Systems, pp. 3-12, 1988.

3. A. Bouteiller, F. Cappello, T. Hérault, G. Krawezik, P. Lemarinier and F. Mag-
niette. MPICH-V2: a Fault Tolerant MPI for Volatile Nodes based on Pessimistic
Sender Based Message Logging. In Proc. of the 15th International Conference on
High Performance Networking and Computing(SC2003), November 2003.

4. D. B. Johnson and W. Zwaenpoel. Sender-Based Message Logging. In Digest of
Papers: 17th International Symposium on Fault-Tolerant Computing, pp. 14-19,
1987.

5. E. N. Elnozahy, L. Alvisi, Y. M. Wang and D. B. Johnson. A Survey of Rollback-
Recovery Protocols in Message-Passing Systems. ACM Computing Surveys, 34(3),
pp. 375-408, 2002.

6. R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed systems.
IEEE Transactions on Software Engineering, Vol. 13, pp. 23-31, 1987.

7. R. McNab and F. W. Howell. simjava: a discrete event simulation package for Java
with applications in computer systems modelling. In Proc. First International
Conference on Web-based Modelling and Simulation, 1998.

8. M. L. Powell and D. L. Presotto. Publishing: A reliable broadcast communication
mechanism. In Proc. of the 9th International Symposium on Operating System
Principles, pp. 100-109, 1983.

9. J. T. Rough and A. M. Goscinski. The development of an efficient checkpointing
facility exploiting operating systems services of the GENESIS cluster operating
system. Future Generation Computer Systems, Vol. 20, No. 4, pp 523-538, 2004.

10. J. Xu, R.B. Netzer and M. Mackey. Sender-based message logging for reducing
rollback propagation. In Proc. of the 7th International Symposium on Parallel and
Distributed Processing, pp. 602-609, 1995.

11. B. Yao, K. -F. Ssu and W. K. Fuchs. Message Logging in Mobile Computing.
In Proc. of the 29th International Symposium on Fault-Tolerant Computing, pp.
14-19, 1999.

Divide and Concur: Employing Chandra and Toueg’s
Consensus Algorithm in a Multi-level Setting

Rahul Agarwal1,�, Mahender Bisht2, S.N. Maheshwari3, and Sanjiva Prasad3

1 Computer Science Department, SUNY at Stony Brook, Stony Brook, NY 11794-4400, USA
ragarwal@cs.sunysb.edu

2 INSEAD, 77305 Fontainebleau, France
3 Department of Computer Science and Engineering, Indian Institute of Technology Delhi,

Hauz Khas, New Delhi 110016, India

Abstract. We revisit the work of Chandra and Toueg on achieving consensus
using unreliable failure detectors in an asynchronous system with crash stop fail-
ures. Following a brief review of their approach, we provide a probabilistic anal-
ysis of their consensus algorithm, which shows that the number of messages is
exponentially proportional to the number of participating processes n. Based on
our analysis, we study how their solution may be improved when we have a priori
knowledge of the maximum number of process failures that may occur. Accord-
ingly, we propose multi-level consensus as a generalization of the Chandra-Toueg
algorithm, and give a probabilistic analysis of our algorithm. For n large relative
to the bound on the number of failures k, this approach yields an improvement
(in the expected case) in the message complexity.

Keywords: Distributed Consensus Algorithms, Algorithm Design, Failure De-
tectors, Probabilistic Analysis.

1 Introduction

Achieving consensus within a set of distributed processes is an important, arguably
paradigmatic, problem in distributed computing. Consensus algorithms find diverse ap-
plications, e.g., in fault-tolerant distributed systems and in realizing various distributed
programming primitives. In the consensus problem, all correct processes propose a
value and must reach a unanimous and irrevocable decision on some value related to
the proposed values, in the presence of process failures. Solutions to the problem are
required to satisfy the following conditions:

Termination – every correct process eventually decides on some value;
Uniform Integrity – every process decides at most once;
Agreement – no two correct processes decide differently; and
Validity – a value decided on by a process must have been proposed by some process.

The existence and nature of a solution to the distributed consensus problem depend
very much on whether the model is synchronous or not1 and on the failure model as-

� Corresponding author.
1 A process is synchronous if there exist bounds on message delay, execution time of a step in

the process and clock drift of local clocks at each process.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 172–183, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Divide and Concur: Employing Chandra and Toueg’s Consensus Algorithm 173

sumed. Most distributed systems are assumed to be be asynchronous. A variety of fail-
ure models have been studied: a process can stop and do nothing after that (crash stop),
crash and recover (crash recovery), fail to send or receive messages (send/receive omis-
sion) or exhibit arbitrary behavior (Byzantine failure).

There is a well known impossibility result that “no deterministic algorithm solves
consensus in an asynchronous system that tolerates even a single crash failure” [10].
To circumvent the impossibility result various approaches have been suggested: failure
detectors[1, 5, 6, 8], randomized algorithms [2, 7] and partial synchrony models [3, 4,
9]. ([12] contains a detailed coverage of these various approaches). Note that in these
results, all processes are assumed to be of the same status, and trivial “asymmetric”
solutions which involve imposing the value proposed by an individual or a cabal of
processes are precluded.

We adopt the concept of Unreliable Failure Detectors introduced by Chandra, Hadzi-
lacos and Toueg [5], wherein the asynchronous model of computation has been aug-
mented by each process having a fallible external failure detection mechanism, and
examine Chandra and Toueg’s algorithm for achieving consensus in a crash stop model
[8], which relies on a simple majority of correct processes.

Informally, a failure detector is a module that outputs the set of processes which it
currently suspects of having failed. Failure detectors are specified in terms of two ab-
stract properties: (i) completeness, and (ii) accuracy. Completeness can be (a) strong –
eventually every process that crashes is permanently suspected by every correct pro-
cess, or (b) weak – eventually every process that crashes is permanently suspected by
some correct process. Accuracy can be (a) strong – no process is suspected before it
crashes, (b) weak – some correct process is never suspected, (c) eventual strong – there
is a time after which correct processes are not suspected by any correct process, or (d)
eventual weak – there is a time after which some correct process is never suspected by
any correct process. Based on these properties, there exist eight failure detector classes.
The weakest class is �W , which satisfies weak completeness and weak eventual accu-
racy and is the weakest class with which consensus can be solved in an asynchronous
crash stop model. �S failure detectors satisfy strong completeness and eventual weak
accuracy. Chandra and Toueg show a transformation from weak complete to strong
complete preserving accuracy is possible in the crash stop model at the expense of extra
messages. Hence, as �W is equivalent to �S, they solve consensus in an asynchronous
crash stop model using a �S failure detector.

The Chandra-Toueg consensus algorithm using �S failure detectors (called CT�S
hereafter) involves each process going through possibly several asynchronous rounds;
each round has a designated coordinator and comprises different phases which involve
communicating with the coordinator. The algorithm relies on a majority of processes
being correct, since that ensures that a value decided on by a correct process will be
transferred to subsequent rounds (§2 provides an intuitive explanation of the algorithm
but a reader interested in the details may refer to [8]).

The first question we address concerns the number of messages involved. We pro-
vide a probabilistic analysis of the algorithm and show that the expected number of
messages required by the CT�S algorithm is exponentially proportional to the number
of processes involved (denoted by n).

174 R. Agarwal et al.

Further, in the CT�S algorithm, the coordinator waits for a majority of processes
(required to ensure overlap) in each of the asynchronous rounds. We ask the question
whether the algorithm can be “sharpened” and expected number of messages can be
reduced by exploiting a priori knowledge of the maximum number of failures (hereafter
denoted by k).

These observations lead us to explore a “divide-and-conquer” approach — reducing
the number of processes participating in the consensus so as to reduce the expected
number of messages — and refining our analysis explicitly incorporating the parameter
k. What emerges is a “layered” consensus algorithm. We first formalize a two-level
consensus algorithm, and then generalize this idea (in particular for cases where k � n)
to formulate a multi-level consensus algorithm. Our multi-level algorithm can be viewed
as a natural generalization of the Chandra-Toueg idea, and indeed their algorithm can be
seen as the one-level case. Multi-level consensus is behaviorally adequate with respect
to the Chandra-Toueg algorithm in that any consensus decision achievable using our
multi-level algorithm can also be achieved using CT�S. Further, our analysis reveals
that in our framework the expected number of messages is exponentially proportional
to k rather than to n. When k � n, this leads to significant improvement in message
complexity.

The idea of multi-level consensus algorithms and the probabilistic analysis of the
expected number of messages should be seen as the main contributions of this paper.
We must also mention that although in this paper we have motivated the development
of multi-level consensus algorithms from an analysis of expected message complex-
ity, there are several applications that naturally require multi-level consensus. A typical
example is a decision-making system, wherein constituencies individually make their
decisions and then delegate representatives to participate at caucuses to arrive at a com-
mon decision.

We conclude the paper by summarizing our results and mentioning directions for
future work.

2 The Chandra and Toueg Consensus Algorithm

The CT�S algorithm may involve several asynchronous rounds, each with a designated
coordinator. A round consists of four asynchronous phases. In phase 1, each process
sends to the current round’s coordinator ci its own current estimate of the decision
value time-stamped with the round number in which it adopted this estimate. In phase 2,
the coordinator ci gathers

⌈
n+1

2

⌉
such estimates (a majority), and selects one with the

largest time-stamp, which it sends to all the processes as their new estimate, estimateci .
In phase 3, each process p may execute one of two alternatives:

(i) it receives estimateci from ci and responds to ci with an ack, indicating that it
adopted estimateci as its own estimate, or
(ii) on checking with its failure detector module, p suspects that ci may have crashed,
and so sends it a nack and starts a new round.

In phase 4, ci waits for
⌈

n+1
2

⌉
replies (acks or nacks). If all these replies are acks, ci

knows that a majority of processes have changed their estimate to estimateci and thus
estimateci is locked. It then “reliably broadcasts” this decided value to all processes.

Divide and Concur: Employing Chandra and Toueg’s Consensus Algorithm 175

If a process “reliably delivers” such a request from a coordinator, it is taken to have
decided accordingly.

The algorithm works under the assumption that a majority of the processes are cor-
rect. The algorithm satisfies validity trivially since each process’s estimate is either its
own value or a value that it received from some other process. The agreement property
of the algorithm follows from the fact that once a decision is received by any process in
any given round then in any subsequent rounds, the remaining processes make the same
decision. This fact is because the coordinator of each round waits for the estimate of a
majority of the processes and selects the estimate with the highest time-stamp. Suppose
a decision was received for the first time in a given round by any process j, Then, since
the coordinator of the next round waits for a majority of the processes, at least one pro-
cess i which had participated in the current round will also take part in the next round.
Its estimate, which is the same as the value decided by j, is selected because its time-
stamp is highest. The algorithm terminates as each process has a �S failure detector
and thus eventually there is a process which is not suspected by any other process and
can be chosen as the coordinator. Since the majority of the processes are correct, this
coordinator’s wait for a majority of processes will not block forever.

We now analyze the number of messages required for consensus using the above
algorithm by considering any process pk. We should clarify here that we do not count
messages from (“unconsummated”) rounds that are initiated by some process but do
not proceed beyond the initial phases2.

Let Xi be a random variable denoting the number of messages that a particular pro-
cess sent or received in round i of the CT�S algorithm if it is not the coordinator of
round i.

Xi =

{
0 if pk is the coordinator for round i
number of messages pk sent or
received in round i

if it is not the coordinator

Since all messages are transmitted to or from the coordinator, we avoid counting any
message twice.

Lemma 1. E[Xi] =
(

n−1
n

)
b where b denotes the expected number of phases a process

goes through in any consensus round and 1 ≤ b ≤ 4.

PROOF: The probability of the process being a coordinator of the round is 1
n and not

being a coordinator is
(

n−1
n

)
. Thus,

E[Xi] =
(

n−1
n

)
b +

(1
n

)
0

=
(

n−1
n

)
b. �

Let x be the probability that a process does not suspect another process wrongly. We
assume that this probability is the same for all processes, the same with respect to all
processes throughout a given round, and also the same for all rounds. Let c be the
probability that the leader fails during a given round.

2 Note that the specification of the CT�S algorithm allows processes to embark asynchronously
on fresh rounds, mainly to avoid unwanted synchronization constraints. We observe that mes-
sages from unconsummated rounds are not germane to achieving consensus and termination —
they can safely be omitted from any run of the protocol to obtain an equivalent run.

176 R. Agarwal et al.

Lemma 2. Under the assumption that the failure detector is near perfect, i.e. x � 1,
E[rp], the expected number of rounds in which at least a majority of the processes
participated is given by 1

1−cx−n.

PROOF: Pr[rp = t] denotes the probability that consensus is achieved in t rounds. Let
y be the probability that the current round succeeds. y is Pr[leader didn’t fail in the
given round]∗Pr[at least a majority didn’t suspect the leader wrongly in this round].
Therefore,

y = (1− c)

{(
n⌈

n+1
2

⌉)x� n+1
2 �(1− x)� n−1

2 � +
(

n⌈
n+3

2

⌉)x� n+3
2 �(1 − x)�n−3

2 � + . . .

+
(

n

n

)
xn

}
(1)

= (1− c)θ,
where

θ =
(

n⌈
n+1

2

⌉)x�n+1
2 �(1− x)�n−1

2 � +
(

n⌈
n+3

2

⌉)x�n+3
2 �(1− x)� n−3

2 � + . . .

+
(

n

n

)
xn (2)

Let α denote the probability that a new round is started. α is Pr[leader failed in the
current round] + Pr[leader didn’t fail in the current round]∗Pr[at least a majority of
processes suspect the leader wrongly in the current round]. Therefore,

α = c + (1− c)

{(
n

0

)
(1− x)n + . . . +

(
n⌊

n−1
2

⌋)(1− x)� n+1
2 �x�n−1

2 �
}

(3)

Note that Pr[rp = 1], the probability that the first round succeeds, is y. Also,
Pr[rp = 2], the probability that a new round was started after the first round and the
second round succeeded is given as αy. In general, Pr[rp = i] = αi−1y. Hence,
E[rp] =

∑
i≥1 i(αi−1y) = y

(1−α)2 . Notice that when n is even, α can be written as

c + (1− c)
{(

n

0

)
(1 − x)n + . . . +

(
n

n
2 − 1

)
(1 − x)

n
2 +1x

n
2 −1

}
.

Using (2), we get

α = c + (1 − c)
{

1− θ −
(

n
n
2

)
(1− x)

n
2 x

n
2

}

= 1− y − (1 − c)
(

n
n
2

)
(1− x)

n
2 x

n
2

As the failure detector is near perfect, i.e. x � 1, α can be approximated as (1 − y).
Therefore,

E[rp] =
y

(1− (1− y))2
=

y

y2 =
1
y
.

Divide and Concur: Employing Chandra and Toueg’s Consensus Algorithm 177

Dropping the terms involving (1 − x) in (1) as x � 1, we get

E[rp] =
1

(1− c)
x−n

The case for n odd is similar. �

Theorem 1. Under the assumption that the failure detector is near perfect, the expected
number of messages required for CT�S algorithm is (n− 1) b

1−cx
−n.

PROOF: The total number of messages sent or received by pk = X =
∑rp

i=1 Xi, where
rp itself is a random variable denoting the last round in which pk received the deci-
sion. The random variable rp is a stopping time, since the value of rp depends only
on X1, X2, . . . Xrp−1. So, we can use Wald’s equation to find E[X] = E[Xi] ∗ E[rp]
(each of the Xi ’s are i.i.d. random variables). From Lemmas 1 and 2, the total number
of messages for a given process is

(
n−1

n

)
b

1−cx−n. Hence, the total number of messages
involved in consensus is:

n ∗ E[messages per process] = (n− 1) b
1−cx−n. �

Additionally, there are messages for a reliable bradcast, but the above number domi-
nates. Hence the total number of messages is exponentially proportional to the number
of participants.

3 Multi Level Consensus

We observed in the previous section that the number of messages required for the CT�S
algorithm is exponentially proportional to the number of processes participating in the
consensus. The CT�S algorithm assumes that at most half of the total participating pro-
cesses can fail simultaneously. Even if the bound on the maximum number of failures in
the system is known to be less than half of the total number of participating processes,
the CT�S algorithm does not take that into account. One natural question arises —
“how can we make use of this knowledge of process failures to reduce the number of
messages required for consensus?”

If k is the maximum number of process failures in the system and k � n, then it
seems plausible that consensus can be obtained with fewer messages exchanged than
those required by CT�S. Since only k processes can fail, the CT�S algorithm can solve
consensus in a group of size s = 2k+1, as a majority of the processes (k+1) are correct.
Also, the coordinator needs to wait for only (k + 1) processes instead of

⌈
n+1

2

⌉
. Since

(2k + 1) can be� n we can achieve a significant reduction in the number of messages
required for consensus.

Having said that consensus can be solved in a group of (2k + 1) processes when
k is known, one approach to solve consensus for n processes would be to partition
the n processes into groups of at least (2k + 1) processes, obtain consensus within
each group, choose a process from each group to represent its group’s decision and do
another consensus amongst the representatives. When (4k + 1) < n < (2k + 1)2 we
show below that this approach solves consensus in two levels.

178 R. Agarwal et al.

3.1 Two Level Consensus Algorithm

We assume that we have the CT�S algorithm available as a procedure CT�S(group, vi).
Each pi in group calls CT�S(group, vi) which returns the consensus reached by pro-
cesses in group. Note that, vi is the value proposed by process pi.

procedure lower level consensus(val, level)
{ group G of this process pi is all processes pj participating in the two-level consensus s.t.

j
(2k+1)level = i

(2k+1)level }
vi ←CT�S(G, val)
return vi

end proc

procedure upper level consensus(val, level)
{ group G′ of this process pi is all processes pj participating in the two-level consensus s.t.

j mod (2k + 1)level = 1 or i
(2k+1)level ≥ n

(2k+1)level − 1 }
vi ← CT�S(G′, val)

if i
(2k+1)level ≥ n

(2k+1)level − 1 and i mod (2k + 1)level ≤ k + 1 then

(* i is one of the k+1 processes which is to disseminate the consensus value *)
send vi to all the processes not in this level

end proc

Each process pi executes the following:

level ← 1 { level is initialized to 1 }
procedure two level(vp, level)

if (n
(2k+1)level < 2) then

CT�S(G0, vp) { G0 is the group of all n processes }
terminate

else

if i
(2k+1)level < n

(2k+1)level − 1 then

vp ← lower level consensus(vp, level)

if (i mod (2k + 1)level = 1) or i
(2k+1)level > n

(2k+1)level − 1 then

v2,dec ← upper level consensus(vp, level)
else

wait for decision

end proc

Fig. 1. The Two-level Consensus Algorithm

If the number of processes n ≤ (4k + 1), then a simple call to CT�S involving
all the n processes is executed. If (4k + 1) < n < (2k + 1)2 then there exist a, d,
(a, d < 2k + 1) such that n = a(2k + 1) + d. We partition the entire set into a groups,

Divide and Concur: Employing Chandra and Toueg’s Consensus Algorithm 179

a − 1 of which are of size (2k + 1) and one group of size (2k + 1) + d. This par-
titioning is based on their process numbers (which are uniquely assigned initially). If
(i− 1) ≡ (j − 1) div (2k + 1) then i and j belong to the same group. (a − 1) groups
execute CT�S at the lower level (this involves calls to procedure lower level consensus
in each of the a − 1 groups). One process from each of the (a − 1) groups is cho-
sen (we can choose the least numbered process of the group) to represent the deci-
sion of the group at the upper level and do a CT�S consensus involving the a − 1
representatives and the remaining (2k + 1) + d processes. Having reached a deci-
sion, k + 1 of the processes in the upper level (chosen by any arbitrary fixed rule,
say the first k + 1 in the last group) disseminate the decision to all the processes
not in upper level. Note that this algorithm differs from CT�S in how the consensus
value is disseminated – the latter uses reliable broadcast by the coordinator of the last
round. In contrast in our algorithm, since all correct processes in the upper level have
the consensus value, some k + 1 of them only need to simply send the value to the
rest.

The detailed Two-level algorithm is given in Figure 1. Correctness of the two-level
algorithm is based on the following observations:

Lemma 3. The processes executing lower level consensus eventually decide on some
value which is proposed by some process in their group.

PROOF: In lower level consensus, the group members execute CT�S. The CT�S algo-
rithm requires that a majority of the processes be correct. Therefore, if the group size
is ≥ 2k + 1, we can be sure that a majority of the processes are correct as at most k
can fail. As the CT�S algorithm satisfies termination, validity and agreement, therefore
processes in a group executing lower level consensus eventually decide on some value
which has been proposed by a process in their group and no two processes in the given
group decide differently. �

Lemma 4. All processes which execute upper level consensus eventually decide on a
value proposed by one of them and this is the consensus value arrived at by all the n
processes and no two processes decide differently.

PROOF: As in the proof of Lemma 3, all the processes executing upper level consensus
eventually decide on some valid value in their group. After a value has been decided
on, k + 1 processes send the decision to all the processes not in this group. As at
most k of the processes can fail, there is at least one process which had decided in
upper level consensus and did not fail. Therefore, every correct process eventually re-
ceives the decision. �

The validity, termination and agreement properties of the two-level consensus algorithm
follow from Lemmas 3 and 4.

We now analyze the message complexity of the two-level consensus algorithm. The
total number of messages used in all reliable broadcasts in all instances of CT�S in this
algorithm is (a − 1)(2k + 1)2 + (a + 2k + d)2, which is O(nk). For simplifying the
presentation of the analysis, we leave out this term in the following results, since the
complexity does not change.

180 R. Agarwal et al.

Lemma 5. The expected number of messages required by the two-level consensus is

≤ b

1− c
4k2x−(2k+1) +

b

(1− c)
6kx−(6k+1) + (k + 1)(n− (2k + 1))

when (4k + 1) < n < (2k + 1)2.

PROOF: The number of messages required for two-level consensus is equal to the
number of messages required for lower level consensus + the number of messages
required for upper level consensus. The number of messages required at the lower
level is given by number of groups * number of messages per group. Note that at
the lower level we have (a − 1) groups of size (2k + 1). By Theorem 1 and using
the fact that a < 2k + 1, the number of messages required for lower level consensus
≤ b

1−c4k2x−(2k+1). In the upper level consensus, the maximum number of processes
is (2k+1)+(a−1)+d ≤ (6k+1). Therefore by Theorem 1, the number of messages
required for upper level consensus is b

(1−c)6kx−(6k+1). While disseminating, (k + 1)
processes send the decision to the processes not in the upper level. Since this number is
at most (n− (2k + 1)), messages for distribution are ≤ (k + 1)(n− (2k + 1)). �

3.2 Multi Level Consensus Algorithm

If n 2k + 1 then the idea of two-level consensus can be recursively extended to
formulate a multi-level consensus algorithm, given in Figure 2. The multi-level algo-
rithm proceeds in a fashion similar to the two-level consensus. If n or the number of
processes at any level < (2k + 1)2 the two-level consensus algorithm is executed. Oth-
erwise, the multi-level consensus algorithm partitions processes at any level in groups
of size (2k+1) save one group which can have up to (4k+1), and each group is repre-
sented by a process at the next higher level. The proof of correctness of the multi-level
consensus algorithm is along the same lines as the two-level consensus algorithm, and
is omitted here.

Note that the expected number of messages required by the multi-level consensus
algorithm is equal to the expected number of messages required for L − 1 levels + the
expected number of messages required for two-level consensus at level L. Since the

number of groups formed at level i (i ≤ L − 1) is
⌊

n
(2k+1)i

⌋
, the expected number of

messages required for the first L− 1 levels is

b
1−cx

−(2k+1)2k
{⌊

n
2k+1

⌋
+

⌊
n

(2k+1)2

⌋
+ . . . +

⌊
n

(2k+1)(L−1)

⌋}
+ b

1−c(L − 1)

{x−(4k+1)4k − x−(2k+1)2k}
≤ b

1−cnx−(2k+1)2k + b
1−c (L− 1){x−(4k+1)4k − x−(2k+1)2k}.

The expected number of messages required for the two-level consensus is

≤ b
(1−c)4k2x−(2k+1) + b

1−c6kx−(6k+1) + (k + 1)(n− (2k + 1)).

Hence, the number of messages required for multi-level consensus is bounded by
b

1−cnx−(2k+1)2k + b
1−c (L − 1){x−(4k+1)4k − x−(2k+1)2k} + b

(1−c)4k2x−(2k+1) +
b

(1−c)6kx−(6k+1) + (k + 1)(n− 2k + 1).

Notice that this expression grows exponentially in k (since x < 1).

Divide and Concur: Employing Chandra and Toueg’s Consensus Algorithm 181

Summarizing these observations, we can state the following result about our multi-
level consensus algorithm:

Each process pi executes the following:
level ← 1 { the current level of consensus; initially 1 }
L ← �log2k+1n� { maximum number of levels of consensus }

procedure multi level(vp, level)
if (L = 1 or level = L) then

two level(vp, level)
terminate

else
{ if level = 1 then all processes participate and process pi belongs to group G whose
members are pj s.t. j − 1 ≡ i − 1 div (2k + 1)
For other levels, process pi belongs to group G whose members are pj s.t.(j mod (2k+
1)level−1 = 1 and i

(2k+1)level−1 �= n
(2k+1)level−1 + 1) and j ≡ i div (2k + 1)level .

If i
(2k+1)level = n

(2k+1)level + 1) then it belongs to group number i
(2k+1)level }

dec ←CT�S(G, vp)
if (i mod (2k + 1)level = 1 and i

(2k+1)level �= n
(2k+1)level + 1) then

level ← level + 1
multi level(dec, level)

else
wait for decision.

end proc

Fig. 2. The Multi-level Consensus Algorithm

Theorem 2. The multi-level consensus algorithm
(i) satisfies termination, validity and agreement.
(ii) is sound with respect to the Chandra-Toueg algorithm using �S.
(iii) requires messages exponential in k, the maximum number of failures.

4 Conclusions and Future Work

To summarize, we have presented in this paper:

1. A probabilistic analysis of the Chandra-Toueg consensus algorithm. Our analysis
shows that the expected number of messages grows exponentially in n, the number
of processes.

2. Refining the analysis by introducing a priori knowledge of a bound on the number
of failures as a parameter k, we have formalized a multi-level generalization of
their consensus algorithm. Our algorithm exhibits an improvement in the expected
number of messages, since it grows exponentially in the parameter k rather than
in n.

182 R. Agarwal et al.

3. The CT�S algorithm is interesting as it works with fallible failure detectors. Our
analysis is for the interesting case when the failure oracles have only a small ele-
ment of fallibility (x � 1). However, one can also note that if the performance of the
failure detectors deteriorates, the CT�S degrades rapidly as the terms neglected
in the analysis begin to contribute to the message complexity.

There are several directions for further work. Some of these include:

– The algorithm we have presented is not behaviorally equivalent (in a “may” sense)
to the Chandra-Toueg algorithm, since there may be executions of the latter which
reach a consensus value that may not be reached by our algorithms — the failure
of a representative of a group in the lower level consensus may result in the value
decided by that group not being propagated to the upper level. There is, however, a
naive approach to rectifying this lacuna: each group is represented by k+1 members
at the next higher level, and thus its decided value is propagated. Of course, this
modification increases the number of groups and levels. We are currently studying
how to minimize the associated increase in the number of messages by exploring
alternatives in the two level stage.

– We would like to explore whether the approach is also feasible when we look at
different failure models, in particular crash recovery [1, 11]. Here, we clearly need
a different notion of message complexity from that in crash stop models, since (i)
processes may send unboundedly many “I have recovered” messages; (ii) in the
presence of link failures, a process may have to reiterate the last message it send
several times.

– The metric we have studied is the number of messages, which is adversely influ-
enced by the fact that the model assumes a fully-connected point-to-point topology.
Other metrics, communication topologies and models may require a different ap-
proach. We should, however, observe that it is the number of rounds in the CT�S
algorithm that grows exponentially in n.

– We would also like to explore whether other interesting problems are also amenable
to a similar multi-level approach.

References

1. Marcos Kawazoe Aguilera, Wei Chen and Sam Toueg, “Failure Detection and Consensus in
the Crash Recovery Model”. In Proceedings of the International Symposium on Distributed
Computing, pages 231–245, 1998.

2. Michael Ben-Or, “Another advantage of free choice: Completely asynchronous agreement
protocols”, In Proceedings of the Second Annual ACM Symposium on Principles of Dis-
tributed Computing, page 27–30, August 1983.

3. Piotr Berman and Anupam A. Bharali, “Distributed consensus in semi-synchronous sys-
tems”, In Proceedings of the Sixth International Parallel Processing Symposium, pages 632-
635, 1992.

4. Piotr Berman and Juan A. Garay, “Cloture voting: n/4-resilient distributed consensus in t+1
rounds”, Mathematical Systems Theory, vol. 26(1), pages 3-20, 1993.

5. Tushar Deepak Chandra, Vassos Hadzilacos and Sam Toueg, “Unreliable failure detectors for
asynchronous systems”, In Proceedings of the 10th Annual ACM Symposium on Principles
of Distributed Computing, pages 325–340, 1991.

Divide and Concur: Employing Chandra and Toueg’s Consensus Algorithm 183

6. Tushar Deepak Chandra, Vassos Hadzilacos and Sam Toueg, “The Weakest Failure Detector
for solving consensus”, JACM, vol. 43(4), pages 685–722, 1996.

7. Benny Chor, Amos Israeli and Ming Li, “On processor coordination using asynchronous
hardware”, In Proceedings of the Sixth Annual ACM Symposium on Principle of Distributed
Computing, pages 86–97, 1987.

8. Tushar Deepak Chandra and Sam Toueg, “Unreliable Failure Detectors for Reliable Dis-
tributed Systems”, JACM, vol. 43(2) pages 225–267, 1996.

9. Cynthia Dwork, Nancy Lynch and Larry Stockmeyer, “Consensus in the presence of partial
synchrony”, JACM, vol. 35(2), pages 288–323, 1988.

10. M.J. Fischer, N.A. Lynch and M.S. Paterson, “Impossibility of Distributed Consensus with
one faulty process”, JACM, vol. 32(2), pages 374–382, April 1985.

11. Michel Hurfin, Achour Mostefaoui, and Michel Raynal, “Consensus in asynchronous sys-
tems where processes can crash and recover”, In Proceedings of the 17th IEEE Symposium
on Reliable Distributed Systems, pages 280–286, October 1998.

12. Nancy A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, Inc., San Francisco,
California, 1996.

Distributed Multiple Hypothesis Testing in
Sensor Networks Under Bandwidth Constraint

Chandrashekhar Thejaswi PS and Ranjeet Kumar Patro

Honeywell Technology Solution Laboratory,
151/1, Doraisanipalya, Bannerghatta Road,

Bangalore, 560076, India
{Chandrashekhara.Thejaswi, Ranjeet.Patro}@honeywell.com

Abstract. In this paper, we consider the problem of multiple hypothesis
testing by a bandwidth and power constrained sensor network with a
fusion center. We propose a scheme, where each sensor is restricted to
send a 1-bit message to fusion center and the fusion center collates the
bits sent by all the sensors and makes a decision about the hypothesis. We
analyze the performance of our scheme and illustrate it with an example.

1 Introduction

In recent years, rapid progress in sensor technology, microprocessor and wireless
communication has lead to the emergence of a new paradigm for connecting the
world called wireless sensor network. A wireless sensor network is a special net-
work formed by large number of tiny nodes equipped with sensors, embedded
processors and transceivers. These energy-constrained sensor nodes collaborate
to accomplish task such as environment monitoring, surveillance of remote area,
asset tracking and biological/chemical threat detection. An important challenge
in the design of these wireless sensor network is that two key resources, commu-
nication bandwidth and energy, which are severely limited. Because of the hostile
communication links and the various associated processing in RF and baseband
domains, sensor devices dissipate a major part of their power budget in infor-
mation transfer. In fact, the power incurred due to transmission of a bit is much
higher than that it takes to process a single bit. Due to these limitations, it is
difficult for sensor nodes to send their entire real-valued observations for fusion.
This has drawn the attention of the research community for the development of
theory and methods for collaborative signal processing of the data collected by
different sensor nodes. Motivated by these challenges, in this paper, we address
the problem of distributed detection of multiple hypothesis testing in wireless
sensor networks consisting of a fusion center and a large number of geographi-
cally distributed sensors. We assumed that sensor node can communicate to the
fusion center, but cannot communicate with each other. We propose a scheme
of distributed detection where each sensor is constrained to transmit only one
bit to the fusion center.

Researchers have been diligently pursuing the decentralized detection prob-
lems. There is a significant collection of literature in this field. Survey papers [1],

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 184–191, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Distributed MHT in Sensor Networks Under Bandwidth Constraint 185

[2] and [3], provide excellent references to the earlier work in this field. A compre-
hensive review of the theories for decentralized detection is given in [2]. It is also
shown that, under the assumption of conditional independence of the sensors’ ob-
servations, local decisions made by the sensors obey likelihood ratio test. If there
is no assumption of conditional independence among sensor’s observations, then
the problem of finding optimal decision strategy is NP-complete. The decentral-
ized detection with the communication cost constraints were first studied by Rago
et.al [5], where the sensors employ a ”send/no-send” strategy depending on the
likelihood function, thereby reducing the communication cost. In [4], the decen-
tralized detection problem is formulated as a constrained optimization problem
with the constraints on transmission and measurement costs. They obtain the op-
timal solution using randomization of the measurement and send/no-send trans-
mission policies meeting the constraints. Decentralized detection problem with
communication constraints is also studied in [6], where sensors transmit only a
1-bit message to the fusion center and an universal detection scheme is proposed.

In this paper we propose a scheme for distributed multiple hypothesis test-
ing when the communication link between the sensors and the fusion center is
severely constrained. The rest of the paper is organized as follows. In Section 2,
we state the system model and made the assumptions . In Section 3, the problem
is formulated and the outline of our solution to the problem is given. We detail
out the performance measure with an example in section 4. Section 5 deals with
some simulation results and finally we conclude the paper in section 6.

2 System Model

Consider the scenario using K number of sensors to detect a phenomenon tak-
ing M states, such that M = log2 K. The aim is to detect the state of the
phenomenon by carrying out collaboration among these sensors. We formulate
this detection problem as a Multiple Hypothesis Testing (MHT) problem on the
observable vectors yk = [yk(0), yk(1) . . . yk(N)], k = 0, 1, 2, . . . , K − 1 recorded
by the kth sensor observing the event, where N is the number of observations.
Under the null hypothesis (H0) it is assumed that the data consists of just the
noise. Under the alternative hypotheses (H1, . . .HM), the data consist of the
signal pertaining to the corresponding hypothesis embedded in the background
noise. The observation noise is assumed to be identical across all the sensors.

Thus, the observation vector for the kth sensor becomes

H0 : yk = wk

Hi : yk = wk + Ai, i = 1, . . . , M − 1,

where Ai is the signal corresponding to the ith hypothesis and wk ∼ N (0, σ2
w.IN)

is the noise vector corresponding to the observations of kth sensor. Noise vec-
tor is assumed to be identically and independently distributed across all the
sensors. Let Pi = P (Hi) be the apriori probability of the hypothesis Hi which
are assumed to be known. The detection scheme should detect the occurance
of an event or phenomenon, and correctly classify it. Each sensor is allowed to
communicate only one bit of information to the fusion center.

186 P.S.C. Thejaswi and R.K. Patro

M-ary Phenomenon

S0
S1

SK-2 SK-1

Fusion Center

d1 dK-2
dK-1

.

d0

Fig. 1. Sensor Network Topology

3 Our Approach

Fig. 1 shows the topology of our system. Sensor k observes the data, makes
decision on the event and transmits a single bit information dk to the fusion
center. Fusion center collects the bits {dk}K−1

k=0 sent by all the sensors and then
makes the inference regarding the event. Let us investigate about how the scheme
works. The entire scheme works in three steps.

– M−ary Hypothesis testing by the sensors.
– Mapping of the M−ary decision into a bit by each sensor.
– Final decision at the fusion center through single-bit sensor observations.

A. M−ary Hypothesis testing by the sensors
Sensor k observes the data yk associated with the event and perform M− ary
Hypothesis testing on the test statistic. Assuming that {Pi}M−1

0 are known, each
sensor uses the MAP criterion and decide in favor of one of the M hypotheses
according to the following rule: Decide in favor of Hl whenever,

l = argmaxiP (Hi|yk) = argmaxif(yk|Hi)Pi,

where P (Hi|yk) is the posteriori probability of Hi and f(yk|Hi) is the likelihood
function. We then say ĥk = Hl, where ĥk denotes the decision made by the kth

sensor. Let Y be the observation space which is divided into several mutually

Distributed MHT in Sensor Networks Under Bandwidth Constraint 187

exclusive subspaces Y0, . . . ,YM−1 by assigning the points in each subspace
to the corresponding hypothesis. The division is done in such a way that the
probability of error is minimized. Thus the decision criteria becomes,

ĥk = Hl if yk ∈ Yl.

B. Mapping of the M−ary decision into single bit information by the sensor
After having performed the hypothesis testing, each sensor maps its decision
either to a one or to a zero. It is done in the following way. Let us assume,
integer i can be expanded as i =

∑K−1
k=0 2kbk(i), where bk(i) denote the value

of the bit in the kth position of the binary representation of the number i.
Assume that the kth sensor makes a decision in favor of the hypothesis Hl.
Then, the corresponding sensor’s mapping will be dk = bk(l). That is, kth sensor
will transmit only the value of the kth bit location of the binary representation
corresponding to the favored hypothesis’s index.

C. Final decision at the fusion center through single-bit sensor observations
All the K sensors transmit their single bit decision to the fusion center. The fusion
center collates the bits sent by all the sensors and makes a decision depending on
the bit pattern. Thus, the estimated hypothesis at the fusion center is

Ĥ = Hl,

where the index l is computed at the fusion center using the bit pattern {dk}K−1
0 as

l =
K−1∑
k=0

dk2k.

Motivated by the work [5], we further improve our scheme by introducing a
censor strategy. Each sensor transmits only when the information bit is non-zero
and refrains from the transmission otherwise. The fusion center after waiting
for few fixed slots, replaces the missing bits by zero bits to arrive at the final
hypothesis. This method in fact, will also take care of the problem that otherwise
would have occurred when there are more number of sensors than required to
test the present set of hypothesis. That is, K > log2 M .

4 Performance Analysis
We will evaluate the performance of our proposed scheme. This is done through
calculating two basic measures of performance. Probability of False Alarm (PFA)
and the probability of a correct decision (PC).

A. Probability of False Alarm (PFA)
PFA is defined as the probability of making decision in favor of the one of the non-
zero hypothesis when the null hypothesis true. That is discovering falsely that
an event has occurred when the ’no-event’ case is the correct one. Thus we have

PFA = P (Ĥ =
⋃
l 	=0

Hl|H0)

188 P.S.C. Thejaswi and R.K. Patro

=
∑
l 	=0

P (Ĥ = Hl|H0)

= 1− P (Ĥ = H0|H0)

= 1−
K−1∏
k=0

P (dk = 0|H0), (1)

where the last equality is due to the fact that Ĥ = H0 only if a zero is trans-
mitted by all the sensors. Consider the probability of transmitting zero from a
sensor under the null hypothesis. Sensor k would decide it as the null hypoth-
esis only when the observation vector falls in the region corresponding to the
hypothesis whose index has a zero bit in its kth position. That is

dk = 0 if yk ∈
⋃

i:bk(i)=0

Yi.

Thus, the probability that the sensor k transmits a zero under the null hypoth-
esis is

P (dk = 0|H0) = P (yk ∈
⋃

i:bk(i)=0

Yi|H0)

=
∑

i:bk(i)=0

P (yk ∈ Yi|H0)

Thus equation 1 becomes

PFA = 1−
K−1∏
k=0

∑
i:bk(i)=0

P (yk ∈ Yi|H0). (2)

B. Probability of Correct Decision (PC)
PC is defined as the probability of correctly making a decision in favor of the
one of the hypotheses when it is has actually occurred. Therefore,

PC =
M−1∑
l=0

P (Hl) · P (Ĥ = Hl|Hl). (3)

We have,

P (Ĥ = Hl|Hl) = P (l =
K−1∑
k=0

2kdk|Hl)

=
K−1∏
k=0

P (dk = bk(l)|Hl)

=
K−1∏
k=0

∑
i:bk(i)=bk(l)

P (yk ∈ Yi|Hl)

Distributed MHT in Sensor Networks Under Bandwidth Constraint 189

To illustrate the performance of our scheme with an example, we consider
an 8−ary phenomenon with each of its events corresponding to an 8−ary PAM
system. Therefore we have M = 8 and K = 3. Assuming N = 1 and wk ∼
N (0, 1), and the system equation as

H0 : yk = wk

Hi : yk = wk + i.A, i = 1, . . . , 7,

for k = 0, 1, 2.
Let us evaluate PFA of our scheme.

P (d0 = 0|H0) = P
(
w0 ∈ ∪3

i=0Y2i

)
= Q(A

2)+ 3
i=0 Q((4i−1)A

2)−Q((4i+1)A
2).

P (d1 = 0|H0) = P
(
w1 ∈ ∪i:b1(i)=0Yi

)
= Q(3A

2)+Q(7A
2)−Q(11A

2).

P (d2 = 0|H0) = P
(
w2 ∈ ∪i:b2(i)=0Yi

)
= Q(

7A

2
).

From(2) we have,

PFA = 1− P (d0 = 0|H0)P (d1 = 0|H0)P (d2 = 0|H0).

5 Simulation Results

We simulated our proposed scheme with that of a standard detection algorithm.
The standard algorithm is based on the majority voting rule (MVR) which
decides in favor of hypothesis Hl where

l = argmaxi∈{0,1...,M−1}

{
K−1∑
k=0

I(ĥk = Hi)

}
,

ĥk is the hypothesis favored by sensor k and I(·) is the indicator function

I(a = b) =
{

1 if a = b
0 otherwise.

Table 1 shows comparison between our proposed scheme and the standard
MVR scheme both incuring the same transmit power using a simple binary
communication scheme. We considered a system with M = 8, K = 3. The apriori
distribution of the events was chosen to be uniform. i,e. P (Hi) = 1

M i = 0, . . . 1.
The noise at each sensor was iid Gaussian with zero mean. The communication
links were also assumed to be channels with AWGN. We varied the noise variance
of both link and the sensors thus varying link SNRs and sensor SNRs respectively.
The values of PC is tabulated for different values sensor SNRs and the SNR of

190 P.S.C. Thejaswi and R.K. Patro

Table 1. Comparison of Probability of Correct Decisions for the proposed distributed
scheme (PCd) and MVR scheme (PCM)

Sensor SNR link SNR= 0dB link SNR= 5dB link SNR= 10dB

(in dB) PCd PCM PCd PCM PCd PCM

0 0.3 0.26 0.398 0.392 0.582 0.602

4 0.4 0.32 0.592 0.5346 0.773 0.86

7 0.45 0.34 .7019 0.605 0.952 0.955

the communication link between sensor and the fusion center. It is obvious that
PC is also the measure of PFA because PFA ∝ 1− PC .

One can observe that for a given link SNR, the performance of our scheme is
superior than that of MVR scheme and both tend to be identical as the sensor
SNRs decrease. At low link SNRs, one can see that our scheme performs better
than MVR scheme. These observation can be reasoned out as follows. The MVR
scheme is optimal in terms of detecting the hypothesis whereas our scheme is just
suboptimal and hence its performance deteriorates at low sensor SNRs. However,
when sensors have low noise, the effect of noise at the communication link will
be dominant in fusion center in making a decision from the noisy observations
transmitted by the sensors. Since, in our scheme each sensor transmits just a
single bit, it can pump as much power in a single bit as a sensor in MVR scheme
pumps to transmit K bits. Thus, the single bit messages will be more reliable
than the K bit messages.

6 Conclusions and Future Directions

We addressed the problem of multiple hypothesis testing in sensor networks
where the link between sensors and the fusion center is severely bandwidth con-
strained. A scheme was developed to accomplish this. We analyzed the perfor-
mance of this algorithm and compared it with that of existing standard rule.
We found that our scheme outperforms the latter when the communication link
is power and bandwidth constrained. This kind of setup will be useful in many
scenarios like target tracking, surveillance, event detection etc. As an extension
to this problem, it will be interesting to consider the case when sensor noises
are not identical. We can also look at the optimal fusion strategy, where the

Distributed MHT in Sensor Networks Under Bandwidth Constraint 191

metric |Hi − Ĥ |, the difference between the actual hypothesis and the detected
hypothesis is minimized.

References

1. R.S. Blum, S.A. Kassam and H.V. Poor.: “Distributed Detection with Multiple
Sensors: Part II - Advanced Topics,” Proceedings of the IEEE, vol. 85, no. 1, pp.
64-79, January, 1997.

2. J.N. Tstsiklis.: “Decentralized Detection,” Advances in Statistical Signal Processing,
Vol 2, pp. 297-344, JAI Press, 1993.

3. R. Viswanathan and P.K. Varshney.: “Distributed detection with multiple sensors:
Part I - fundamentals,” Proceedings of the IEEE, vol. 85, no.1, pp. 54-63, January,
1997.

4. Appadwedula, S., Veeravalli and V.V. Jones, D.L.: “Energy-Efficient Detection in
Sensor Networks,” IEEE JSAC, vol. 23, Issue. 4, pp. 693- 702, April, 2005.

5. C. Rago, P. Willett, and Y. Bar-Shalom.: “Censoring sensors: A low-communication-
rate scheme for distributed detection,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 32, pp. 554- 568, April 1996.

6. Jin-Jun Xiao, Zhi-Quan Luo.: “Decentralized detection in a bandwidth constrained
sensor network,” IEEE GLOBECOM ’04, vol. 1, pp. 123- 128, 2004.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 192 – 202, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Scalable Multi-level Distributed System-Level
Diagnosis

Paritosh Chandrapal1 and Padam Kumar2

1 Dept. of Electronics & Computer Engieering. IIT Roorkee,
Roorkee 247667, India

paritosh_pal@yahoo.com
2 Professor, Dept. of Electronics & Computer Engieering. IIT Roorkee,

Roorkee 247667, India

Abstract. The purpose of distributed system-level diagnosis is to have each
fault-free nodes determine the state of all nodes of system. The paper presents a
Multi-level distributed system-level diagnosis, which considers the problem of
achieving scalability and performance tuning for distributed diagnosis. Existing
work is aimed to reduce either diagnosis latency or network utilization but
scales poorly. A diagnosis algorithm, called Multi-level DSD, is presented to
provide scalability, which controls both latency and network utilization in fully
connected networks. The algorithm is scalable in the sense that it is possible to
diagnose system with large number of processing elements (nodes) by tuning
diagnosis parameters. The diagnosis algorithm allows tuning of diagnosis
performance to lever latency message cost trade-off. Multi-level DSD divides
system in clusters of nodes, where each cluster is either a single node or a group
of clusters. Cluster diagnoses itself by running a cluster diagnosis algorithm
between its sub clusters. Clusters at each level runs same cluster diagnosis
algorithm.

1 Introduction

Traditional centralized network management solution does not scale to present-day
large-scale computer networks. It has been recognized that distributed solutions can
solve some of the problems associated with centralized solutions. The proposed
diagnosis algorithm provides such a solution with use of multilevel paradigm. The
term scalable suggests that diagnosis can be adapted for large-sized networks by
tuning diagnosis parameters. The proposed algorithm Multi-level DSD (distributed
system-level diagnosis) divides system in clusters of nodes, where each cluster is
either a single node or a group of clusters. Each cluster diagnoses itself by running a
diagnosis algorithm between its sub clusters called cluster diagnosis algorithm.
Clusters at each level runs same cluster diagnosis algorithm. The diagnosis can be
configured to adapt requirements through alteration of number of nodes and cluster
diagnosis algorithms at different levels.

Performance of a distributed system-level diagnosis is described by several
performance measures described as below. Diagnosis latency is the time from the

 A Scalable Multi-level Distributed System-Level Diagnosis 193

detection of a fault event until all nodes can identify the event. If every single
message over link costs then algorithm must reduce number of tests to be performed.
Network utilization is measured as number of messages transmitted per diagnosis
interval, called message cost. In case, where message size varies, network utilization
is considered as number of diagnostic units (diagnostic information of single node).
To measure scalability for a diagnosis algorithm, a performance measure Scale Factor
(SF) is introduced, which is product of diagnosis latency in testing rounds and
message cost per diagnosis interval. As total node increases, diagnosis latency as well
as message cost per node increases, and consequently scale factor will increase for
any diagnosis algorithm. Lower values of SF and less steeper SF graph suggests
higher scalability.

Diagnosis latency can be measured in testing round where testing round is the
period of time in which every fault free node in the system has tested another node as
fault free, and has obtained diagnostic information from that node, or has tested all
other nodes as faulty. A diagnosis interval is considered as a testing round in
heartbeat-based mechanism.

2 Related Work

Related diagnosis algorithms for fully connected networks i.e. ADSD, Hi-ADSD,
Heartbeat and ML-ADSD are described follow.

Adaptive testing and distributed diagnosis were incorporated into the Adaptive
DSD algorithm (ADSD), developed and implemented by Bianchini and Buskens [1].
The Adaptive DSD implementation, which also incorporated practical implementation
considerations, was the first practical online implementation of system-level diagnosis
in an actual distributed environment. Unlike the SELF, ADSD is not bounded by
number of faulty nodes. The diagnosis algorithm is meant for minimizing network
resources. The diagnosis constructs a cycle of fault free nodes. ADSD has minimum
message cost per diagnosis process of n than any existing diagnosis algorithm, but has
maximum diagnosis latency of n-1 testing round.

The Hierarchical Adaptive Distributed System- Level Diagnosis (Hi-ADSD)
algorithm is presented by E.P. Duarte [2, 3]. Hi-ADSD maps nodes to clusters, which
are sets of nodes. Hi-ADSD employs a divide-and-conquer testing strategy. The
system considered for Hi-ADSD is fully connected. In Hi-ADSD, nodes are grouped
into clusters for testing. Clusters are sets of nodes. The number of nodes in a cluster
is always a power of two. A cluster of n nodes, where n is a power of two, is recursively
defined as either a node, in case n is one, or the union of two clusters. Hi-ADSD
achieves diagnostic latency of log2

2 n testing rounds, message cost of n log2
2 n per

diagnosis process and message cost of one message per diagnosis interval per node.
The Distributed System- Level Diagnosis algorithm in Dynamic Fault Environ-

ment is presented by A. Subbiah [4]. The algorithms are meant for achieving
diagnosis under dynamic failures and repairs. Author assumes testing is accomplished
via Heartbeat based mechanisms that have low cost. The base algorithm of Heartbeat
is meant for completely connected networks, has both latency and state holding time
equal to approximately one testing round, where one testing round can be considered
as one heartbeat transmission round for smaller values of heartbeat period. The

194 P. Chandrapal and P. Kumar

algorithm has minimum diagnosis latency than any diagnosis algorithm, but has high
message cost of n (n-1) messages per diagnosis interval. The algorithm costs n (n-1)
number of diagnostic units per diagnosis interval. Major drawback of these algorithms
is that algorithms are non-scalable.

A multi-level adaptive distributed diagnosis algorithm by K Thulasiraman [5, 6]
works for fully connected networks. The algorithm is called the ML-ADSD algorithm
[5, 6]. The nodes are partitioned into clusters. Clusters are recursively partitioned into
sub clusters. In each cluster, the node with the smallest id will be called the leader of
that cluster. At cluster, all leaders will run ADSD diagnosis algorithm among them
and exchange diagnostic information about nodes considered in sub clusters. The
diagnosis method scales and works efficiently compare to ADSD and Hi-ADSD
under system constraints. However, it introduces overhead of leader election in
diagnosis latency. ML-DSD algorithm shows better performance than ML-ADSD.

3 System Model

To model system attributes, working environment for diagnosis algorithm is defined
by different models like interaction model, fault model and communication model.
Model is similar to model described by A. Subbiah [4].

3.1 Interaction Model

When system works in synchronous mode, responses from a server are guaranteed to
come within a bounded known amount of time. Each step of a process has known
lower & upper bounds. Each Process has a local clock whose drift rate from real time
has a known bound. When system works in asynchronous mode, there is no time
bound over response time, process execution time or clock drift rate. In this paper,
system is considered with a synchronous interaction model. Physical clock at each
node is sufficient to work. Clock drift rate at system nodes is assumed zero. The clock
drift rate is relative rate at which a computer clock drifts away from a perfect
reference clock.

3.2 Failure Model

Our approach considers PMC model [7] with distributed environment, which is used
for most of the distributed diagnosis algorithms. The status of a node is modeled with
two states, failed and working. Failed nodes do not send messages nor do they
perform any computation. Working nodes faithfully execute the diagnosis procedure.

Proposed diagnosis algorithm considers only crash and permanent faults in nodes.
Crash failure indicates that server works correctly, until it halts while permanent fault
is one that continues to exist until the faulty component is repaired. If heartbeat based
algorithm is converted to test based mechanisms than our assumption of crash fault
can be extended for other kind of faults. Processing element is considered as fail-stop.
The term fail-stop suggests that the server simply stops operating. Its halting can be
detected by other processes. Environment is considered dynamic fault environment,
where neither fault timing nor fault count is bounded.

 A Scalable Multi-level Distributed System-Level Diagnosis 195

The state holding time is the minimum time a node remains in the failed/working
state before transitioning to the working/failed state. We assume that faults are
restricted to nodes, i.e. the network delivers messages reliably.

3.3 Communication Model

Diagnosis algorithms can use either unicast or multicast communication. The
proposed diagnosis algorithm considers unicast communication over UDP/IP for fully
connected networks. In fully connected networks, there is a direct communication
channel between every pair of nodes. The maximum message delay is the maximum
message transmission times. The delay is used to calculate and set heartbeat intervals.
Any message processing time on a receiving node is assumed included in the message
delay. We assume that messages are encoded in such a way, e.g. using checksums, to
enable incomplete messages to be detected and discarded.

3.4 Assumptions

ML-DSD assumes non-event driven approach, where diagnosis does not trigged by any
event but diagnosis is done periodically after every D interval (diagnosis interval). We
assume heartbeat-based algorithms work with the use of heartbeat messages, i.e. that
each node periodically initiates a round of message transmissions to other nodes in order
to indicate that the node is working (not crashed). Wherever test-based algorithms work
with the use of test and test reply messages, i.e. each node periodically tests other nodes
and working node sends test reply along with diagnostic information.

ML-DSD is a diagnosis algorithm in which both the heartbeat-based algorithms
and test-based algorithms are used as cluster diagnosis algorithm. Heartbeat-based
mechanism is more efficient because only one message is required instead of two in
the standard testing model. In the standard testing model, while a node remains in the
failed state, other node would periodically test it and therefore, generates additional
messages. Test based mechanism have there own advantage that it can be used to
identify all kind of faults unlike heartbeat mechanism which only identifies crash
fault. It is assumed that heartbeat based diagnosis can be incorporated only at lowest
level. If heartbeat based mechanism is introduced at higher levels, diagnosis fails to
maintain fairness between system nodes. As number of nodes increases, size of
diagnostic information increases and consequently system does instable diagnosis
under unavailability of resources.

4 Multi-level DSD (ML-DSD)

Diagnosis algorithm works in the fully connected systems that satisfies model defined in
previous section. Working of proposed algorithm can be explained in following steps.

4.1 System Partitioning

Proposed algorithm divides system of size N into p clusters of size N/p, where N and
p are assumed power of 2. These clusters are divided into q clusters, each of size
N/(p*q), where q is power of two. As N and p are power of two, N/p is also power of
two. In this way, division continues up to L times, where L is total levels defined for

196 P. Chandrapal and P. Kumar

diagnosis. Nodes at second level are leader of first level. Number of levels and
cluster size at different level decides performance of diagnosis.

4.2 Cluster Diagnosis Algorithm Selection

Diagnosis of each of the cluster is independent. The proposed diagnosis method does
not interfere in working of diagnosis inside the cluster. Cluster diagnosis algorithm is
responsible for providing diagnostic information about all sub clusters to every sub
cluster of same cluster. Cluster is made of sub clusters or single node. If cluster is
made of sub cluster then leader node of each sub cluster will represent its sub cluster.
Cluster diagnosis algorithm will be executed between leaders of all sub clusters inside
cluster. On test, leader provides diagnostic information about all nodes in sub cluster.
Cluster diagnosis algorithm can be any distributed diagnosis algorithm that works
under system model defined in section 3. Diagnosis algorithm that uses heartbeat-
based mechanism can be used as cluster diagnosis algorithm only at lower most level.

4.3 Leader Selection

At higher levels, diagnosis algorithm is executed between leaders of sub clusters. As
no cluster node is free from faults, leader of cluster is selected dynamically. Cluster
leader can be decided by running leadership algorithm between cluster nodes. In
proposed algorithm, cluster leader is a fault free node of cluster having minimum
identification number. Identification number of a node are defined statically or
decided by node attribute like IP (Internet Protocol) number. Each node in cluster
uses its gathered diagnostic information to find cluster leader. In case of leader
becomes faulty, all nodes come to know about new leader of cluster after di time,
where di is diagnosis latency of cluster diagnosis algorithm. As diagnosis algorithm
provides correct diagnostic information after di time, cluster node correctly identifies
cluster leader after di time. Cluster diagnosis algorithm is executed parallel to
leadership algorithm, such that diagnosis process is not affected even in case of
frequent switching of leaders. For cluster diagnosis algorithm, a sub cluster is
considered as faulty if and only if all sub cluster nodes becomes faulty.

4.4 Diagnostic Information Management

Cluster diagnosis algorithm is responsible for providing diagnosis of cluster. To
achieve the diagnosis, cluster leader attaches diagnostic information about nodes
outside cluster, with its own diagnostic information every time it transmits its own
diagnostic information to other cluster nodes. The diagnostic information is provided
to every node of cluster within latency time of cluster diagnosis algorithm.

4.5 Pseudo Code

As shown in fig. 1, on recovery node calls Recovery procedure, during which node
calls Initialize to initialize itself. On fault, node looses control as crash faults are
considered. Fault procedure is presented to keep the diagnosis extensible for other
type of faults, during which all timers are cancelled, and data structure used for
cluster diagnosis algorithm are reset.

 A Scalable Multi-level Distributed System-Level Diagnosis 197

Algo[i] = cluster diagnosis algorithm at level i

D =Time interval between successive diagnosis

Procedure Recovery()
 Initialize()

Procedure Fault
 For each level i
 Reset datastructures used at level i
 Cancel all scheduled timers
 End For

Procedure Cluster_Initialize(i)
Procedure Cluster_Diagnosis(i)
Procedure Cluster_Test(nd, i)
Procedure Cluster_Test_Response(nd, i, msg)
Procedure Cluster_Test_Fail(nd, i)

Procedure Initialize()
 For each level i
 Cluster_Initialize(i)
 End For
 Schedule Diagnosis

Procedure Diagnosis()
 For each level i
 Cluster_Diagnosis(i)
 End For

 Schedule Diagnosis after D time

Procedure Test(nd, i)
 sc=cluster residing node nd at level i-1
 Test all nodes in cluster sc until first fault-free node
 found
 If (all nodes in cluster sc are faulty)
 Test_Fail(sc, i)
 End If

Procedure On_Test(nd, i)
 sc =cluster of nd at level i-1
 C =super cluster of sc
 Attach diagnostic information about all nodes in cluster
 sc with message msg
 If (sc=leader of cluster C)
 Attach diagnostic information about nodes outside
 cluster C with message msg
 End If
 Send the test-response containing msg

Procedure Test_Response(nd, i, msg)
 Retrieve attached diagnosis information
 Cluster_Test_Response(nd, i, msg)

Procedure Test_Fail(nd, i)
 Set status of nd as failed
 Cluster_Test_Fail(nd,i)

Fig. 1. Psuedo code for ML-DSD algorithm

198 P. Chandrapal and P. Kumar

Procedures with prefix cluster show independent working of cluster diagnosis
algorithm at each level i. Cluster diagnosis algorithm specific code is not shown for
the procedures. Cluster diagnosis algorithm works among leaders of sub clusters,
during which leaders exchanges diagnostic information about thier sub clusters. As
test on leader is performed for sub cluster, test on leader fails only if all the nodes in
the sub cluster are faulty.
Cluster_Initialize procedure initializes data structure required for cluster

diagnosis algorithm at level i. Cluster_Diagnosis procedure is called for each
node at regular interval D, which does diagnosis of its cluster at level i using
corresponding cluster diagnosis algorithm. Cluster_Test procedure is called to
test a leader of sub cluster, nd, at level i. Result of the test performed over nd,
provided by Cluster_Test_Response procedure on success and by
Cluster_Test_Fail procedure on failure of test. The three procedures for test,
response and failure for sub cluster leader are implemented with the use of procedures
Test, Test_Response and Test_Fail procedures described as below.

On initialize, node calls Initialize procedure, which subsequently calls
Cluster_Initialize for each level i. Diagnosis procedure is called at
regular interval D to initialize diagnosis interval. The procedure consequently calls
Cluster_Diagnosis for each level i. A test event for a cluster leader initiates
Test procedure. Test, its response and failure of a cluster leader are fully handled by
ML-DSD. Procedure Test initiates sequence of test for all nodes of its cluster until a
fault free node found. On getting test response from any of the cluster nodes,
Test_Response procedure is executed, which subsequently calls procedure
Cluster_Test_Response for level i, at which test was performed. If all cluster
nodes are faulty, Test_Fail procedure is executed, which subsequently calls
Cluster_Test_Fail for level i, at which test was performed.

Procedure On_Test is executed on node nd on receiving test message from source.
It attaches diagnostic information of nodes in cluster to message msg. If node is
leader of super cluster of its cluster, then diagnostic information of nodes outside the
super cluster of its cluster is attached to msg.

In Heartbeat based mechanism, test procedure does not executed, but
Cluster_Test_Response procedure get executed on receiving heartbeat from a
node and Cluster_Test_Fail called on expire of heartbeat timer. In Heartbeat
based mechanism, On_Test procedure is executed before sending a heartbeat.

4.6 Algorithm Analysis

The size of cluster at level i is defined as si (i=1….L), in number nodes. System of n
nodes is partitioned in L levels. Message cost considered in analysis is number of
messages per diagnosis interval. Analysis is considered under worst-case scenario.

If cluster diagnosis algorithm at level i has worst-case diagnosis latency of di then
worst-case diagnosis latency D for ML-DSD is defined by equation (1). di includes
delay introduced by leader failure. In worst case, node x and node y are not a leader at
any level and resides in different clusters at highest level. In such scenario, diagnostic
information about node x traverse up to topmost level in (d1+d2+... +dL-1) testing
rounds. Highest-level cluster of node y grabs information after next dL testing rounds.

 A Scalable Multi-level Distributed System-Level Diagnosis 199

Node y receives the information about node x up to bottom level after (d1+d2+... +dL-1)

testing rounds. Sum of all the above testing rounds gives worst-case diagnosis latency
as in equation (1).

D =2*(d1+d2+... +dL-1)+dL (1)

If cluster diagnosis algorithm at level i has message cost of mi then message cost M
for ML-DSD is defined by equation (2). In each term mi*(n/si) shown in equation,
(n/ si) is number of clusters at level i for clusters at level i. Total message cost M is
sum of such terms, which is message cost for all clusters.

M= for each level i mi*(n/si)
 (2)

In fig. 2(a) and fig. 2(b), message cost and diagnosis latency in testing rounds for one
diagnosis interval are shown for different diagnosis algorithms1. It can be seen that
overall performance of ML-DSD is better than existing diagnosis algorithms.

 (a) (b)

0 2048 4096 6144 8192

Total Nodes

ADSD Hi-ADSD HeartBeat HiHI-8

0
0 2048 4096 6144 8192

Total Nodes

ADSD Hi-ADSD HeartBeat HiHi-8

50

100

150

Te
st

in
g

Ro
un

ds

0

2000

4000

6000

8000

10000

M
es

sa
ge

 C
os

t
pe

r
di

ag
no

si
s

in
te

rv
al

Fig. 2. Worst-case analysis for ML-DSD (a) Total nodes vs. Message cost (b) Total nodes Vs.
Diagnosis Latency

5 Simulation Results and Discussions

All average-case results shown in this section, are taken from the simulation of ML-
DSD algorithms over OMNeT++ (Object-oriented Modular Discrete Event Network
Simulator) [8] simulation environment. Value of D is taken as 30 seconds, whereas
link delay is uniformly distributed between 0.01 and 0.082 seconds. Each node retains
its state at least for state holding time. State holding time is considered as 1000
seconds, whereas fault and recovery process are considered as poisson distribution
with mean as 6000 and 3000 seconds for each node. It means that fault distribution
decides time between two faults at same node and recovery distribution decides time
for which node retains its fault-free state.

1 ML-DSD configuration is identified by “A1A2.. AL-s1-s2-.. -sL”, where s1, s2.. sL are cluster

sizes at each level and A1,A2,.. AL are short form for cluster diagnosis algorithm at each
level. Short forms HI, HB and AD stands for Hi-ADSD, Heartbeat algorithm and ADSD.

200 P. Chandrapal and P. Kumar

5.1 Trade-off for Diagnosis Latency and Message Cost

In Fig 3(b) graph for diagnosis latency Vs. Number of Nodes is shown, where
diagnosis latency is measured in testing rounds. In Fig 3(a) graph for message cost
Vs. Number of Nodes is shown, where message cost is number of messages required
per node for one diagnosis interval. It can be seen that as number of nodes increases,
diagnosis latency and message cost increases for any diagnosis algorithm. Message
cost can be reduced by reducing number of test performed by a node, but introduces
inefficiency in diagnosis latency. Similarly, if diagnosis latency is reduced by
increasing message cost. For higher value of nodes, if the both measure are not
controlled, diagnosis process becomes unstable under unavailability of resources.
ML-DSD considered is two-level ML-DSD with Hi-ADSD as cluster diagnosis
algorithm at both levels, where cluster size is varied to get scalability. ML-DSD
provides moderate values of diagnosis latency and message cost, while providing
better scalability than other diagnosis algorithms. Graph shown in Fig 3(c) presents
the fact that ML-DSD is more scalable than other diagnosis algorithms.

0

10

20

30

40

50

0 64 128 192 256

Total Nodes

T
es

ti
n

g
 R

o
u

n
d

s

HB ADSD ML-DSD (HIHI) Hi-ADSD

0

40

80

120

160

200

0 64 128 192 256

Total Nodes

M
es

sa
g

e
fo

r
o

n
e

d
ia

g
n

o
si

s
in

te
rv

al
 p

er

n
o

d
e

HB ADSD ML-DSD (HIHI) Hi-ADSD

 (a) (b)

0

10

20

30

40

50

0 64 128 192 256

T
h

o
u

sa
n

d
s

Total Nodes

A
lt

er
at

e
S

ca
le

 F
ac

to
r

HB ADSD ML-DSD (HIHI) HI-ADSD

0
50

100
150
200
250
300
350
400
450

0 64 128 192 256

Total Nodes

S
ca

le
 F

ac
to

r

HB ADSD ML-DSD (HIHI) Hi-ADSD

Fig. 3. Trade-off for Latency & Message cost (a) Total nodes vs. Message cost (b) Total nodes
Vs. Diagnosis Latency (c) Total nodes vs. Scale factor (d) Total nodes vs. ASF

5.2 Effect on Latency Time and Diagnostic Units

As performance measures shown in above section never remained satisfactorily. The
term latency time is unlike testing round, which does not depend on number of failed
tests. The term diagnostic unit cost is unlike message cost, which does not consider

 A Scalable Multi-level Distributed System-Level Diagnosis 201

size of message. However, the diagnostic unit cost looses its effect for lower
diagnostic unit size, and latency time depends on diagnosis interval. Alternative scale
factor (ASF) is the product of latency time and diagnostic unit cost. As shown in
fig 3(d), ML-DSD is scalable than diagnosis algorithms except Heartbeat. However,
ASF should not be considered as scalability factor, which presents Heartbeat as
scalable algorithm.

5.3 Effect of Cluster Diagnosis Algorithm

Cluster diagnosis algorithm used at different level decides performance of algorithm.
Cluster diagnosis algorithm can be any diagnosis algorithm satisfying system model
described in section 3. Diagnosis algorithm like ADSD, Hi-ADSD and Heartbeat are
among favorites due to their unique properties. However, in non-event-driven
diagnosis ADSD gains no advantage than Hi-ADSD. Use any of the above diagnosis
algorithm introduces effect from its unique property. I.e. introduces ADSD in one of
the level reduces message cost, and introducing Heartbeat algorithm reduces
diagnosis latency for diagnosis process. In fig 4, simulation results for latency,
message cost and scale factor are shown for 256-node system.

In fig, 4, it can be noticed that ML-DSD introduces higher message cost on using
Heartbeat as cluster diagnosis algorithm, but considerably reduces diagnosis latency.
Using ADSD as cluster diagnosis algorithm in ML-DSD introduces less message cost
at the cost of higher diagnosis latency. Whereas using Hi-ADSD as cluster diagnosis
algorithm, optimizes performance for diagnosis latency and message cost. For any
cluster diagnosis algorithm, too large or too small cluster size degrades performance.
It can be seen that increment in levels degrades performance after reaching an
optimum performance.

0
50

100
150
200
250
300

HI
AD

AD
-1

6
AD

AD
-8

-6
4

AD
AD

-4
-1

6-
64

HI
HI

-1
6

HI
HI

-8
-6

4
HB

HI
-1

6
HB

AD
-1

6
AD

HI
-8

HI
AD

-1
6

ML-DSD Algorithm

Sc
al

e
Fa

ct
or

Fig. 4. Scale Factor for ML-DSD under different parameters

6 Conclusion

Using event-driven approach, ADSD provides minimum message-cost at the cost of
higher diagnosis latency. If system with less number of nodes, it is beneficial to

202 P. Chandrapal and P. Kumar

switch to Hi-ADSD algorithm, which exploits concept of divide, & conquer and
achieves diagnostic latency of log2

2 n testing rounds. The algorithm ML-ADSD,
introduces concept of multi-level paradigm and scalability, but diagnosis is done
under constraints and diagnosis latency is higher than proposed algorithm with
comparable message cost. On the other side, Heartbeat algorithms works over a
different approach where diagnosis latency is given higher priority than number of
tests performed, and it has achieved the diagnostic latency of approximately one
testing round. It provides smallest value of diagnosis latency among all existing
diagnosis algorithms.

ML-DSD achieves diagnosis of fully connected network, and is ready to use for
network management and monitoring. It provides better scalability under optimum
parameters than other diagnosis algorithms. ML-DSD can be tuned for diagnosis
latency or message cost under predefined system constraints. The diagnosis can be
extended to provide fairness among nodes by implementing in fully distributed way.
In fully distributed way, though no leader is selected, each node has to perform
predefined tests on cluster behalf.

The diagnosis algorithm can be used for network management and monitoring and
fault tolerance for network. It can be extended to support SNMP protocol. The
diagnosis algorithm is capable of performing system-level diagnosis for
multiprocessors. Our work can also be extended for distributed load balancing by
attaching performance measures (e.g. CPU utilization, memory utilization etc.) with
fault status.

References

[1] Bianchini R. and Buskens R., “Implementation of On-Line Distributed System-Level
Diagnosis Theory”, IEEE Trans. Computers, vol. 41, pp. 616-626, May 1992.

[2] Duarte E.P. Jr. and Nanya T., “A Hierarchical Adaptive Distributed System-Level
Diagnosis Algorithm”, IEEE Trans. Computers, vol. 47, pp. 34-45, Jan. 1998.

[3] Duarte E.P. Jr., Brawerman A., and Albini L.C.P., “An Algorithm for Distributed
Hierarchical Diagnosis of Dynamic Fault and Repair Events”, Proc. Seventh Int’l Conf.
Parallel and Distributed Systems, pp. 299-306, 2000.

[4] Subbiah A. and Douglas M., “Distributed Diagnosis in Dynamic Fault Environments”,
IEEE Transactions on Parallel and Distributed Systems, Vol.15, pp. 453-467, May 2004.

[5] Su M. S., Thulasiraman K. and Das A., “A Scalable On-line Multilevel Distributed
Network Fault Detection/Monitoring System based on the SNMP protocol”, IEEE
GlobeComm2002, November 2002.

[6] Su M. S., Thulasiraman K., and Goel V., “The Multi-Level Paradigm for Distributed Fault
Detection in Network with Unreliable Processors”, ISCAS’03, Proc. of the 2003 Int’l
symposium on Circuits and Systems, vol. 3, pp. III 862-865, May 2003

[7] Preparata F., Metze G. and Chien R., “On the connection assignment problem of
diagnosable systems”, IEEE Trans. Elect. Comput. EC-16, 6 (Dec.), pp. 848-854, 1967.

[8] Varga A., “Object-oriented Modular Discrete Event Network Simulator”, OMNeT++
Community Site, www.omnetpp.org, January 2005

Analysis of Interval-Based Global State
Detection

Punit Chandra and Ajay D. Kshemkalyani

Computer Science Department, Univ. of Illinois at Chicago, Chicago, IL 60607, USA
{pchandra, ajayk}@cs.uic.edu

Abstract. The problem of global state observation is fundamental to
distributed systems. All interactions in distributed systems can be ana-
lyzed in terms of the building block formed by the pairwise interactions
of intervals between two processes. Considering causality-based pairwise
interactions by which two intervals at different processes may interact
with each other, there are 40 possible orthogonal interactions. This pa-
per examines the problem: “If a global state of interest to an application
is specified in terms of the pairwise interaction types between each pair
of processes, how can such a global state be detected?” A solution iden-
tifies a global state in which the relation specified for each process pair
is satisfied. This paper formulates the specific conditions on the exact
communication structures to determine which of the intervals being ex-
amined at any time may never satisfy the stipulated relation for that
pair of processes, and therefore that interval must be deleted.

1 Introduction

The problem of global state observation is fundamental to distributed systems, as
identified by Chandy and Lamport’s seminal paper on recording global states [6].
It has been observed that all causality-based interactions in distributed systems
can be analyzed in terms of the building block formed by the pairwise interactions
of intervals between two processes [11]. A detailed analysis of the causality-
based pairwise interactions by which two processes may interact with each other
identified 29 (40) causality-based orthogonal interactions, denoted as #, between
two processes under the dense (and nondense) time model, respectively [11]. This
paper examines the state detection problem: “If a global state of interest to an
application is specified in terms of the pairwise interaction types between each
pair of processes, how can such a global state be detected?”

Central to the pairwise interactions studied in this paper is the notion of
time intervals at each process. A time interval at a process is the local duration
in which the process “interacts”, or in which some local property of interest is
true. The semantics of the interval are application-dependent [8, 9, 11, 12, 15, 18];
application areas such as sensor networks, distributed debugging, deadlock char-
acterization [16], predicate detection [3, 4, 5], checkpointing [7, 10], and industrial
process control model such intervals.

The above state detection problem was formulated as the following problem
DOOR for the Detection of Orthogonal Relations [1, 12].

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 203–216, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

204 P. Chandra and A.D. Kshemkalyani

Problem DOOR. Given a relation ri,j from # for each pair of processes i and
j, devise a distributed on-line algorithm to identify the intervals, if they
exist, one from each process, such that each relation ri,j is satisfied by the
(i, j) process pair.

A solution satisfying the set of relations {ri,j(∀i, j)} identifies a global state
of the system [6, 14]. We showed [3] that this problem generalizes the global
predicate detection problem [4, 5], and further that the solution to this problem
is not more expensive than existing solutions to global predicate detection.

Devising an efficient on-line algorithm to solve problem DOOR is a challenging
problem because of the overhead of having to track the intervals at different pro-
cesses. Three solutions have been proposed to this problem so far. A distributed
on-line algorithm to solve this problem was outlined in [1]. This algorithm uses
O(n · min(np, 4mn)) number of messages with a message size of O(n), where
n is the number of processes, m is the maximum number of messages sent by
any process, and p is the maximum number of intervals at any process. Another
distributed algorithm requiring fewer messages, but at the cost of somewhat
larger messages, was given in [2]. This algorithm uses O(min(np, 4mn)) number
of messages with a message size of O(n2). For both the algorithms, the total
space complexity across all the processes is min(4n2p − 2np, 10n2m), and the
average time complexity at a process is O(min(np, 4mn)). A centralized on-line
algorithm run at a server P0 was given in [3]. For this algorithm, M = maxi-
mum queue length at P0, p ≥M as all the intervals may not be sent to P0. The
performance of the algorithms is summarized in Table 1.

Summary of Results and Contributions. The algorithms in [1, 2, 3] to solve
DOOR were presented without any formal discussion or analysis of the theoret-
ical basis, and without any correctness proofs. This paper makes the following
contributions.

1. To devise any efficient solution, this paper formulates specific conditions on
the structure of the exact causal communication patterns to determine which

Table 1. Comparison of space, message and time complexities

Analysis of Interval-Based Global State Detection 205

of two intervals being examined from processes i and j may never satisfy ri,j ,
and therefore that interval(s) must be deleted. This result is embodied as:
– a basic principle that we prove in Theorem 1 – the main result, and
– Lemma 4, a useful lemma derived from the above theorem, and used

by the algorithms in [1, 2, 3], that can be used to efficiently manage the
distributed data structures.

The on-line algorithms [1, 2, 3] to solve problem DOOR indirectly used
Lemma 4, but did not explain the principle or indicate how it was de-
rived. This paper derives and explains the critical principle (Theorem 1)
from scratch. Any future algorithms to solve DOOR will also have to be
based on this principle.

2. Global state observation [6] and predicate detection [4, 5] are fundamental
problems. The result provides an understanding of interval-based global state
observation and predicate detection, in terms of the causal communication
structure in an execution [15].

3. The process of devising this principle (Theorem 1) which guarantees that at
least one of any pair of intervals being examined at any time can be deleted
(Lemma 4), gives a deeper insight into the nature of reasoning with the
structure of causality in a distributed execution. Schwarz and Mattern have
identified this as an important problem [19].

Section 2 reviews the background. Section 3 gives the theory used to determine
which of two given intervals at different processes can never be part of a solution
set, thus allowing at least one of them to be deleted. Section 4 gives concluding
remarks.

2 System Model and Background

We assume an asynchronous distributed system in which n processes commu-
nicate by reliable message passing over logical FIFO channels [11, 18]. A poset
event structure (E,≺), where ≺ is an irreflexive partial ordering representing
the causality or the “happens before” relation [17] on the event set E, is used
as the model for the execution. E is partitioned into local executions at each
process. Each Ei is a linearly ordered set of events executed by process Pi. An
event e executed by Pi is denoted ei. The set of processes is denoted by N .

A cut C is a subset of E such that if ei ∈ C then (∀e′i) e′i ≺ ei =⇒ e′i ∈ C. A
consistent cut is a downward-closed subset of E and denotes an execution prefix.
For event e, there are two special consistent cuts ↓ e and e ↑, defined next.

Definition 1. Cut ↓ e is the maximal set of events {e′ |e′ ≺ e} that happen
before e. Cut e ↑ is the set of all events {e′ |e′ �' e} ⋃ {ei, i = 1, . . . , |N | | ei '
e
∧

(∀e′i ≺ ei, e
′
i �' e)} up to and including the earliest events at each process

for which e happens before the events.

The system state after the events in a cut is a global state [6]; if the cut is consis-
tent, the corresponding system state is a consistent global state. The durations

206 P. Chandra and A.D. Kshemkalyani

Table 2. Dependent relations for interactions between intervals [11]

Relation r Expression for r(X,Y)
R1 ∀x ∈ X∀y ∈ Y, x ≺ y

R2 ∀x ∈ X∃y ∈ Y, x ≺ y

R3 ∃x ∈ X∀y ∈ Y, x ≺ y

R4 ∃x ∈ X∃y ∈ Y, x ≺ y

S1 ∃x ∈ X∀y ∈ Y, x �� y y �� x

S2 ∃x1, x2 ∈ X∃y ∈ Y, x1 ≺ y ≺ x2

Table 3. The 40 orthogonal relations in � [11]. The upper part gives the 29 relations
assuming dense time. The lower part gives 11 additional relations for nondense time.

Interaction Relation r(X, Y) Relation r(Y, X)
Type R1 R2 R3 R4 S1 S2 R1 R2 R3 R4 S1 S2

IA(= IQ−1) 1 1 1 1 0 0 0 0 0 0 0 0
IB(= IR−1) 0 1 1 1 0 0 0 0 0 0 0 0
IC(= IV −1) 0 0 1 1 1 0 0 0 0 0 0 0
ID(= IX−1) 0 0 1 1 1 1 0 1 0 1 0 0
ID′(= IU−1) 0 0 1 1 0 1 0 1 0 1 0 1
IE(= IW −1) 0 0 1 1 1 1 0 0 0 1 0 0
IE′(= IT −1) 0 0 1 1 0 1 0 0 0 1 0 1
IF (= IS−1) 0 1 1 1 0 1 0 0 0 1 0 1
IG(= IG−1) 0 0 0 0 1 0 0 0 0 0 1 0
IH(= IK−1) 0 0 0 1 1 0 0 0 0 0 1 0
II(= IJ−1) 0 1 0 1 0 0 0 0 0 0 1 0
IL(= IO−1) 0 0 0 1 1 1 0 1 0 1 0 0
IL′(= IP −1) 0 0 0 1 0 1 0 1 0 1 0 1
IM(= IM−1) 0 0 0 1 1 0 0 0 0 1 1 0
IN(= IM ′−1) 0 0 0 1 1 1 0 0 0 1 0 0
IN ′(= IN ′−1) 0 0 0 1 0 1 0 0 0 1 0 1

ID′′(= (IUX)−1) 0 0 1 1 0 1 0 1 0 1 0 0
IE′′(= (ITW)−1) 0 0 1 1 0 1 0 0 0 1 0 0
IL′′(= (IOP)−1) 0 0 0 1 0 1 0 1 0 1 0 0

IM ′′(= (IMN)−1) 0 0 0 1 0 0 0 0 0 1 1 0
IN ′′(= (IMN ′)−1) 0 0 0 1 0 1 0 0 0 1 0 0

IMN ′′(= (IMN ′′)−1) 0 0 0 1 0 0 0 0 0 1 0 0

of interest at each process are the durations during which the process interacts,
or during which the local application-specific predicate is true. Such a duration,
also termed as an interval, at process Pi is identified by the corresponding events
within Ei. Each interval can be viewed as defining an event of higher granular-
ity at that process, as far as the local predicate of interest is concerned. Such
higher-level events, one from each process, can be used to identify a global state
[8, 13]. Intervals are denoted by capitals such as X . An interval X at Pi is also
denoted by Xi.

It has been shown that there are 29 or 40 possible mutually orthogonal ways
in which any two durations can be related to each other, depending on whether
the dense or the nondense time model is assumed [11]. Informally speaking, with
dense time, ∀x, y in interval A, x ≺ y =⇒ ∃z ∈ A | x ≺ z ≺ y. These orthogonal
interaction types were identified by first using the six relations given in the

Analysis of Interval-Based Global State Detection 207

’
’

’
’

X

’

max(X)min(X)

min(X)

time

max(X) min(X) max(X)

IQ
IE IE

IS

IL IL

IN IN

IU

IP

IK IHIG
IV II

IW

IX
IO

IM IM

IJ
IC

IT

IF
ID ID

IR IB

IA

Fig. 1. Interaction types between intervals under the dense time model [11]

first two columns of Table 2. Relations R1 (strong precedence), R2 (partially
strong precedence), R3 (partially weak precedence), R4 (weak precedence) define
causality conditions whereas S1 and S2 define coupling conditions.

– (Dense time:) The 29 possible interaction types between a pair of intervals
are given in the upper part of Table 3. The interaction types are specified
using boolean vectors. The six relations R1-R4 and S1-S2 form a boolean
vector of length 12, (six bits for r(X, Y) and six bits for r(Y, X)). Of the
29 interactions, there are 13 pairs of inverses, while three are inverses of
themselves. The interaction types are illustrated in Figure 1, where interval
X is shown by a rectangle. Interval Y , indicated using horizontal lines, is
in different positions relative to X . Each position of Y is labeled by an
interaction type, IA through IX . The different types of interactions are
identified by the various positions of Y relative to X . Five positions of Y
have two labels each – the distinction between them is given in [11].

– (Nondense time:) The nondense time model which captures the reality that
event sequences and real clocks are discrete permits 11 interaction types
between a pair of intervals, defined in the lower part of Table 3, in addition
to the 29 identified before. Of these, there are five pairs of inverses, while
one is its own inverse. Illustrations are given in [11].

The set of 40 orthogonal relations is denoted as #.

Example specification of DOOR. Consider a system of three processes Pi,
Pj , and Pk. The application wants to detect a global state in which the following
relations are pairwise satisfied: (i) IQ(Xi, Yj) and IA(Yj , Xi), (ii) IG(Yj , Zk) and
IG(Zk, Yj), and (iii) IA(Zk, Xi) and IQ(Xi, Zk).

Each of the 40 orthogonal relations in # can be tested for using the bit-
patterns for the dependent relations, as given in Table 3. The tests for the
relations R1 – R4, S1, and S2 using vector timestamps are given in [1, 2, 3, 12].
During an execution, the information about intervals at Pi is recorded in queue

208 P. Chandra and A.D. Kshemkalyani

Qi. The intervals from the queues are examined pairwise across queues to check
if the relation ri,j specified for Pi and Pj holds. In the algorithms in [1, 2], the
tests are collectively run in different distributed ways to solve DOOR, whereas
in the algorithm in [3], they are run at a central server.

To understand the principle for designing these [1, 2, 3] and more efficient
algorithms to process the queued intervals, we show our main result (Theorem 1)
about when two given intervals may potentially satisfy a given interaction type
we want to detect. This theorem in the form of Lemma 4 is used in practice by
the algorithms [1, 2, 3] to solve DOOR.

3 The Elimination Conditions

Devising an efficient on-line algorithm to solve problem DOOR is a challenge
because of the overhead of having to track the intervals at different processes.
To devise any efficient solution, we formulate a basic principle that can be used to
efficiently manage the distributed data structures. Specifically, we use the notion
of a “prohibition” function [1, 2, 3] to show the main principle – Theorem 1 – and
thereby Lemma 4 which is the condition for pruning of intervals from queues.
We show that if the given relationship between a pair of processes does not
hold for a pair of intervals being tested, then at least one of the intervals is
deleted.

For any two intervals X and X ′ that occur at the same process, if R1(X, X ′),
then we say that X is a predecessor of X ′ and X ′ is a successor of X . We assume
interval X occurs at Pi and interval Y occurs at Pj . Intuitively, for each ri,j ∈ #,
a prohibition function H(ri,j) is the set of all relations R such that if R(X, Y)
is true, then ri,j(X, Y ′) can never be true for some successor Y ′ of Y . H(ri,j) is
the set of relations that prohibit ri,j from being true in the future.

Definition 2. Prohibition function H : # → 2
 is defined as H(ri,j) = {R ∈
| if R(X, Y) is true then ri,j(X, Y ′) is false for all Y ′ that succeed Y }.
Two relations R′ and R′′ in # are related by the allows relation � if the occur-
rence of R′(X, Y) does not prohibit R′′(X, Y ′) for some successor Y ′ of Y .

Definition 3. The “allows” relation � is a relation on #×# such that R′ � R′′

if the following holds: if R′(X, Y) is true then R′′(X, Y ′) can be true for some
Y ′ that succeeds Y .

Lemma 1. If R ∈ H(ri,j) then R �� ri,j else if R �∈ H(ri,j) then R � ri,j.

Proof. If R ∈ H(ri,j), using Definition 2, it can be inferred that ri,j is false
for all Y ′ that succeed Y . This does not satisfy Definition 3. Hence R �� ri,j . If
R �∈ H(ri,j), it follows that ri,j can be true for some Y ′ that succeeds Y . This
satisfies Definition 3 and hence R � ri,j . ��
Given that R′(A, B) � R′′(A, B′), where R′ and R′′ are orthogonal relations
from #, the following lemma shows some relationships between interval pairs

Analysis of Interval-Based Global State Detection 209

A, B and A, B′ in terms of the dependent set of causality relations R1 − R4.
These relationships will be useful to show a critical relationship between R′−1

and R′′−1 (Theorem 1) that allows efficient pruning of intervals on the queues
in any algorithm to solve Problem DOOR.

Lemma 2. If R′ � R′′, R′(A, B) and R′′(A, B′), where R′, R′′ ∈ #, then the
statements in Table 5 are true.

Proof. As R′ � R′′ and R′(A, B) is true, we can safely assume that there can
exist an interval B′ that succeeds B and such that R′′(A, B′) is true. Now con-
sider axioms AL2, AL4, AL5 and AL6 given in Table 4. Applying the following
transformations gives statements T1 to T4 of Table 5, respectively.

1. Substitute A, B, B′ for X, Y, Z, respectively, in Table 4.
2. As B′ succeeds B, hence substitute true for R1(B, B′), R2(B, B′), R3(B, B′),

and R4(B, B′).

Consider axioms AL1, AL2, AL3 and AL4 given in Table 4. Applying the fol-
lowing transformations gives statements T5 to T8, of Table 5, respectively.

1. Substitute B, B′, and A for X, Y, and Z, respectively in Table 4.
2. As B′ succeeds B, hence substitute true for R1(B, B′), R2(B, B′), R3(B, B′),

and R4(B, B′). ��
We now show an important result between any two relations in # that satisfy
the “allows” relation, and the existence of the “allows” relation between their

Table 4. Axioms for the causality relations of Table 2 [11]. R stands for “R is false”.

Axiom Label r1(X, Y) r2(Y, Z) =⇒ r(X,Z)
AL1 R1(X, Y) R2(Y, Z) =⇒ R2(X, Z)
AL2 R1(X, Y) R3(Y, Z) =⇒ R1(X, Z)
AL3 R1(X, Y) R4(Y, Z) =⇒ R2(X, Z)
AL4 R2(X, Y) R1(Y, Z) =⇒ R1(X, Z)
AL5 R3(X, Y) R1(Y, Z) =⇒ R3(X, Z)
AL6 R4(X, Y) R1(Y, Z) =⇒ R3(X, Z)
AL7 R2(X, Y) R3(Y, Z) =⇒ true

AL8 R2(X, Y) R4(Y, Z) =⇒ true

AL9 R3(X, Y) R2(Y, Z) =⇒ R4(X, Z)
AL10 R4(X, Y) R2(Y, Z) =⇒ R4(X, Z)
AL11 R3(X, Y) R4(Y, Z) =⇒ R4(X, Z)
AL12 R4(X, Y) R3(Y, Z) =⇒ true

AL13 R1(X, Y) =⇒ S1(X, Y) S2(X, Y) R4(Y,X) S1(Y, X) S2(Y, X)
AL14 R2(X, Y) =⇒ S1(X, Y) R2(Y, X)
AL15 R3(X, Y) =⇒ R3(Y, X) S1(Y,X)
AL16 R4(X, Y) =⇒ R1(Y, X)
AL17 S1(X, Y) =⇒ R2(X, Y) R3(Y, X) S2(Y, X)
AL18 S2(X, Y) =⇒ R1(X, Y) R4(X, Y) R1(Y,X) R4(Y, X) S1(Y, X)

210 P. Chandra and A.D. Kshemkalyani

Table 5. Given R′ � R′′, R′(A, B) and R′′(A,B′), for R′, R′′ ∈ �, statements between
interval pairs A,B and A, B′ using the dependent relations R1 − R4

Statement Label Statements
T1 R1(A,B) =⇒ R1(A,B′)
T2 R2(A,B) =⇒ R1(A,B′)
T3 R3(A,B) =⇒ R3(A,B′)
T4 R4(A,B) =⇒ R3(A,B′)
T5 R1(B′, A) =⇒ R1(B, A)
T6 R2(B′, A) =⇒ R2(B, A)
T7 R3(B′, A) =⇒ R1(B, A)
T8 R4(B′, A) =⇒ R2(B, A)

(a)

R’(X,Y), R"(X,Y’), and hence, R’ allows R"

−1
R"

R"
R"

R’R’

R’

−1−1

X’

Y

X

(b)

R’

 −1 −1

 −1

Theorem shows it cannot. Hence, R’ does not allow R"

−1−1
From (a) we have R’ (Y,X), R" (Y’,X). But can R" (Y,X’) hold?

Y’

−1
R"

(a)

(b)

Y’Y

X

Fig. 2. Illustration of Theorem 1

respective inverses. Specifically, if R′ allows R′′ (and R′ �= R′′), then Theorem 1
shows that R′−1 necessarily does not allow relation R′′−1. This theorem is il-
lustrated in Figure 2. This theorem is used in deriving Lemma 4 which will
be practically used in deriving solutions to problem DOOR, and to prove the
correctness of such solutions.

Theorem 1. For R′, R′′ ∈ # and R′ �= R′′, if R′ � R′′ then R′−1 �� R′′−1

Proof. We prove by contradiction. The assumption using which we show a
contradiction is the following.

R′(X, Y) is true, R′(X, Y) � R′′(X, Y ′) and R′−1(Y, X) � R′′−1(Y, X ′)
(1)

As T1 to T8 must hold for both R′(X, Y) � R′′(X, Y ′) and R′−1(Y, X) �

R′′−1(Y, X ′) we get two sets of constraints for intervals X, X ′, Y , and Y ′ in
terms of the dependent causality relations R1 to R4.

Consider R′(X, Y) � R′′(X, Y ′). Instantiating A by X , B by Y , and B′ by
Y ′ in T1-T8, we have the following set of constraints that need to be satisfied.

Analysis of Interval-Based Global State Detection 211

C1: R1(X, Y)⇒ R1(X, Y ′) C5: R1(Y ′, X)⇒ R1(Y, X)
C2: R2(X, Y)⇒ R1(X, Y ′) C6: R2(Y ′, X)⇒ R2(Y, X)
C3: R3(X, Y)⇒ R3(X, Y ′) C7: R3(Y ′, X)⇒ R1(Y, X)
C4: R4(X, Y)⇒ R3(X, Y ′) C8: R4(Y ′, X)⇒ R2(Y, X)

Now consider R′−1(Y, X) � R′′−1(Y, X ′). Instantiating A by Y , B by X , and
B′ by X ′ in T1-T8, we have the following set of constraints that need to be
satisfied.

C9: R1(Y, X)⇒ R1(Y, X ′) C13: R1(X ′, Y)⇒ R1(X, Y)
C10: R2(Y, X)⇒ R1(Y, X ′) C14: R2(X ′, Y)⇒ R2(X, Y)
C11: R3(Y, X)⇒ R3(Y, X ′) C15: R3(X ′, Y)⇒ R1(X, Y)
C12: R4(Y, X)⇒ R3(Y, X ′) C16: R4(X ′, Y)⇒ R2(X, Y)

From Equation 1, it can be seen that the interval pairs (Y ′, X) and (Y, X ′)
both are related by the orthogonal relation R′′−1. Hence r(Y ′, X) ⇔ r(Y, X ′),
where r is any of the six dependent relations given in Table 2. Thus replacing
r(Y, X ′) by r(Y ′, X) in C9 to C12, we have the following constraints.

C17: R1(Y, X)⇒ R1(Y ′, X) C19: R3(Y, X)⇒ R3(Y ′, X)
C18: R2(Y, X)⇒ R1(Y ′, X) C20: R4(Y, X)⇒ R3(Y ′, X)

From Equation 1, it can also be seen in a similar way that the interval pairs
(X, Y ′) and (X ′, Y) both are related by the orthogonal relation R′′. Hence
r(X, Y ′) ⇔ r(X ′, Y), where r is any of the six dependent relations given in
Table 2. Thus replacing r(X ′, Y) by r(X, Y ′) in C13 to C16, we have the follow-
ing constraints.

C21: R1(X, Y ′)⇒ R1(X, Y) C23: R3(X, Y ′)⇒ R1(X, Y)
C22: R2(X, Y ′)⇒ R2(X, Y) C24: R4(X, Y ′)⇒ R2(X, Y)

The two constraint sets (C1)-(C8) and (C17)-(C24) given above can be com-
bined to obtain restrictions on the type of interactions (given in Table 3) that
R′(X, Y) can belong to. Combining constraints C1 to C4 with constraints C21
to C24 gives

R1(X, Y) ∨R2(X, Y) ∨R3(X, Y) ∨R4(X, Y)⇒ R1(X, Y)

Note from the definitions in Table 2 that R1(X, Y) ⇒ R2(X, Y) ∧ R3(X, Y) ∧
R4(X, Y). Thus,

R1(X, Y) ∨R2(X, Y) ∨R3(X, Y) ∨R4(X, Y)⇒
R1(X, Y) ∧R2(X, Y) ∧R3(X, Y) ∧R4(X, Y) (2)

The above implication implies that either relations R1(X, Y), R2(X, Y),
R3(X, Y), and R4(X, Y) are all true or all false.

Using a similar approach, combining constraints C17 to C20 with constraints
C5 to C8 gives

R1(Y, X) ∨R2(Y, X) ∨R3(Y, X) ∨R4(Y, X)⇒
R1(Y, X) ∧R2(Y, X) ∧R3(Y, X) ∧R4(Y, X) (3)

212 P. Chandra and A.D. Kshemkalyani

This means either relations R1(Y, X), R2(Y, X), R3(Y, X), and R4(Y, X), are
all true or all false.

Implications (2) and (3) restrict the interaction type (given in Table 3) to
which R′(X, Y) can belong. We now examine all the restricted cases to which
R′(X, Y) can belong, i.e., when R1(X, Y) to R4(X, Y) are all true, and when
R1(X, Y) to R4(X, Y) are all false, and show that R′(X, Y) can not exist; which
is a contradiction to Equation (1).

Case 1. R1(X, Y), R2(X, Y), R3(X, Y), and R4(X, Y) are all true.

From constraints C1 to C4, we get

R1(X, Y ′), R2(X, Y ′), R3(X, Y ′), R4(X, Y ′) are true. (4)

Using axioms AL13 to AL16 we get R1(Y, X), R2(Y, X), R3(Y, X), R4(Y, X),
S1(X, Y), S2(X, Y), S1(Y, X), S2(Y, X) are all false. Now substituting X, Y ′

for X , Y in axioms AL13 to AL16, we get

R1(Y ′, X), R2(Y ′, X), R3(Y ′, X), R4(Y ′, X), S1(X, Y ′), S2(X, Y ′),
S1(Y ′, X), S2(Y ′, X) are false. (5)

Using Table 3, the only possible combination by which to instantiate R′ and
R′′ so that they satisfy Equations (4) and (5) is IA. Thus, we have R′(X, Y) =
R′′(X, Y ′) = IA. As R′ �= R′′ by the theorem statement, this case cannot exist.

Case 2. R1(X, Y), R2(X, Y), R3(X, Y) and R4(X, Y) are all false.

This case has two subcases.

1. R1(Y, X), R2(Y, X), R3(Y, X), and R4(Y, X) are all true. From constraints
C17 to C20, we get

R1(Y ′, X), R2(Y ′, X), R3(Y ′, X), R4(Y ′, X) are true. (6)

Substituting Y, X for X , Y in axiom AL13 we get S1(X, Y), S2(X, Y),
S1(Y, X), S2(Y, X), are all false. Now substituting Y ′, X for X , Y in axioms
AL13 to AL16, we get

R1(X, Y ′), R2(X, Y ′), R3(X, Y ′), R4(X, Y ′), S1(X, Y ′), S2(X, Y ′),
S1(Y ′, X), S2(Y ′, X) are false. (7)

Using Table 3, the only possible combination by which to instantiate R′

and R′′ so that they satisfy Equations (6) and (7) is IQ. Thus, we have
R′(X, Y) = R′′(X, Y ′) = IQ. As R′ �= R′′ by the theorem statement, this
case cannot exist.

2. R1(Y, X), R2(Y, X), R3(Y, X), and R4(Y, X) are all false. From constraints
C5 to C8, we get

R1(Y ′, X), R2(Y ′, X), R3(Y ′, X), R4(Y ′, X) are false. (8)

Analysis of Interval-Based Global State Detection 213

Table 6. H(ri,j) for the 40 independent relations in �. The upper part gives function
H for dense time. The lower part gives the function H for the 11 additional relations
for non-dense time.

Interaction H(ri,j) H(rj,i)
Type ri,j

IA (= IQ−1) φ � − {IQ}
IB (= IR−1) {IA, IB, IF, II, IP, IO, IU, IX, IUX, IOP } � − {IQ}
IC (= IV −1) {IA, IB, IF, II, IP, IO, IU, IX, IUX, IOP } � − {IQ}
ID (= IX−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
ID′ (= IU−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IE (= IW−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IE′ (= IT −1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IF (= IS−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IG (= IG−1) � − {IQ, IR, IJ, IV, IK, IG} � − {IQ, IR, IJ, IV, IK, IG}
IH (= IK−1) � − {IQ, IR, IJ, IV, IK, IG} � − {IQ, IR, IJ}
II (= IJ−1) � − {IQ, IR, IJ, IV, IK, IG} � − {IQ, IR, IJ}
IL (= IO−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IL′ (= IP −1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IM (= IM−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IN (= IM′−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IN′ (= IN′−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}

ID′′ (= (IUX)−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IE′′ (= (IT W)−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IL′′ (= (IOP)−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}

IM′′ (= (IMN)−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IN′′ (= (IMN′)−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}

IMN′′ (= (IMN′′)−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}

Now substituting Y ′, X for X , Y in axioms AL13 to AL16, we get

R1(X, Y ′), R2(X, Y ′), R3(X, Y ′), R4(X, Y ′) are false. (9)

Using Table 3, the only possible combination by which to instantiate R′ and
R′′ so that they satisfy Equations (8)-(9) is IG. Thus, we have R′(X, Y) =
R′′(X, Y ′) = IG. As R′ �= R′′ by the theorem statement, this case cannot
exist.

Hence there cannot exist a case where R′(X, Y) � R′′(X, Y ′) and R′−1(Y, X)
� R′′−1(Y ′, X). This contradicts the assumption in Equation 1, proving the
theorem. ��

Example. IC � IB⇒ IV (= IC−1) �� IR(= IB−1), which is indeed true. Note
that R′ �= R′′ in the statement of Theorem 1 is necessary; otherwise R′ � R′

leads to R′−1 �� R′−1 from the theorem, a contradiction.

Table 6 gives S(ri,j) for each of the 40 interaction types in #. The table is
constructed by analyzing each interaction pair in #. The following two lemmas
are necessary to show the correctness of the algorithm in [1, 2, 3] and of any other
algorithm to solve problem DOOR.

Lemma 3. If the relationship R(X, Y) between intervals X and Y (belonging
to process Pi and Pj, resp.) is contained in the set H(ri,j), and ri,j �= R, then
interval X can be removed from the queue Qi.

214 P. Chandra and A.D. Kshemkalyani

Proof. From the definition ofH(ri,j), we get that ri,j(X, Y ′) cannot exist, where
Y ′ is any successor interval of Y . Further, as ri,j �= R, we have that interval X
can never be a part of the solution and can be deleted from the queue. ��
The following final result, although simple in form, is based on the crucial The-
orem 1 and shows that both R �∈ H(ri,j) and R−1 �∈ H(rj,i) cannot hold when
R �= ri,j . Hence, by Lemma 3, if R(Xi, Yj) �= ri,j then at least one of the intervals
Xi and Yj being tested must be deleted.

Lemma 4. If the relationship between a pair of intervals X and Y (belonging to
processes Pi and Pj respectively) is not equal to ri,j, then interval X or interval
Y is removed from its queue Qi or Qj, respectively.

Proof. We use contradiction. Assume relation R(X, Y) (�= ri,j(X, Y)) is true for
intervals X and Y . From Lemma 3, the only time neither X nor Y will be deleted
is when R �∈ H(ri,j) and R−1 �∈ H(rj,i). From Lemma 1, it can be inferred that
R � ri,j and R−1 � rj,i. As r−1

i,j = rj,i, we get R � ri,j and R−1 � r−1
i,j . This

is a contradiction as by Theorem 1, R � ri,j ⇒ R−1 �� r−1
i,j . Hence R ∈ H(ri,j)

or R−1 ∈ H(rj,i), and thus at least one of the intervals will be deleted. ��
Observe with reference to Table 6 that it is possible that both intervals being
compared need to be deleted, e.g., when ri,j = IC and R(X, Y) = IU .

Significance of Theorem 1 and Lemma 4. Lemma 4 embodies a principle
that underlies all solutions to problem DOOR. The algorithms given in [1, 2] use
this result of Lemma 4 to efficiently manage and prune the local interval queues
to solve problem DOOR in a distributed manner. Essentially, they examine the
intervals in the queues, a pair of intervals from different processes, at a time.
Lemma 4 guarantees that in each such test, at least one or both intervals being
examined are deleted, unless ri,j(Xi, Yj) is satisfied by that pair of intervals Xi

and Yj . The algorithms differ in the manner in which they construct the queues,
and in how they process the intervals and the queues. The algorithm in [3] also
relies on this result of Lemma 4 to process the interval information at a central
server P0 in an on-line manner. More efficient solutions to problem DOOR that
may arise in the future will also have to use these results.

4 Conclusions

Causality-based pairwise temporal interactions between intervals in a distributed
execution provide a valuable way to specify and model synchronization condi-
tions and information interchange. This paper examined the underlying theory
to solve the problem (problem DOOR) of how to devise algorithms to identify a
set of intervals, one from each process, such that a given set of pairwise temporal
interactions, one for each process pair, holds for the set of intervals identified.
Devising an efficient on-line algorithm to solve problem DOOR is a challenge be-
cause of the overhead of having to track the intervals at different processes. For
any two intervals being examined from processes Pi and Pj , this paper formu-
lated and proved the underlying principle which identifies which (or both) of the

Analysis of Interval-Based Global State Detection 215

intervals can be safely deleted if the intervals do not satisfy ri,j . This principle
can be used by any algorithm, such as those in [1, 2, 3] or any newer algorithms,
to efficiently manage the local interval queues to solve problem DOOR.

Problem DOOR is important because it generalizes the global state observa-
tion and the predicate detection problems; further, solutions to problem DOOR
which provide a much richer palette of information about the causality structure
in the application execution (see [3]), cost about the same as the solutions to
traditional forms of global predicate detection. The process of formulating the
underlying principle of determining which intervals can be discarded as never
forming a part of a solution that satisfies a specification of DOOR, also gave a
deeper insight into the structure of causality in a distributed execution, and the
global state observation and predicate detection problems.

References

1. P. Chandra, A.D. Kshemkalyani, Detection of orthogonal interval relations. Proc.
9th International High Performance Computing Conference (HiPC), LNCS 2552,
Springer-Verlag, 323-333, December 2002.

2. P. Chandra, A.D. Kshemkalyani, Global state detection based on peer-to-peer
interactions. Proc. IFIP International Conference on Embedded and Ubiquitous
Computing (EUC), LNCS, Springer, Dec. 2005.

3. P. Chandra, A.D. Kshemkalyani, Causality-based predicate detection across space
and time. IEEE Transactions on Computers, 54(11): 1438-1453, November 2005.

4. B. Charron-Bost, C. Delporte-Gallet, H. Fauconnier, Local and temporal predicates
in distributed systems. ACM TOPLAS, 17(1): 157-179, 1995.

5. R. Cooper, K. Marzullo, Consistent detection of global predicates. Proc.
ACM/ONR Workshop on Parallel and Distributed Debugging, 163-173, May 1991.

6. K.M. Chandy, L. Lamport, Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systems, 3(1): 63-75, 1985.

7. E.N. Elnozahy, L. Alvisi, Y.-M. Wang, D.B. Johnson, A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. Surv., 34(3): 375-408, 2002.

8. J.M. Helary, A. Mostefaoui, M. Raynal, Virtual precedence in asynchronous sys-
tems: Concept and applications. Proc. WDAG, 170-184, LNCS 1320, Springer,
1997.

9. J.M. Helary, A. Mostefaoui, M. Raynal, Interval consistency of asynchronous dis-
tributed computations. J. Computer and System Sciences, 64, 329-349, 2002.

10. R. Koo, S. Toueg, Checkpointing and rollback-recovery for distributed systems.
IEEE Trans. Software Eng. 13(1): 23-31, 1987.

11. A.D. Kshemkalyani, Temporal interactions of intervals in distributed systems. Jour-
nal of Computer and System Sciences, 52(2): 287-298, April 1996.

12. A.D. Kshemkalyani, A fine-grained modality classification for global predicates.
IEEE Transactions on Parallel and Distributed Systems, 14(8): 807-816, Aug. 2003.

13. A.D. Kshemkalyani, A framework for viewing atomic events in distributed compu-
tations. Theoretical Computer Science, 196(1-2), 45-70, April 1998.

14. A.D. Kshemkalyani, M. Raynal, M. Singhal, An introduction to snapshot algo-
rithms in distributed computing. Distributed Systems Engineering Journal, 2(4):
224-233, 1995.

216 P. Chandra and A.D. Kshemkalyani

15. A.D. Kshemkalyani, M. Singhal, Communication patterns in distributed compu-
tations. Journal of Parallel and Distributed Computing, 62(6): 1104-1119, June
2002.

16. A. D. Kshemkalyani, M. Singhal, On characterization and correctness of distributed
deadlock detection. Journal of Parallel and Distributed Computing, 22(1): 44-59,
July 1994.

17. L. Lamport, Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 558-565, 21(7), July 1978.

18. L. Lamport, On interprocess communication, Part I: Basic formalism; Part II:
Algorithms. Distributed Computing, 1:77-85 and 1:86-101, 1986.

19. R. Schwarz, F. Mattern, Detecting causal relationships in distributed computa-
tions: In search of the holy grail. Distributed Computing, 7:149-174, 1994.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 217 – 228, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Two-Phase Scheduling Algorithm for Efficient
Collective Communications of MPICH-G2

Junghee Lee1,2 and Dongsoo Han1,∗

1 Information and Communications University,
119 Munjiro, Yuseong-Gu, Daejeon, Korea

{lake, dshan}@icu.ac.kr
2 Electronics and Telecommunications Research Institute,

161 Gajeong-dong, Yuseong-Gu, Daejeon, Korea
{lake@etri.re.kr}

Abstract. In this paper, we propose a packet-level parallel data transfer and a
Two-Phase Scheduling(TPS) algorithm for collective communication primitives
in MPICH-G2. The algorithms are characterized by two unique features: 1) a
concurrent data transfer of packets from a source node to multiple destination
nodes and 2) a scheduling of enhancing the performance of collective commu-
nications by early identification of bottleneck incurring nodes. The proposed
technique is implemented and the performance improvement is measured. Ac-
cording to the performance evaluation, the proposed method has achieved about
20% performance improvement against conventional block data transfer meth-
ods when a binomial tree is used for the communication in LAN. In TPS algo-
rithm, the distribution of messages to bottleneck incurring nodes is delayed to
minimize the affection of the node to the total performance. Using TPS algo-
rithm on WAN, significant performance improvement has also been achieved
for various data sizes and number of nodes.

1 Introduction

Grids environment provides an enormous number of storage and computing resources
connected to heterogeneous wide-area networks (WANs) or local-area networks
(LANs). In Grids, computing resources constituting the GRID may have various ca-
pabilities and computing powers. In order to develop a communication schedule algo-
rithm that enables effective access to such heterogeneous resources, both network
bandwidth and latency should be considered as primary design factors. When we
consider that the status of network frequently changes in WAN environment, the
network status change should be considered also in improving the communication
performance in the WAN environment [1].

Numerous researches have been done for the efficient scheduling of communications
among computing resources. Heuristic algorithms such as FEF[1], ECEF[1], TTCC[2],
and HLOT[3] were proposed for the fast construction of communication trees. How-
ever, these algorithms use only the latency factor for the construction of communication
trees. Moreover, in the current MPICH-G2, a receiver node sends data of multiple

∗ Corresponding author.

218 J. Lee and D. Han

packets to other nodes, only after they receive all packets from a sender node. In other
words, in case of multi-chained data transmission, A→B→C, node B does not start
sending data to node C, until it completes receiving the entire data from node A.

In this paper, we suggest two ideas for the frequently used collective communica-
tion primitive, MPI_Bcast of MPICH -G2, in order to overcome above two problems.
First, we propose a packet-level parallel data transfer mechanism for LAN and WAN
environments and a two-phase scheduling algorithm for WAN environment. In the
packet-level parallel data transfer technique, each node sends individual packet to
destination nodes on receiving a packet from a source node, and it simultaneously
distributes the data to multiple destination nodes. The objective of this method is to
improve the performance of the current data transfer method of the collective com-
munication primitive of MPICH-G2 in Grids environment.

Second, we propose a two-phase scheduling algorithm(TPS) which uses transmis-
sion time for a tree construction metric. The algorithm improves the total performance
by placing nodes, which are prone to bottleneck, to leaf nodes in a communication
tree. The objective of this algorithm is to avoid a bottleneck caused by nodes with
long transmission time and then to achieve performance improvement of the collec-
tive communication primitive.

In this paper, the performances of our methods are measured and the results are
compared with the conventional methods. According to the performance evaluation
for nodes connected to LAN, the packet-level parallel data transfer method has
achieved about 20 % performance improvement against conventional data transfer
methods. A binomial tree is used for the scheduling of the communication. According
to the simulation of communications for nodes connected to WAN, the scheduling
algorithm which uses both packet-level parallel data transfer and TPS algorithm has
achieved overall performance improvement for various data sizes and number of
nodes, against algorithms such as ECEF, HLOT, and flat tree.

This paper is organized as follows. In section 2 we describe the current status of
MPICH-G2 and related work. Our proposed methods, packet-level parallel data trans-
fer are explained in section 3 and our two-phase scheduling algorithm is explained in
section 4, respectively. Then, we show the experimental results in section 5, and fi-
nally, we draw conclusion and describe future work in section 6.

2 Related Work

2.1 A Grid-Enabled MPI, MPICH-G2

Firstly, the current version of collective primitives of MPICH-G2 uses two-layered
network topology-aware scheduling to reduce communication time, which just divides
communication nodes into two divisions: nodes connected to LAN and nodes con-
nected to WAN[4]. However, since it doesn’t consider detailed network information
upon constructing the communication tree, it may cause a relatively long communica-
tion time in WAN environment, which is characterized as a changeable network situa-
tions and long latency. Therefore, the schedule based on accurate network information
has more opportunity in improving the performance of communication of MPICH-G2.
Second, MPICH-G2 entrusts the control of data transmission to TCP/IP stack of the
operating system, i.e., the current primitives of MPICH-G2 send data to the buffer of

 A TPS Algorithm for Efficient Collective Communications of MPICH-G2 219

TCP/IP stack and wait completion of operations. MPICH-G2 doesn’t intervene in the
transfer and wait until the sending is finished.

As a solution to fast data transmission of MPICH-G2, GridFTP[4] is provided.
GridFTP in MPICH-G2 provides interfaces of opening multiple sockets between two
endpoints, partitioning a large message into small packets, sending those packets in
parallel using multiple sockets, and, lastly, re-assembling the large message. How-
ever, it is used not for collective operations but for collaborative environments. The
facility provides a means of handling only two endpoints that have large blocks of
data to send/receive, and it demands high-latency and high-bandwidth for efficient
communications since the two endpoints transfer enormous data through multiple
sockets. Moreover, some codes must be instrumented into MPI programs for the facil-
ity to be used in communicating programs. For example, user should set an attribute,
assign two endpoints, and set the parameters such as the number of sockets and TCP
buffer size.

2.2 Heuristic Algorithms

Many heuristic algorithms have been designed for collective operations of
MPI(Message-Passing Interface): FEF(Fastest Edge First)[1], ECEF(Earliest Edge
First)[1], TTCC(Two-Tree Collective Communication)[2], etc. FEF selects a node
with the smallest communication cost from a root, and ECEF chooses the node with
the minimum sum of communication cost and ready time of its sender[1]. TTCC
transfers data with two communication trees made by ECEF algorithm[1]. HLOT is
for WAN with comparatively very large latency, and after comparing its weight of
edge with one of flat tree it decides if it uses a selected edge, or not. These algorithms
intend to improve performance by using the schedule that considers network informa-
tion. However, SPOC and FNF aren’t well suited for Grid environments, and FEF and
ECEF don’t consider bandwidth or message size. When a parameter of algorithm is
latency, the algorithms are suited for small messages. For a long message, bandwidth
is also an important factor of data transmission. Moreover, these heuristic algorithms
contain overheads for scheduling such as the creation cost of a tree, memory cost,
managing cost for network information, etc. For example, TTCC can increase net-
work loads since it creates two communication trees and sends along the two paths. It
also assumes that TCP/IP can select one node out of two nodes, concurrently sending
data. These heuristic algorithms are limited to scheduling only with network informa-
tion. They don’t consider the change of basic communication method.

3 Packet-Level Parallel Data Transfer

In this section, we propose packet-level data transfer and one-to-many communication
using network information in MPICH-G2. This method, which uses these two ways,
is named packet-level parallel data transfer.

3.1 Packet-Level Data Transfer

The current implementation of MPI_Bcast in MPICH-G2 is as follows: Each node
doesn’t start data transfer until receiving the entire data. We call this kind of data
transfer blocking data transfer. To improve the performance of the current MPI_Bcast

220 J. Lee and D. Han

primitive, we propose a packet-level data transfer technique and it works as follows:
In this technique, a node starts to send data to the next node immediately after receiv-
ing a packet unit from the source node. As a consequence, a node may send packets
many times to the destination node while it receives the entire data from a source
node. The technique is also used in cut-through routing[5].

Fig. 1 contrasts packet-level data transfer to blocking data transfer technique. Data
is partitioned into 3 packets, and the path is simply represented with a linear tree with
4 nodes. The progress of data transfer is illustrated in Fig. 1. The packet-level data
transfer technique finishes the communication within Time 4, whereas blocking
method completes the communication within Time 6. In the packet-level data transfer,
remarkable performance enhancement will be gained when the height of tree is high
and the size of data is large. In this transfer, the size of packet should be carefully
decided because prevailing of small-sized packets may cause network congestion. To
prevent the network congestion, we set data size to be sent at one time to
MTU(maximum transfer unit) of IP layer. Then, it is possible to reduce the comple-
tion time for the broadcast operation of MPICH-G2 without incurring any significant
overhead.

Fig. 1. Comparison packet-level data transfer with blocking data transfer

3.2 Parallel Data Transfer

If the capacity of the sender to transmit data could be sufficient enough, we can im-
prove the performance of transmission with one-to-many data transfer. One-to-many
data transfer means that one sender can simultaneously transfer data to multiple re-
ceivers. With this method, the increase of receivers can reduce available bandwidth of
sender. Therefore, the optimal number of receivers should be determined considering
both bandwidth and latency.

For instance, we suppose that data consist of 4 packets(w, x, y and z), each node
has sufficient available bandwidth and a binomial tree with 8 nodes is used as a com-
munication tree. The process of blocking data transfer is described in Fig. 2, and one
of packet-level parallel data transfer illustrated in Fig. 3. Each node in Fig. 2 begins to
transfer data only after the entire data, w, x, y and z are received from a source node.
However, each one in Fig. 2 starts sending to destination nodes immediately after
receiving packets, and transfers a packet simultaneously. At the Time 0, node 0 in
Fig. 2 sends data only to node 4, and can forward data after Time 4, whereas, node 0

 A TPS Algorithm for Efficient Collective Communications of MPICH-G2 221

of Fig. 3 can send concurrently to node 4, 2, and 1, and node 4 can forward a packet
immediately after receiving a packet from node 0. The data is completed in Time 6 as
shown in Fig. 3. However, a broadcast operation in time depends on the depth and the
width of the communication tree. When only the packet-level data transfer is applied,
the tree with the large width will show worse performance than that with smaller
width. However, when the available bandwidth is enough large, the better perform-
ance can be achieved using large width than small one of communication tree.

Fig. 2. Example of blocking data transfer: (a) communication tree (b) time table

Fig. 3. Example of packet-level data transfer: (a) communication tree (b) time table

4 Proposed Algorithm

Algorithms of collective communications of MPI typically construct trees for the
generation of a scheduling. However, finding an optimal tree for such an algorithm is
known to be NP-hard problem. Many heuristic algorithms are proposed for collective
communications of MPI. For example, flat tree is well suited for wide area networks,
and binomial tree is almost optimal in local area networks [6]. Thus current
implementation of MPI_Bcast in MPICH-G2 uses these two trees. Since LAN
generally guarantees high speed and binomial tree works well in LAN, we focus on
WAN environment in which it has relatively high latency and the status of network
frequently changes. In this section, we develop a TPS tree algorithm for such WAN
environment.

222 J. Lee and D. Han

As noted earlier, our algorithm considers both latency and bandwidth between two
nodes. We use completion time between two nodes as a target metric to be optimized.
Completion time between two nodes is calculated with the following well-known
equation,

ji
jiji bandwidth

emessagesiz
latencytimecompletion

,
,, += , and completion time of MPI_Bcast

becomes the maximum time in the sums of completion time from root to every leaf
node along a path. Nodes with long transmission are prone to incur bottlenecks of
entire communication. If these nodes are placed in the middle of a tree, descendant
nodes of these nodes will suffer from long communication delay. TPS tree algorithm
identifies nodes with long transmission time, and tries to place such nodes to the
leaves of a communication tree.

Fig. 4 shows TPS tree algorithm. Numbers on the edge of the tree denotes comple-
tion time. The algorithm sorts the values of edge(j,i) for individual node i in V, where
node i has not receive a message yet and node j has the message. Once all the values
of edge(j,i) are computed and sorted, node i can figure out which node can send the
message to i in shortest completion time. Then, the algorithm selects number of k
nodes with longest completion time. These nodes might incur bottlenecks. There are
several ways to decide the number k , but we do not delve into details in this paper.
Our method chooses nodes whose completion time is above the average of minimum
completion time. At first, sender set A contains only a root node. Tree construction
starts from the root. The algorithm finds fastest message arriving node j from node x

Two-Phase Scheduling Algorithm

Input:
V : set of nodes joining communication
B : set of nodes with long completion time
A : set of senders
root : root node

Output:
E := set of result edge

A := {root}
B := {}

Tree construction steps:
for i in V

sort communication time from j to i where j in V and i <> j
B := k nodes with worst minimum time except root
//The first phase
while A <> V-B

find j to which minimum edge from x where x in A, j in V-B-A, and x<>j
add edge(x,j) to E
add x to A
x := j

//The second phase
for i in B

find j minimizing weight of edge(j,i) + sum of weight from root to j in V-B
add edge(j,i) to E

Fig. 4. Two-Phase Scheduling Algorithm

 A TPS Algorithm for Efficient Collective Communications of MPICH-G2 223

in A. Where node j is neither in A nor in B, and B contains number of k nodes. The
chosen node j is added to sender set A and will receive data from its sender node.
After finishing the first tree construction phase except k nodes, the insertion of k
nodes is conducted at the second phase. TPS attaches the rest nodes in B to the tree so
that the constructed tree achieves minimum completion time from root to the nodes in
B. Through above two phases approach, we can prevent nodes with long completion
time being placed in the middle of the tree. That is because our algorithm is named
TPS algorithm. Time complexity of TPS is O(N2logN), where N is the number
of nodes.

A

H B D

CG

F

E

150
400

420

200
200550

300

Max 700

H

G

F

E

D

C

B

A

HGFEDCBA

0200320550800600520300

4802800500800850550580

78013009505000500450400

3707005407004502000480

700

670

250

400

1260

500

500

420

300

500

850

500

2000720700920

5207000800500

6007008700700

1508005008000

H

G

F

E

D

C

B

A

HGFEDCBA

0200320550800600520300

4802800500800850550580

78013009505000500450400

3707005407004502000480

700

670

250

400

1260

500

500

420

300

500

850

500

2000720700920

5207000800500

6007008700700

1508005008000

Fig. 5. Example of TPS

Fig. 5 shows an example of applying TPS algorithm to a tree. The completion time
is used for the metric of tree construction. The completion time of every pair of nodes
in the tree is computed and registered in a matrix. The values in red circle denote a
pair with shortest completion time in each column. Then TPS finds the largest ele-
ment among the values in red circle. In this example, node E has largest minimum
completion time, 500. Note that, node D needs not to be considered in this case be-
cause it is already contained in the tree. In other words, node A and node D is already
connected with each other when we consider node E. If we set k to 1, TPS constructs
a tree with N- k nodes, i.e., 7 nodes using ECEF method. Then H, G, F, B, C, and D
are picked in sequence, and lastly, TPS decides a node where it has to attach node E.
Obviously, completion time of A-H-E is a minimum among other choices, so TPS
attach node E to node H. As a result, the completion time of this broadcast becomes
700 ms. We contrast our tree algorithm to other algorithms in terms of environment,
metric, and time complexity in Table 1.

Now, we analyze our algorithm via LogGP model[7]. LogGP model is suited for
both short and long messages, whereas LogP model[8] is suited for a short message.
LogGP model uses five parameters: latency, overhead, gap, gap per byte for
long messages, and the number of processors. Since gap per byte for long messages,

224 J. Lee and D. Han

Table 1. Comparison of tree algorithms

Tree Environment Metric Time
complexity

SPOC LAN Message initiation cost O(NlogN)
FNF LAN Message initiation cost O(N2)
FEF LAN/WAN Communication time O(N2logN)
ECEF LAN/WAN Ready timei + Communication timei,j O(N2logN)
Look-ahead LAN/WAN Ready timei + Communication timei,j + Look-

ahead valuei
O(N3)

TTCC LAN/WAN Ready timei + Communication timei,j O(N2logN)
HLOT LAN/WAN Latencyi,j O(N2logN)
TPS WAN Completion timeij O(N2logN)

G, is defined as the time per byte for a long message, it can be expressed by using
bandwidth, G = 1/bandwidth. Then completion time of sending message with length k

from process i to process j can be calculated as
rijs oL

bandwidth

k
o ++−+ 1 , where os is

overhead of receiver, and Lij is latency from i to j.

0

1

2

3

4

5

6

7

os

or os

or

or

or

os

os

or

os

or

or

os os

Fig. 6. Time diagram of Fig. 5

The completion time of broadcast is computed by equation, completion_timeB =
Max{completion_timel}, where l is the l-th leaf node of tree, and

−

=

=
1

0

__
idepth

i
stl timecompletiontimecompletion , where depthi denotes the depth of i-th

 A TPS Algorithm for Efficient Collective Communications of MPICH-G2 225

leaf node, and edge(s,t) is a part of the path from root to i-th leaf node of tree. Com-

pletion_timest is computed by equation,
rst

st
sst oL

bw

k
otimecompletion ++−+= 1

_ ,

where bwst is bandwidth from node s to t.
Fig. 6 depicts a timing diagram of Fig. 5 using LogGP model. The values of os and

or are set with arbitrary numbers. Though the results may be changed when these
values are changed, the pattern or appearances of the diagram will remain the same.

5 Evaluation

In this section, we present achieved performance enhancement on LAN through
measurement, and expected performance enhancement on WAN through simulation.
As explained earlier, communication performance on WAN is a dominant factor in
deciding the performance of collective communications on WAN and LAN. In LAN,
we use a binomial tree, which is known to be good for LAN. In WAN, TPS algorithm
is used for a tree construction and we have tested the performance improvement
through simulation. In this section, experiment environment, method of time meas-
urement, and analysis result of the test are also explained.

5.1 Performance Measurement for WAN

Simulation Scenario. We apply our proposed tree algorithm on WAN. To evaluate
the performance of the proposed algorithm, we use ns-2 simulator[9], which is a
widely used network simulation tool. For the comparative study, we implemented
TPS, ECEF[1], HLOT[3], and flat[6] algorithms. 220 nodes of transit-stub topology
were generated using GT-ITM[10]. The delay and bandwidth of the network were
randomly assigned. The scale of delay spans from 10 ms to 1000 ms, and the band-
width spans from 10 Kbps to 10 Mbps, respectively. Two types of background traffic
were used: CBR and FTP. Both of the traffics have randomly selected individual
starting and ending time of exchanging messages for traffic generation. Consequently,
the communication among grid nodes suffers from network congestion and burst of
traffics while the background traffic is active. The detailed simulation steps are as
follows:

1. Specified number of Grid nodes are randomly selected
2. Delays and bandwidths of the selected grid nodes are obtained. The obtained

metrics are used for the construction of a tree.
3. Construct broadcast trees for collective communication, and perform a broadcast

under the same topology and traffic condition as step 1.

The simulation process was repeated 15 times and average transmission time was
computed.

Simulation Results. Fig. 7(a) shows the result of simulation. The completion time
depending on the change of the number of selected nodes is illustrated in the graphs.
The number of randomly selected nodes was varied from 10 to 60, hopping by 10

226 J. Lee and D. Han

nodes. In every case, flat tree produced the worst results, and TPS was revealed to
bring the best results. Fig. 7(b) shows the result of simulation depending on the
change of data size. The size of data, 1 KB, 4 KB, 16 KB, and 256 KB, were used.
For all data sizes, TPS outperformed other algorithms. As the size of data is getting
bigger, the performance gap is much more conspicuous.

0

100

200

300

400

500

600

700

10 20 30 40 50 60

the number of nodes

c
o
m
p
l
e
t
i
o
n

t
i
m
e
(
s
e
c
) ECEF

FLAT

HLOT

Two-Phase

0

200

400

600

800

1000

1200

1400

1600

1800

1KB 4KB 16KB 64KB 256KB

data size(KB)

c
om
p
l
et
i
o
n

t
im
e ECEF

FLAT

HLOT

Two-Phase

(a) (b)

Fig. 7. Simulation results: (a) according to the number of nodes (b) according to data size

5.2 Performance Measurement for LAN

Since a binomial tree is known to be well suited for LAN, and network circumstances
of LAN is more stable in terms of speed and variances than WAN environment, we
used a binomial tree like current MPICH-G2. Here, we examine the effect of packet-
level data transfer. First of all, we evaluated the effectiveness of using packet-level
data transfer with a simple socket programming. The performance comparison be-
tween conventional block transfer method and the proposed method is conducted
using multiplexing I/O. Fig. 8 depicts the testing environment. Node 0, 1, 2, and 3
connected to LAN are the components of the binomial tree.

To compare the performance between conventional block data transfer and our
packet-level parallel data transfer, we measured the total elapsed time for broadcast.
The completion time was measured as follows. Each node sends a completion mes-
sage to the root when it receives the entire data, and the end time is determined by the
message arrived last at the root node. Each packet contains both a header field and a

Ethernet

host1 host2

switch hub

host3

0

1

3

2

host0

host2 host1

host3

(a) (b)

host0

Fig. 8. (a) Test environment (b) binomial tree in LAN

 A TPS Algorithm for Efficient Collective Communications of MPICH-G2 227

performance improvement

0

5

10

15

20

25

30

35

40

45

50

100 200 300 400 500 600 700 800 900 1000

c
o
m
p
l
et
i
o
n

t
i
m
e

i
mp
r
o
v
e
m
e
n
t
(
%)

(b)
binomial tree

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100 200 300 400 500 600 700 800 900 1000

data size(KB)

c
o
m
p
l
e
t
i
o
n

t
i
m
e

(
m
s
)

packet-level

blocking

(a)

Fig. 9. Binomial tree with 4 nodes: (a) Completion time (b) ratio of completion of (a)

data field. The header field contains information such as header size, total data size,
current data size, etc. The time attribute holds the information of end time of process-
ing. Note that, the time required in sending an end message is negligible if the total
data size is large enough. The size of a packet that can be transmitted to the network
at a time is limited to MTU. Finally, to guarantee that only one packet is delivered at a
time, the next packet is transmitted only after the transmission of the previous packet
is completely ended. MTU was set to 1024 bytes and data size was varied from
100KB to 1000KB with 100KB intervals. The scale of time unit was ms. Fig. 9 shows
the results of experiment using a binomial tree. In Fig. 9(a), packet-level parallel data
transfer is revealed to show better performance than blocking data transfer for all
levels of data size. With the involvement of 4 nodes, about 18.9% performance im-
provement is gained. In the Fig. 9, when the data size became large, i.e., when the
necessary packet number was increased, the performance gain was evident. Since
there is additional overhead of packet-level parallel data transfer, we can conclude
that the benefits of using packet-level data transfer method pay the cost of it. The
extents of performance improvement is higher on LAN environment than on WAN,
because the available bandwidth on LAN is more stable than on WAN. As revealed in
the result of the measurement, if the data size grows, more significant performance
enhancement was achieved. Furthermore, when the available bandwidth grows, the
completion time is expected to be shortened.

6 Conclusion and Future Work

In this paper, we proposed a method to improve the performance of collective com-
munication primitives in MPICH-G2, which is an interface of MPI. We devised TPS
algorithm as a tree algorithm and propose a packet-level parallel data transfer for
collective communication of MPICH-G2.

In TPS, we use completion time as a metric of tree, and completion time is calcu-

lated with
bandwidth

emessagesiz
latency + . That is, we consider message size and bandwidth as

well as latency. TPS is object to reduce completion time and to avoid bottleneck. It
first selects k nodes with the largest weight. These k nodes with great possibility of
bottleneck are put in leaf nodes. There are several ways to decide k. We use an aver-
age minimum completion time of each node as a way to select k nodes. We thought
that nodes with minimum completion time accessing average time have high possibil-
ity to bottleneck. Running time of proposed algorithm takes O(N2logN). The effect of
the proposed method was theoretically analyzed and experimentally showed by

228 J. Lee and D. Han

implementing and testing the technique. According to the test, the proposed method
showed a better performance than the current conventional version of collective op-
erations in MPICH-G2.

In a packet-level parallel data transfer method, each node sends the packet to other
multiple destination nodes in receiving packets from source node. In the experiment
in the real network of LAN, the packet-level parallel data transfer demonstrated supe-
rior performance to the conventional entire data transfer. And, according to the simu-
lation results of TPS, we can confirm a performance enhancement of TPS compared
to ECEF, HLOT, and flat tree. The performance enhancement of TPS is larger as the
number of nodes is increased and the size of data is enlarged.

In future, we are planning to implement the technique into MPICH-G2 collective
communication primitives and test the performance. Finally, the number of k nodes in
TPS should be clarified with accompanied by theoretical analysis.

References

1. P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna, “Efficient collective communication in
distributed heterogeneous systems,” 19th IEEE International Confer-ence on Distributed
Computing Systems, 1999.

2. Kwangho Cha, Dongsoo Han, and Chansu Yu, “Two-tree collective communication”, Pro-
ceedings of the IASTED International Conference on Networks, Parallel and Distributed
Processing and Applications, pp.30-35, Oct. 2003, Japan

3. Kyunglang Park, Hwangjik Lee, Younjoo Lee, Ohyoung Kwon, et la., “An Efficient
Collective Communication Method for Gridi Scale Networks,” ICCS 2003, LNCS 2660,
pp. 819-828, January 2003.

4. http://www.hpclab.niu.edu/mpi
5. Peter S. Pacheco, Parallel Programming with MPI, Morgan Kautmann Publishers, Inc.

1997.
6. Thilo Kielman, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, and Raoul A. F. Bhoed-

jang, “MAGPIE: MPI’s Collective Communications Operations for Clustered Wide Area
Systems”, Seventh ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 131-140, 1999

7. N. Karonis, M. Papka, J. Binns, J. Bresnahan, J. Insley, D. Jones, and J.Link, “High-
Resolution Remote Rendering of Large Datasets in a Collaborative Environment,” Future
Generation of Computer Systems (FGCS), Vol. 19, No. 6, pp. 909-917, August 2003

8. Albert Alexandrove, Mihai F. Lonescu, Klaus E. Schauser, Chris Scheiman, “LogGP: In-
corporating Long Messages into the LogP Model- One step close towards a realistic model
for parallel computation”, 7th Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, CA, pp. 95-105, July 1995.

9. David Culler, Richard Karp, David Patterson, Abhijit Sahay, et la., “LogP: Towards a Re-
alistic Model of Parallel Computation”, Proceedings Symposium on Principles and Prac-
tice of Parallel Programming, CA, pp. 1-12, May 1993.

10. http://www.isi.edu/nsnam/ns/
11. Ellen W. Zegura, “GT-ITM: Georgia Tech Internetwork Topology Models”, http://www.

cc.gatech.edu/projects/gtitm.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 229 – 234, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards an Agent-Based Framework for Monitoring and
Tuning Application Performance in Grid Environment

Sarbani Roy and Nandini Mukherjee

Department of Computer Science and Engineering,
Jadavpur University, Kolkata 700 032, India

sarbani_roy77@yahoo.co.in, nmukherjee@cse.jdvu.ac.in

Abstract. The essence of grid computing lies in the efficient utilization of a
wide range of heterogeneous, loosely coupled resources in an organization. In a
computational grid environment, regular monitoring of the execution of
applications and taking actions for improving their performance in real time can
achieve this. This paper presents the design of a multiagent framework for
performance monitoring and tuning of an application executing in a Grid
environment.

Keywords: Grid Monitoring, Application Performance Tuning, Multi-agent
framework.

1 Introduction

An application running on a Grid needs to be adaptive to its current execution
environment so that it can efficiently utilize the available resources. Maintaining the
Quality of Services (QoS) and restraining the system from overprovisioning are also
issues that need to be tackled in Grid environment. The basic technique can be regular
monitoring of the infrastructure and the application performance and improving the
performance of the application by using optimization techniques or adding more (or
removing in case of overprovisioning) resources to its execution environment or
simply by migrating the application or its components to other suitable Grid sites.
This paper presents a multiagent framework for on-the-fly performance tuning of an
application executing on Grid.

2 High Performance Computing and Grids

Computational resources on a Grid together can solve very large problems requiring
more resources than is available on a single machine. An application is benefited from
a Grid environment when the resource requirement cannot be fulfilled (either
quantitatively or qualitatively) from the resources owned by the user. Thus, a Grid
provides a good basis of creating a collaborative environment for high performance
computing.

2.1 Performance Evaluation in Grid Environment

Mapping application processes to the resources in order to fulfill the requirement of
the application in terms of power, capacity, quality and availability forms the basis of

230 S. Roy and N. Mukherjee

Grid performance evaluation. The huge amount of monitoring data generated in a
Grid environment is used to perform fault detection, diagnosis and scheduling in
addition to performance analysis, prediction and tuning [1]. Due to the very dynamic
and heterogeneous nature of a Grid, performance monitoring in Grid environment can
be characterised as follows [2]:

• The execution environment in a Grid is not known beforehand and may change
during execution or from one execution to another execution.

• Real-time performance analysis is thus essential in Grid environment.
• Performance tuning of applications during runtime is complicated and different

from conventional techniques.
• New performance problems emerge out of the very different nature of the Grid.
• New performance metrics need to be defined which have not yet been taken

care of.
• Grid information services, resource management and security policies add

additional overhead to the execution of an application.

The Grid monitoring data may be used for detection of faults in system components
and applications, for detection of performance bottlenecks in complex distributed
systems, for real-time performance monitoring of applications and for determining
performance characteristics of applications.

2.2 Application Performance Tuning in Grid

This section examines the requirements for application performance tuning in Grid
environment. We divide the performance problems into two categories:

a) Local Performance Problems: When components of an application run on
specific resources, there may be some performance problems, which can be
(completely or partially) solved by adding more local level resources or by
applying local level optimization techniques.

b) Global Performance Problems: When some global-level decisions need to be
taken to counter a performance problem, the problem may be considered as
global performance problem. This may be exemplified by using the following
simple scenarios:
Scenario 1 – Some faults are detected in the system or some performance
bottlenecks are observed causing performance degradation of the application
Scenario 2 – Observed performance of a component is not at par with the
expectation.

In order to tackle the above two scenarios on the basis of real-time performance
monitoring data and for efficient resource management, we propose a multi-agent
framework which is described in the next section.

3 A Multi-agent Framework for Performance Tuning

In this section we describe the design of a multi-agent-based performance tuning
framework for Grid applications. The framework is implemented on top of the Globus
Toolkit [3]. It comprises four different components, which work in an integrated
manner. These four components are: (a) A resource broker (b) A Job Controller (c)
An analyzer (d) A performance tuner.

 Towards an Agent-Based Framework 231

The Resource Broker acts as an intermediary between the application and a set of
resources. It is the responsibility of the Resource Broker to negotiate and find suitable
resources according to the application’s resource requirement. The Job Controller is
responsible for controlling the execution of the application at the local level. It also
maintains a glob al view of the application’s runtime behavior, as well as functioning
of the infrastructure and performs control actions for improving the performance
whenever the service-level agreement (SLA) [7] is violated. The Analyzer component
monitors individual resources and gathers performance monitoring data related to
application execution and infrastructure functioning. The performance data helps in
evaluation of performance properties and identification of regions showing
performance problems [4, 5]. Performance Tuner is responsible for tuning the
performance of an application at local level. It receives a service-level agreement
from the job controller and takes necessary actions for improving the application
performance whenever the agreement is violated.

(a) (b)

Fig. 1. (a) Components with agents (b) JRL and Resource Specification Template

3.1 The Agents in the System

This section presents a brief overview of the agents used in our framework. We
distinguish the agents in two different categories: (i) functional agents and (ii) control
agents. Each type of agents is part of either the Resource Broker, or the Job Controller
or the Analyzer, or the Performance Tuner as shown in Figure 1 (a). The functional
agents in our framework perform specific tasks, which are entrusted to them. Our
system uses three types of functional agents, which are described below.

The Broker Agent resides in the Resource Broker component. The Broker agent
receives a Job Requirement List (JRL) in which the basic requirements for a job are
described. The Broker Agent consults the Grid Information Services (GRIS/GIIS,

232 S. Roy and N. Mukherjee

MDS of Globus [6]) in order to obtain information about available resources and
prepares a Resource Specification Table (RST). The information about a single
resource provider willing to provide computational service is stored as a Resource
Specification Template and the collection of several such templates is stored in a
Resource Specification Table (RST). Figure 1 (b) shows the fields in a JRL and a
Resource Specification Template. Analysis Agents reside on each of the resource
providers, evaluate performance properties and detect performance problems. In
addition to the resource-based analysis agents, there are agents that monitor the
overall performance of the Grid. Thus an agent hierarchy is formed in which the
lowest level agents monitor individual resources and the higher level agents collect
data from the local agents and analyses the data in order to detect any performance
bottleneck in the system. Tuning Agents also reside on each resource provider. This
agent is responsible for local tuning of a running job on a specific resource provider.

Two types of Control Agents control the execution of an application. One is
designated as supervisory type and it globally looks after the execution of all parallel
jobs of an application. It is responsible for taking all global decisions, including
rescheduling and establishing new SLAs. The Supervisory Control Agent maintains a
list of resource provider addresses for each job for future rescheduling. Other control
agents are subordinate to the supervisory agent. Each Subordinate Control Agent is
associated with one of the parallel jobs of the application. It acquires the job along
with an SLA from the Supervisory Control Agent and carries the job to the resource
provider through a Grid Scheduling Service. The agent then resides on the resource
provider. Whenever the agent is alerted by the analysis agent regarding some
performance problem, it either activates the tuning agent for local tuning or consults
the supervisory agent. It also performs any action directed to it by the supervisory
agent. For example, if rescheduling is required, the supervisory agent takes the
decision, selects next resource provider, establishes new SLA and directs the
subordinate agent accordingly. The subordinate agent carries the job to the new
resource provider. The subordinate control agents are lightweight, mobile agents that,
under the directives of the supervisory agent, independently carry the jobs to the
resource providers, submit the jobs and monitor their execution.

3.2 Interactions Among the Agents

A Grid application development environment on the client side accepts the
application and decomposes it into a number of parallel jobs, which are placed in a
job pool. Figure 2 demonstrates how a job is initially scheduled on the Grid.

The Broker agent acquires the next job from the job pool and prepares the Job
Requirement List (JRL) and performance contract, as shown in figure 2. The JRL and
the contract are built on the basis of a performance model and some input from the
user, and form the basis of setting up Service-Level Agreements (SLAs) [7]. The
Broker agent also consults the Grid Information Services (GRIS/GIIS of Globus [3])
with the help of MDS & SLA Management Service to obtain information about the
available resources and prepares Resource Specification table (RST). The JRL and
RST are matched by the Broker agent to find suitable resources with ability of
meeting the requirements of the submitted job. A list of selected resource providers
along with their SLA is then forwarded to the Supervisory Control Agent. The
Supervisory Agent selects a resource provider (RP) from the list on the basis of some
pre-assigned priority and establishes an SLA with the selected resource provider.

 Towards an Agent-Based Framework 233

Fig. 2. Interaction among the agents at the time of initial scheduling

A Subordinate Agent, which is a mobile agent, carries the job and the SLA from
the Supervisory Agent and gets deployed on the resource provider through a Grid
scheduling service. The Subordinate Agent sends the SLA to the Analysis agent,
which immediately starts monitoring the execution of the application. Analysis Agent
interacts with Grid monitoring service (such as MDS) for monitoring data. A push
data delivery model is used, i.e. the Subordinate Agent subscribes the events and
obtains the analysis report periodically.

When any fault is detected or a resource provider cannot meet the performance
contract, the analysis agent raises warning. On the basis of the report the Subordinate
Agent either invokes the local Tuning Agent or requests advice from the Supervisory
Agent. The Supervisory Agent, which maintains a list of resource providers for the
particular job, selects the next resource provider from the list and establishes a new
SLA. While establishing the new SLA it checks whether the selected resource
provider is still in the list of valid resource providers. The Supervisory Agent then
instructs the Subordinate Agent about the new SLA and the Subordinate Agent in turn
carries the job to the new resource provider. At the time of rescheduling, the
Subordinate Agent first checkpoints the job and then migrates.

4 Related Work

One of the major objectives of research in Performance Engineering is maintaining
performance QoS for individual applications. In the ICENI project, application
performance is achieved by an application mapper, which selects the “best" component
implementations for the available resources, based on component meta-data [8].

234 S. Roy and N. Mukherjee

In the GrADS project, each application has an application manager that monitors the
performance of that application for QoS achievement. Failure to achieve QoS contract
causes a rescheduling or redistribution of resources [9]. Active monitoring in Grid
environment using mobile agent technology has been described in [10]. This paper, in
contrast to the above mentioned systems, focuses on a multi-agent framework for
enhancing the performance of an application at runtime.

5 Conclusion

The paper presents a multiagent framework for performance tuning of applications in
Grid environment. Our multiagent framework works on top of the available Grid
middleware (such as Globus Toolkit [3]), and uses the services available with it. A
brief discussion about the design of the framework is presented in this paper. The
discussion elaborates how the agents interact within the framework to improve the
performance of an application during run-time.

References

1. Balaton Z., P. Kacsuk, N. Podhorszki and F. Vajda, Comparison of Representative Grid
Monitoring Tools, Report of the Laboratory of Parallel and Distributed Systems, Computer
and Automation Research Institute of the Hungarian Academy of Sciences, 2000.

2. Nemeth Z., Performance Evaluation on Grids: Directions, Issues, and Open Problems,
Report of the Laboratory of Parallel and Distributed Systems, Computer and Automation
Research Institute of the Hungarian Academy of Sciences, 2002.

3. Globus http://www.globus.org.
4. Fahringer T., M. Gerndt, B. Mohr, F. Wolf, G. Riley, J. L. Träff, Knowledge Specification

for Automatic Performance Analysis, APART Technical Report, http://www.fz-
juelich.de/apart, August 2001

5. Furlinger K and M. Gerndt, Distributed Configurable Application Monitoring on SMP
Clusters, Proceedings of EuroPVM/MPI 2003, Venice, 2003

6. Aydt R. and D. Quesnel compiled Performance Data Usage Scenarios (Draft 1), Grid
Forum Performance Working Group, October 2, 2000.

7. Czajkowski K., I. Foster and C. Kesselman, Resource and Service Management, The Grid
2: Blueprint for a New Computing Infrastructure (Chapter 18) by Ian Foster and Carl
Kesselman, Morgan Kaufmann; 2 edition (November 18, 2003)

8. Furmento N., A. Mayer, S. McGough, S. Newhouse, T. Field and J. Darlington, ICENI:
Optimisation of Component Applications within a Grid Environment, Proceedings of
Supercomputing 2001. http://www-icpc.doc.ic.ac.uk/components.

9. Kennedy K., et al, Toward a Framework for Preparing and Executing Adaptive Grid
Programs, Proceedings of the International Parallel and Distributed Processing
Symposium Workshop (IPDPS NGS), IEEE Computer Society Press, April 2002.

10. O. Tomarchio, L. Vita, and A. Puliafito. Active monitoring in GRID environments using
mobile agent technology. In 2nd Workshop on Active Middleware Services (AMS'00) in
HPDC-9, Pittsburgh (Pennsylvania (USA)), August 2000.

GDP: A Paradigm for Intertask Communication
in Grid Computing Through Distributed Pipes

D. Janakiram, M. Venkateswara Reddy, A. Vijay Srinivas,
M.A. Maluk Mohamed, and S. Santosh Kumar

Distributed & Object Systems Lab, Dept. of Computer Science & Engg.
Indian Institute of Technology Madras, Chennai, India

{djram, venkatm, avs, maluk, santosh}@cs.iitm.ernet.in
http://dos.iitm.ac.in

Abstract. Existing grid models target purely data parallel applications
without inter-task communication. This paper proposes a transparent
programming model to support communicating parallel tasks in a wide
area grid. The proposed grid model with Distributed Pipes (DP) abstrac-
tion named as, GDP, enables location independent intertask communi-
cation among processes on machines spread over a wide area distributed
system. This approach enables anonymous migration of communicating
parallel tasks adjusting to grid dynamics. The proposed model supports
sequential load to coexist with parallel load. A prototype of the proposed
model has been implemented over clusters of nodes spread across the In-
ternet. A steady state equilibrium engineering problem was studied over
the model. Performance studies show linear to super linear speed up for
the application.

1 Introduction

The concept of cluster computing became popular due to the better price to
performance ratio over supercomputers. Models for cluster computing include
Network Of Workstations (NOW) [1], Batrun [2], ARC [3] etc. Distributed Pipes
[4] model was proposed to enable inter-task communication for clusters. This
approach also enabled migration of communicating parallel tasks according to
runtime conditions. Computational grids are realized across cluster of clusters
located in different geographically distributed administrative domains [5]. These
grids involve a higher degree of complexity, especially at the middleware layer,
to run, administer, manage, and use these distributed computing resources.

1.1 Related Work and Motivation

Several grid environments exist, like Globus [6], Optimal Grid [7], and Legion
[8]. Globus is more of a toolkit or infrastructure support for building the grid.
Optimal Grid supports inter-task communication, which is based on T Spaces,
a realization of Linda-like tuple space. However, the scalability of Optimal Grid
is limited by the scalability of T Spaces. T Spaces may not scale, as scalability is
not one of the key design considerations nor has T Spaces been proved scalable.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 235–241, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

236 D. Janakiram et al.

Further, since T Spaces does not address fault tolerance explicitly, the fault
tolerance of Optimal Grid is also limited. Legion Grid is an object-based, meta-
systems software project that addresses issues such as scalability, programming
ease, fault tolerance, security, site autonomy etc.

A number of applications related to scientific problems like finite difference,
finite element and finite volume methods require intermediate results to be ex-
changed for every iteration. This requires intertask communication. To the best
of our knowledge the research that has gone into grid computing does not address
such tasks. Further, existing grid computing research is more towards providing
static load balancing across machines. This implies that the set of machines on
which the task is started is the same on which the task completes, even if load
fluctuates on those nodes. The task is restarted in case of failures. The proposed
model focuses on task level load balancing, enabling balancing at runtime effi-
ciently. The set of nodes on which computation starts can be quite different from
the set on which it completes.

In this context, we propose GDP, a grid model that supports intertask commu-
nication, which is essential in several scientific applications such as Pizo-electrical
coupled problems, electro-magnetic coupled problems and thermo-elastic prob-
lems. The model enables runtime task mobility to handle grid dynamics. GDP
is built with Distributed Pipe (DP) abstraction to provide intertask commu-
nications among subtasks executing on different nodes. The proposed solution
inherits the simple abstraction provided by DPs but redesigns it to scale over
large networks.

The rest of the paper is organized as follows. Section 2 gives an overview of
the proposed GDP model. Section 3 gives the case study for our proposed model.
Section 4 gives the performance studies for the model and Section 5 concludes
the paper.

2 Overview of GDP: Grid with DP Abstraction

The model employs the master-worker kind of computation similar to [4]. The
model consists of a user process and several donor processes. The user process is a
process which initiates the computation. Donor processes are on the participating
nodes, which spawn the subtask process.

The model solves the finite element problems by decomposing the domain and
assigning the sub domains to donor processes. The values after every iteration
among the donor processes can be exchanged through the Distributed Pipes. The
results are returned to the user process after the computation. The subtasks can
be migrated to donors anonymously.

The grid is virtualized as cluster of clusters. Each cluster has a coordinator.
The coordinator handles domain decomposition, pipe creation among donors,
load balancing, anonymous migration of subtasks, list of friend clusters, history
of the computation, result collection and aspects related to fault tolerance.

The Acceptor handles the security related issues like single sign-on and global
policies. User process always communicates with the system coordinator through

GDP: A Paradigm for Intertask Communication 237

the Acceptor. It is the only entry point into the grid. Metering the resource usage
is also possible due to single entry point.

The advantage of this model is anonymous migration of the tasks. This enables
the system to adapt to dynamic load changes. The pool of the participating nodes
vary dynamically based on runtime conditions. The model handles architecture
heterogeneity with the help of the XDR model.

The figure 1 describes the proposed grid model. Circles represent the donors,
acceptor, system-coordinator and user process. Ellipse represents the subtask pro-
cesses. Thin lines represents the Unix stream socket connections where as thick
lines representsTCP/IP connections. Dotted lines represents the distributed pipes
abstraction which helps to exchange boundary values among subtasks.

Sub−task

Donor

Sub−task

Donor

Sub−task

Donor

Sub−task

Donor

Sub−task

Donor

Sub−task

Donor

 User
 Process

Acceptor

Coordinator
System

Coordinator
System

Fig. 1. GDP: Grid with Distributed Pipes Abstraction

The user submits the iterative computing class of application to the grid
through user process. The user process collects the available nodes for the grid
computation by initiating a request to the coordinator. Coordinator collects the
load information from the available donors and choose the potential donors from
the available donors based on the capability of the donor node. Based on the
donor availability, the coordinator splits the domain of computation into sub
domains. The coordinator initiates grid computation and pipe creation. The
coordinator sends the results after computation to the user process. The design
and implementation details are not given here due to space constraints and
are available in the full paper, available at http://dos.iitm.ac.in/Publications/
iconferences.html.

3 Case Study

Steady state equilibrium problem from fluid dynamics is considered for our case
study. Here the problem is used to compute the intermediate temperature flux
distribution of a rod whose both ends are kept in constant temperature bath.

238 D. Janakiram et al.

Similar computational problems exist in many engineering disciplines to compute
pressure distribution, composition distribution, etc.

The problem computes the temperature values at each part of the rod, for
each time period, and in each iteration. The temperature values of a part in a
time period is affected by that of the values in the previous time period and
also with adjacent part’s values in the previous time period. This accounts for
the temperature flux by conduction. The problem considers temperature flux in
only one dimension. The points at which the temperature is to be computed
are evenly spaced. Also, the temperature of the part of the rod is evaluated at
regular intervals in time. The data dependency among the adjacent parts is

Tg,t = f(Tg−1,t−1, Tg,t−1, Tg+1,t−1)

where Ti,j is the temperature of the slice i during the time j.
Temperature values of the fixed temperature baths, length and distance be-

tween adjacent grid points, and time interval between two successive computa-
tions are the data furnished at the beginning of the run. The equations that
characterize the flow of temperature are space-time domain equations. The pro-
gramming APIs and other details are not given here due to space constraints
and are given in the full paper.

4 Performance Analysis

A prototypical GDP Model was implemented to study the performance. Exper-
iments were conducted on two different test beds to analyze how the speedup
will vary with wide-area network latency. One such test bed was within our own
institute consisting of about 50 heterogeneous machines. The other was a wide
area testbed, with 3 nodes from our institute and 2 nodes from IIIT Bangalore.
The grain size of the problem is 10,00,00,000 grid points. The problem needs
to be run for a certain number of iterations. After each iteration, the subtasks
exchange their boundary values with neighbors on either side.

4.1 Effect of Memory Scaling

The iterative grid computation problem is memory intensive. When the problem
is run on a single machine, it is necessary to maintain a secondary storage. But
access to the secondary storage is slow compared to that of primary storage. In
our model as the problem is divided into subtasks, the memory requirements
are also divided among the subtasks. As less amount of memory is required, the
swapping between the memories decreases thereby increasing the performance.
The first graph in figure 2 presents the case.

4.2 Speedup – Grid Within the Same Organization

Linear speedups can be achieved by parallel execution over a sub domain. But in
our model super-linear speedup was achieved as depicted in the second graph of

GDP: A Paradigm for Intertask Communication 239

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500

T
im

e
(in

 S
ec

)

Number Of Slice Points(n*100000)

Effect of Memory Scaling

"5.dat" 12

 14

 16

 18

 20

 22

 24

 26

 0 5 10 15 20 25

S
pe

ed
up

Number Of Nodes

Speedup in the case of lightly loaded nodes without failures

Fig. 2. (a) Effect of Memory Scaling and (b) Speed up in the case of lightly loaded
nodes without failures

figure 2. This is because of parallelism and reduced memory requirements. These
super linear speedups can be achieved as long as the problem runs on optimal
number of nodes with appropriate grain size. If the grain size of the sub domain
is small, the communication overhead increases, reducing the speedup. The grain
size of a subtask is the number of slice points alloted to a subtask. Task time of
a subtask is the time taken for computation of the subtask which is the sum of
actual CPU time of the subtask and synchronization delay suffered by subtask.
Speedup is defined as the ratio of parallel execution time of the problem to its
sequential execution time.

4.3 Performance Saturation

The prototype results as shown in table 1 have shown that the speed up increases
super-linearly as we increase the number of nodes. But this increase is limited
up to some extent. The speedup increased when the number of nodes increased
to 13. But the speedup decreased as the number of nodes was further increased
and remained almost constant showing a saturation point. This was observed
when the number of nodes was more than 18. The inference of the result was
that, with less number of nodes the communication overhead is less than the
computation overhead and also the synchronization delay is minimum. As the
number of nodes increases, number of subtasks increases, reducing the grain
sizes. Due to smaller grain sizes the communication overhead is more and the
synchronization delay increases, resulting in performance saturation.

4.4 Speedup – Internet Scale Grid

When the same computing problem with same grain size was executed on WAN
test bed, more synchronization delay between subtasks was observed. This is
mainly due to communication latencies. When the computation is run on the
Institute test bed, higher speedups are obtained. However, even in the wide
area testbed, we were able to obtain super linear speedup for sufficiently large
problem sizes. This is mainly due to scaled down memory requirements. The
graph in figure 3 shows a case.

240 D. Janakiram et al.

Table 1. Speed up with increasing nodes: Performance saturation

No. of Nodes Grain Size Total Task Time(Sec) Speedup
1 10,00,00,000 1489.621789 -
3 3,30,00,000 116.876431 12.745273
9 1,11,11,000 63.254592 23.549623
13 76,92,307 57.496331 25.908119
16 62,50,000 67.106057 22.198023
17 58,82,352 73.605719 20.237854
18 55,55,555 76.353495 19.509543
20 50,00,000 77.887006 19.125421
25 40,00,000 80.708851 18.456734

 10

 11

 12

 13

 14

 15

 16

 17

 18

 3 3.5 4 4.5 5 5.5 6

S
pe

ed
up

Number Of Nodes

Comparison of Speedup of lightly loaded nodes in Wide area test bes with Institute test bed

Wide Area
Intranet

Fig. 3. Comparison of Speedup in the case of two different test beds

5 Conclusions

This paper has presented GDP, a model that enables transparent programma-
bility of communicating tasks in a grid environment. Existing grid models do not
provide support for communicating tasks. Performance studies over a prototypi-
cal implementation for a steady state problem confirm the feasibility of running
such tasks in a grid environment. We were able to achieve linear to super-linear
speed up even with wide-area latencies and load dynamics. However, we have
not addressed fault-tolerance issues, which become important, especially in a
wide area context. We are currently designing a Peer-to-Peer middleware layer
in order to handle fault-tolerance and scalability issues for the grid.

References

1. D.Patterson Anderson T, David Culler. Case for now (network of work-stations).
IEEE Micro, 15(1):1–20, Dec 1994.

2. Fredy Tandiary, Suraj C. Kothari, Ashish Dixit, and E. Walter Anderson. Batrun:
Utilizing Idle Workstations for Large-Scale Computing. IEEE Concurrency, 4(2):41–
48, Summer 1996.

GDP: A Paradigm for Intertask Communication 241

3. D. Janakiram Rushikesh K. Joshi. Anonymous remote computing: A paradigm for
parallel programming on interconnected workstations. IEEE Trans. on Software
Engineering, 25(1):75–90, Jan/Feb 1999.

4. Binu K. Johnson, R. Karthikeyan, and D. Janaki Ram. Dp: A paradigm for anony-
mous remote computation and communication for cluster computing. IEEE Trans-
actions on Parallel and Distributed Systems, 12(10):1052–1065, 2001.

5. Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal on Supercomputer Applica-
tions, 15(3), 2001.

6. C. Kesselman Foster. Globus: A metacomputing infrastructure toolkit. Intl J.
Supercomputer Applications, 11(2):115–128, Fall 1997.

7. Tobin J. Lehman and James H. kaufman. Optimal Grid: Middleware for Auto-
matic Deployment of Distributed FEM Problems on an Internet-Based Computing
Grid. In Proceedings of the IEEE International Conference on Cluster Computing
(CLUSTER’03), 2003.

8. Andrew Grimshaw, Adam Ferrari, Frederick Knabe, and Marty Humphrey. Wide-
Area Computing: Resource Sharing on a Large Scale. IEEE Computer, 32(5):29–37,
May 1999.

Internet Technology Track Chair’s Message

Sanjay K. Madria

University of Missouri-Rolla, USA

Abstract. Internet Technology Track received around 60 papers and
the papers were reviewed by the International program committee and
finally 9 papers have been selected for presentation (6 full and 3 short
papers). As the track chair, I would like to thank all the authors who sub-
mitted their papers in this track and all the PC members who reviewed
the papers in timely fashion. The paper presentation in this track is orga-
nized into three sessions, (1) Internet Search and Query, (2) E-commerce,
(3) Web Browsing. I hope you enjoyed your presence in these sessions.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, p. 242, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Rewriting Queries Using View for
RDF/RDFS-Based Relational Data Integration

Huajun Chen

College of Computer Science, Zhejiang University, Hangzhou 310027, China
huajunsir@zju.edu.cn

Abstract. We study the problem of answering queries through a target
RDF-based ontology, given a set of view-based mappings between one or
more source relational schemas and this target ontology. Particularly, we
consider a set of RDFS semantic constraints such as rdfs:subClassof,
rdfs:subPropertyof, rdfs:domain, and rdfs:range, which are present in
RDF model but neither XML nor relational models. We formally de-
fine the query semantics in such an integration scenario, and design a
novel query rewriting algorithm to implement the semantics.1

1 Introduction

The Semantic Web is aimed at providing a common framework allowing data to
be shared and reused across application, enterprize, and community boundaries.
It is based on the Resource Description Framework (RDF), which is a language
for representing web information in a minimally constrained, flexible, but mean-
ingful way so that web data can be exchanged and integrated without loss of
semantics. Most of existing data, however, is stored in relational databases. Thus,
for semantic web to be really useful and successful, major efforts are required
to offer methods and tools to support integration of heterogeneous relational
databases using RDF model.

This paper is devoted to the problem of answering queries through a target
RDF-based ontology, given a set of semantic mappings between one or more
source relational schemas and this target ontology. In essence, this is the prob-
lem of uniformly querying many disparate data sources through one common
virtual interface. A typical approach, called answering query using view [6][5],
is to describe data sources as precomputed views over a mediated schema, and
reformulate the user query, posed over the mediated schema, into queries that
refer directly to the source schemas by query rewriting.

While most of the preceding work has been focused on the relational case
[7][5][8], and the XML case [9][10], we consider the problem of answering
RDF queries using RDF views over relational databases. In particular, we
consider a set of extra RDFS semantic constraints such as rdfs:subClassof,
1 The work is funded by China 973 project: Fundamental Approach, Model, and The-

ory of Semantic Grid, and subprogram of China 863 project : TCM Virtual Research
Institute, and China NSF program (NSFC60503018): Research on Scale-free Network
Model for Semantic Web and High Performance Semantic Search Algorithm.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 243–254, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

244 H. Chen

rdfs:subPropertyof, rdfs:domain, and rdfs:range, which are present in RDF
model but neither XML nor relational models. These constraints are of great
importance in RDF-based data integration. Take a simple example, sup-
pose there is a statement in the RDF ontology saying: foaf:schoolHomepage
rdfs:subPropertyOf foaf:homepage. Suppose a semantic mapping from a col-
umn of a relational table T to the property foaf:schoolHomepage has been de-
fined, and a semantic query referring the property foaf:homepage is given, the
rewriting algorithm should automatically infer that T can also be used to gen-
erate rewritings since foaf:schoolHomepage is a subproperty of foaf:homepage.
On the other hand, if a triple like :aaa foaf:schoolHomepage :bbb is generated
as a query result, the system should automatically infer that the triple :aaa
foaf:homepage :bbb is also a query result. As a matter of fact, rdfs:subPropertyOf
sets an extra constraints that the query result should satisfy, and extensively
enhances the query rewriting.

In this paper, we formally define the problem of answering queries using views
for RDF/RDFS-based relational data integration. We define a Target RDF
Instance that satisfies all the requirements with respect to the given views and
RDFS semantic constraints on the ontology, and take the query semantics to be
the result of evaluating the query on this Target RDF Instance. It then becomes
a requirement that any query rewriting algorithm must satisfy. In addition,
a RDF-inspired query rewriting algorithm is also implemented according to
the formal query semantics.This algorithm extends earlier relational and XML
techniques for rewriting queries using views,with consideration of the features of
RDF model. Intuitively, it rewrites the target RDF queries into a set of source
SQL queries. Evaluating the union of these rewritings on the data sources has es-
sentially the same effect as running the RDF query on the Target RDF Instance.

This paper is laid out as follows: Section 2 mentions some related work. Section
3 introduce the RDF view by some examples. Section 4 formally discusses the
problem of answering RDF queries using RDF views. Section 5,6 introduces the
rewriting algorithm. Section 7 serves as a conclusion.

2 Related Works

In the context of semantic web research, there are a lot of works that concern
mapping RDF with relational model. Some of them deal with the issue of using
RDBMS as RDF triple storage, such as Jena or Sesame’s relational storage
component. This issue is not considered in this paper.

Some Others deal with the issue of integrating relational data using RDF,
such as D2RMap [4], KAON REVERSE2, D2RQ system [1] and RDF Gateway3.
However, none of them consider the issue of RDFS semantic constraints, and
the formal aspects such as query semantics, query complexity is not considered.
Another issue they did not consider is the incompleteness of legacy database.
For example, both of D2RQ and RDF Gateway define a declarative language
2 http://kaon.semanticweb.org/alphaworld/reverse/view
3 RDF Gateway: http://www.intellidimension.com

Rewriting Queries Using View 245

to describe mappings. However, the mappings, as they defined, are simple and
equivalent mappings: it consists of statements asserting that some portion of
relational data is equivalent to some portion of the RDF data.In contrast, the
RDF views that we consider involves incomplete mappings, where each statement
asserts that a relational source is a incomplete, partial view of the big model.

Piazza [2] consider the mapping of XML-to-XML and XML-RDF. [3]considers
the problem of answering query using views for semantic web, but their approach
is more description-logic-oriented.

3 RDF View

We start with a simple example: suppose both W3C and Zhejiang University
(abbreviated as ZJU) have a legacy relational database about their employees
and projects, and we would like to integrate them by the FOAF ontology4, so
that we can query these relational databases by formulating RDF queries upon
the FOAF ontology.

Fig. 1. Semantic Mapping from Relational Tables to RDF classes and properties : The
symbols ?en; ?em; ?eh; ?an; ?ah are variables and represent, respectively, ”employee
name”,”employes email”,” employes homepage at school”,”account name”,”account
services homepage”. ?y1; ?y2 are existential variables. Notice the account information
in the first one is mapped to foaf:OnlineChatAccount, and the second one is mapped
to foaf:OnlineEcommerceAccount.

The mapping scenario in Fig. 1 illustrates two source relational schemas
(W3C, and ZJU), a target RDF schema (a part of the foaf ontology), and two
mappings between them. Graphically, the mappings are described by the arrows
that go between the mapped schema elements. The extra RDFS Semantic Con-
straints state that both foaf:schoolHomepage and foaf:accountServiceHomepage
4 The FOAF project:http://www.foaf-project.org/

246 H. Chen

Fig. 2. RDF Views examples. Upper part is the set of original views, lower part is
the set of views after applying RDFS semantic constraints(see Section 4.2). The newly
added triples are italicized.

are subproperty of foaf:homepage, and both foaf:OnlineChatAccount and foaf:
OnlineEcommerceAccount are subclass of foaf:OnlineAccount.

Mappings are often defined as views in conventional data integration systems,
often in the form of GAV (globalas- view), LAV (local-as-view), or, more gen-
erally, GLAV (global-and-local-as-view) assertions. We take the LAV approach,
i.e., we define each relational table in the source as a view over the RDF ontolo-
gies. We call such views as RDF Views. For formal discussion, we express such
RDF views in a Datalog-like notation.

As the examples in Fig. 2 illustrates, a typical RDF view consists of two parts.
The left part is called the view head, and is often a relational predicate. The
right part is called the view body, and is often a set of RDF triples. In general,
the body can be viewed as a RDF query over the target schema, and it defines
the semantics of the relational predicate from perspective of the RDF ontology.
Being similar to conventional view definitions expressed in Datalog, there are
two kinds of variables for RDF view. The variables appearing in the view head
is often called distinguished variable. The variables appearing only in the view
body but not in the view head are called existential variables. In our examples,
y1, y2,..., are existential variables.

4 The Query Answering Problem

4.1 RDF Queries

We then shift our focus onto RDF queries we would like to deal with in this
paper. We start with an example again. Q1 is a query specified in terms of foaf
ontology.

Rewriting Queries Using View 247

Q1: SELECT ?en ?em ?eh ?y2 ?an ?ah where
?y1 rdf:type foaf:Person. ?y1 foaf:name ?en.
?y1 foaf:mbox ?em. OPTIONAL ?y1 foaf:homepage ?eh.
?y1 foaf:holdsAccount ?y2. ?y2 rdf:type foaf:OnlineAccount.
?y2 foaf:accountName ?an. ?y2 foaf:homepage ?ah.

The query is written in SPARQL5 query notation. It is to find the person name
(?en), the mail box (?em), the homepage (?eh), his/her online account (?y2), the
account name (?an), the homepage of the account service (?ah).We note that
there is an Optional Block in Q1. According to the SPARQL specification, the
OPTIONAL predicate specifies that if the optional part does not lead to any
solutions, the variables in the optional block can be left unbound. As can be
seen in Section 4, OPTIONAL predicate has an effect on the possible number
of valid query writings that the algorithm can yield.

4.2 Answering Queries Using Views

The fundamental problem we want to address is : given a set of source instances
I, i.e., a set of source relations, and a set of RDF views such as V1,V2, plus a set
of RDF semantic constraints such as rdfs:subClassof, what should the answers
to a target RDF query such as Q1 be?.

One possible approach that has been extensively studied in the relational
literatures, is to consider the target instance, which is yielded by applying the
view definitions onto the source instances, as an incomplete databases [6]. Often
a number of possible databases D are consistent with this incomplete database.
Then the query semantics is to take the intersection of Q(D) over all such possible
D. This intersection is called the set of the certain answers [6]. This approach
can not be applied directly to our case, since we need to consider extra semantic
constraints on the target schema. Thus, we take a similar but somewhat different
approach, which is more RDF-inspired.

In general, we define the semantics of target query answering by constructing
a Target RDF Instance G based on the view definitions and RDFS semantic
constraints.We then define the result of answering a target RDF query Q1 using
the views to be the result of evaluating Q1 directly on G. There are two phases
in this construction process:

1. Applying constraints onto RDF views. Before constructing G, an ex-
tra inference process is firstly applied onto the RDF views. For the exam-
ples illustrated in Fig. 2, five extra triples are added into the view defin-
tions by applying the RDFS constraints in Fig. 1. For instance, applying the
constraint (foaf:accountServiceHomepage rdfs:subPropertyof foaf:homepage) to
the triple (?y2 foaf:accountServiceHomepage ?ah) will yield a new triple (?y2
foaf:homepage ?ah).

2. Applying RDF views onto source instances. In this process, for each
tuple in the source instance, we add a set of RDF triples in the target such
5 W3Cs SPARQL query language specification : http://www. w3.org/TR/rdf-sparql-

query/

248 H. Chen

Fig. 3. The Source Relational Instance and Target RDF Instance. In the target in-
stance, :bn1, :bn2, and so on, are all newly generated blank node IDs. The italicized
triples are generated because of the RDFS semantic constraints. The triples are repre-
sented using N3 notation.

that the view-based mapping is satisfied. One important notion of the process
is the skolem functions we introduced to generate the blank node IDs in the
target RDF instance. As can be seen in Fig. 3, corresponding to each existential
variable ?y in the view, we generate a new blank node ID. For examples, :bn1,
:bn2 are both newly generated blank node IDs corresponding to the variables
?y1, ?y2 in V1. This treatment of the existential variable is in accordance with
the RDF semantics, since blank nodes can be viewed as existential variables 6.
The evaluation of Q1 on this target RDF instance produces the tuples in Table1.
In general, we associate each RDF class in the target ontology with a unique
Skolem Function that can generate blank node ID at that type. For instances,
we associate the two RDF classes in Fig. 1 with the following skolem functions
respectively:

foaf:Person - SF1(?en); foaf:OnlineAccount - SF2(?an);

The choice of function parameters depends on the constraints user want to
set on the target schema. For example, SF1(?en) set a new constraint that says:
if two instances have the same value for the property foaf:name, then they are
equivalent and same blank node ID is generated for both of them. This is some-
what similar to the Primary Key Constraint, and is useful for merging instances
stemming from different sources. Take the examples in Fig. 3 again, for person
name Huajun, the same blank node ID :bn3 is generated for both W3C and
ZJU sources, so that the data from different sources can be merged together.

We finally give the formal specification of the query semantics. We adopt this
semantics as a formal requirement on query answering using RDF view over

6 W3C RDF Semantics :http://www.w3.org/TR/rdf-mt/

Rewriting Queries Using View 249

Table 1. Query answers after evaluating Q1 on the Target RDF Instance in Fig. 3.
Note the variable ?eh (Person.homepage) is left unbound, namely, is nullable, but other
variables MUST have a binding.

Person.name Person.mail-box Person.homepage Account Account.name Account.homepage

Dan Brickley danbri@w3.org NULL :bn2 dan@ebay http://ebay.com

Huajun huajunsir@zju.edu.cn http://zju.edu.cn/huajun :bn4 huajun@amazon.com http://amazon.com

Huajun huajunsir@zju.edu.cn http://zju.edu.cn/huajun :bn5 huajun@msn.com http://msn.com

Huajun huajunsir@zju.edu.cn http://zju.edu.cn/huajun :bn6 huajun@yahoo.com http://yahoo.com

relational schema, although not necessarily as an implementation strategy. In
fact, we show in the next section how to implement this semantics, without
materializing the Target RDF Instance,but instead by query rewriting.

Definition 2 Query Semantics. Let q be a RDF query, then the set of the
query answer of q with respect to a set of relational source instance I, a set
of RDF views V, plus a set of RDFS semantic constraints C, denoted by
answerV,C(q, I), is the set of all tuples t such that t ∈ (G) where G is the
Target RDF Instance.

This query semantics is different from the certain answer [2] in relational liter-
atures for two practical reasons: a)The query answer can contain nulls during
evaluation, because of the OPTIONAL predicate used in RDF query; b)The
query answer can contain newly generated blank node IDs which can be viewed
as existential variables.

5 Query Rewriting Algorithm

We describe next the basic algorithm we developed to answer RDF queries using
RDF views under RDFS semantic constraints. Basically, the algorithm can be
divided into two phases : preprocessing views, and query transformation.

5.1 Preprocessing Views

The purpose of this phage is two fold. Firstly, RDFS Semantic Constraints are
applied onto views, so that more types of query can be answered by using the
extended views. Secondly, the view definitions are turned into a set of smaller
rules called Class Mapping Rules, so that target query expressions can be more
directly substituted by relational terms.

Applying constraints has been introduced in Section 4.2. Fig. 2 illustrates
the examples of views after applying the RDFS semantic constraints. This
extra inference process is valuable because it enables the rewriting algorithm to
answer more types of query. For example, without this process, Q1 can not be
answered by rewriting the views, because the query terms foaf:OnlineAccount
and foaf:homepage do not appear in any view definitions at all. Generating class

250 H. Chen

Fig. 4. Examples of Class Mapping Rules

mappings rules is somewhat more complex. The complete algorithm is illustrated
in the left part of Fig. 5. In general, the algorithm can be divided into four steps.

1. Grouping Triples. The algorithm starts by looking at the body of views,
and group the triples by subject name, i.e., a separate group is created for
each set of triples that have same subject name. For example, three such triple
groups are created for V 1 as illustrated in Fig. 4. In the first group, three
triples share the same subject name ?y1 which will be replaced by the skolem
function name SF1(?en).

2. Skolemizing Triples. Next, the algorithm replaces all existential variables
?yn ∈ Y with corresponding Skolem Function Names. As introduced in Section
4.2, we associate each RDF class with a unique Skolem Function to generate
blank node IDs for that type. For example, the ?y1, ?y2 in V1 are replaced by
skolem function name SF1(?en); SF2(?pn) respectively.

3. Constructing Class Mapping Rules.Next, for each triple group, a new
class mapping rule is created. The rule head is the original relational predicate,
and the rule body the triples of that group.

4. Merging Class Mapping Rules. At last, some mapping rules are merged.
There are two kinds of cases when rules need to be merged. One is the case
of redundant rule. For example, as illustrated in Fig. 4, rule5 and rule6 will be
merged into the rule5 6 because rule5 is a redundant rule. Another case is: if there
is a referential constraints between two relational tables, then their corresponding
rules will be merged. For example, rule3 and rule4 will be merged into the rule3
4 because there are referential constraints between zju:emp(?en,?eh) and zju:em
account(?en,?an).

Rewriting Queries Using View 251

1 . I n p ut : t a r ge t que ry q , se t o f m a p p in g r ule s M
2 . I n it ia l iz e r e wr it in g li st Q ;
3 . Gr o up t h e t r ip le s in q.bo dy by subje c t n a m e ;
4 . R e p la c e v a r ia ble s in q.bo dy wit h c o r re sp o n din g sk o le m f un c t io n ;
4 . L e t L be t h e se t o f t r ip le gr o up s o f q.bo dy ;

5 . A dd q t o Q ;
6 . F o r e a c h t r ip le gro up g in L
7 . L e t A M = t h e se t o f m a p p in g r ul e s a p p lic a ble t o g;
8 . F o r e a c h q in Q
9 . r e m o v e q f r o m Q ;
1 0 . F o r e a c h rule m in A M
1 1 . F o r e a c h O P T I O N A L t r ip le t in g
1 2 L e t x be t h e v a r ia ble in t a n d x in q.h e a d;
1 3 q.h e a d= q .h e a d[x /x = n ull] ;
1 4 E n d F o r
1 5 q= q[g/m .h e a d] ;
1 6 A dd q' t o Q ;
1 7 E n d F o r
1 8 E n d F o r
1 9 E n d f o r
2 0 O ut p ut : r e wr it in g lis t Q ;

1 . In p u t : se t o f R D F v ie w V

2 . I n it ia liz e m a p p in g rule s list M ;

3 . F o r e a c h v in V
4 . G r o up t h e t r ip le s in v .bo dy by subje c t n a m e ;
5 . R e p la c e v a r ia ble s in v wit h c o r r e sp o n din g sk o le m f un c t io n ;
6 . L e t L be t h e se t o f t r ip le gr o u p s o f v .bo dy ;

7 . F o r e a c h t r ip le gro up g in L
8 . c r e a t e a n e w m a p p in g r ule m ;
9 . m .h e a d= v .h e a d
1 0 . m .bo dy = g;
1 1 . a dd m t o M
1 2 . E n d F o r
1 3 . E n d F o r

1 4 .M e r ge t h o se r ule s t h a t a r e a bo ut sa m e R D F c la ss;

1 5 . O u t p ut : m a p p in g rule list M ;

A lgo r t i h m 2 : Q ue r y T r a n sf o r m a t io nA lgo r t ih m 1 : C la ss M a p p in g R ule Ge n e r a t i o n

Fig. 5. The Algorithms. We use ”q=q[a/b]” to denote replacing all occurrence of ”a”
in ”q” with ”b”, and use ”q.head” and ”q.body” to denote the head and body of q

5.2 Rewriting Queries Using Class Mapping Rules

In this phase, the algorithm transforms the input query using the newly gener-
ated mapping rules, and outputs a set of valid rewritings.

Similarly, the algorithm starts by looking at the body of the query and group
the triples by subject name. For example, there are three such groups for Q1. In
the first group, three triples share the same subject name ?y1.

Next, the algorithm replace all variables ?yn with corresponding Skolem Func-
tion Names. For example, the ?y1, ?y2 in Q1 are replaced by skolem function
name SF1(?en); SF2(?an) respectively.

Next, the algorithm begins to look for rewritings for each triple group by
trying to find an applicable mapping rules. If it finds one, it replaces the triple
group by the head of the mapping rule, and generate a new partial rewriting.
After all triple groups have been replaced, a candidate rewriting is yielded. If
a triple t in Q1 is OPTIONAL and no triple in the mapping rule is mapped
to t, the variable in t is set to NULL as default value. Fig. 6 illustrates the
rewriting process for query Q1. Because of the space limitation, only r1 and r4
are illustrated.

Definition 3 Triple Mapping. Given two triples t1, t2, we say t1 maps t2,
if there is a variable mapping ϕ from V ars(t1) to V ars(t2) such that
t2 = ϕ(t1).V ars(t1) denotes the set of variables in t1.

Definition 4 Applicable Class Mapping Rule. Given a triple group g of a
query Q, a mapping rule m is a Applicable Class Mapping Rules with respect
to g, if there is a triple mapping τ that maps every non optional triple in g
to a triple in m.

252 H. Chen

Fig. 6. The query rewriting example. The final rewriting is expressed using Datalog
like notation which can be easily transformed into a SQL query.

6 Experimental Evaluations

The first goal of our experiment is to validate that our algorithm can scale
up to deal with large mapping complexity . We consider two general classes of
relational schema: chain schema and star schema. In these two case, we consider
queries and views that have the same shape and size. Moreover, we also consider
the worst case in which two parameters are looked upon: (1)The number of triple
groups of query, (2)The number of sources. The whole system is implemented in
Java and all experiments are performed on a PC with a single 1.8GHz P4 CPU
and 512MB RAM, running Windows XP(SP2) and JRE 1.4.1.

Chain Scenario. In a chain schema, there are a line of relational tables that are
joined one by one with each other. The chain scenario simulates the case where
multiple inter-linked relational tables are mapped to a target RDF ontology with
large number of levels (depth). The panel A of Fig. 7 shows the performance in
the chain scenario with the increasing length of the chain and also the number
of views. The algorithm can scale up to 300 views under 10 seconds.

Star Scenario. In a star schema, there exists a unique relational tables that is
joined with every other tables, and there are no joins between the other tables.
The star scenario simulates the case where source relational tables are mapped
to a target RDF graph with large branching factor .The panel B of Fig. 7 shows
the performance in the star scenario with the increasing branching factor of the
star and also the number of views. The algorithm can easily scale up 300 views
under 1 seconds. The experiments illustrate that the algorithm works better in
star scenario.

Rewriting Queries Using View 253

, ,

Fig. 7. Mapping Complexity Experiment. A. Chain Scenario, B. Star Scenario, C.
Worst Case Analysis.

Worst Case Analysis. The worst case happens when for each RDF class,
there are a lot of class mapping rules generated for them, and the number of
triple groups in the query is also large. In this case, for each triple group of
the query, there are a lot of applicable mapping rules. Thus, there would be
many rewritings, since virtually all combinations produce valid rewritings, and
complete algorithm is forced to form an exponential number rewritings. In the
experiment illustrated in C in Fig. 7, we set up 10 sources, and for each source,
8 chained tables are mapped to 8 RDF classes respectively. The figure shows the
cost of rewriting increases quickly as the number of triple groups and number
of sources increases. As can be seen, in the case of 8 groups, the cost reaches 25
seconds with only 4 sources.

7 Summary and Future Work

This paper study the problem answering RDF queries using RDF views over in-
complete relational databases under RDFS semantic constraints. We define a Tar-
get RDF Instance that satisfies all the requirements with respect to the given
views and RDFS semantic constraints such as rdfs:subClassof, rdfs:subPropertyof,
rdfs:domain, and rdfs:range, which are present in RDF model but neither XML
nor relational models, and take the semantics of query answering to be the re-
sult of evaluating the query on this Target RDF Instance. With our approach, we
highlight the important role played by the RDF blank nodes in representing in-
complete information of relational data. The implementation of a visual semantic
mapping tool and the application in the TCM domain are also reported. Some of
the open questions that remain to be answered are: extension to a more expres-
sive RDF-based query languages such as:inverse role, recursive queries, functional
property etc.. And how to make the mappings evolve if the ontology evolves with
time is also an important issue we are taking into consideration.

References

1. Christian Bizer, Andy Seaborne. D2RQ -Treating Non-RDF Databases as Virtual
RDF Graphs.Poster at ISWC2004.

2. Alon Y. Halevy, Zachary G. Ives, Peter Mork, Igor Tatarinov. Peer Data Manage-
ment Systems: Infrastructure for the Semantic Web.WWW2003.

254 H. Chen

3. Francois Goasdoue. Answering Queries using Views: a KRDB Perspective for the
Semantic Web. ACM Transaction on Internet Technology.June 2003, P 1-22.

4. Chris Bizer, Freie. D2R MAP - A Database to RDF Mapping Lan-
guage.WWW2003.

5. A. Y. Halevy. 2001. Answering queries using views: A survey. Journal of Very Large
Database, 2001; 10(4), 75-102.

6. Serge Abiteboul. Complexity of Answering Queries Using Materialized Views.
PODS1998, 254-263.

7. X. Qian. Query folding. ICDE1996, 48-55.
8. Rachel Pottinger ,Alon Y. Halevy. 2001. MiniCon: A Scalable Algorithm for

Answering Queries Using Views.Journal of Very Large Database 2001; 10(2-3),
182-198.

9. Cong Yu and Lucian Popa. Constraint-based XML Query Rewriting for Data In-
tegration.SIGMOD 2004, 371-382.

10. A. Deutsch and V. Tannen. MARS: A system for publishing XML from mixed and
redundant storage. VLDB2003

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 255 – 266, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Effective Searching Method Using the
Example-Based Query

Kil Hong Joo and Jaeho Lee

Dept. of Computer Education,
Gyeongin National University of Education, Gyodae Street 45,

Gyeyang-gu, Incheon, Korea, 407-753
{khjoo, jhlee}@ginue.ac.kr

Abstract. An efficient searching system is needed to offer the exact result of
diverse web information to the user. Due to this reason, it is important to extract
and analyze the user requirements in the distributed information environment.
The searching method proposed in this paper uses the keyword as well as its
context information for effective searching. Moreover, the proposed searching
method is extracted keywords by using the new keyword extraction method also
proposed in this paper, and it is executed web searching based on keyword
mining profile generated by the extracted keywords. Unlike the conventional
searching method, which searched for information by representative words, the
proposed searching method is more efficient and exact. This is because data are
searched by the example-based query including the content information as well
as the representative words. Moreover, this searching method makes a domain
keyword list for a quick search. The domain keyword is the representative word
of a special domain. The performance of the proposed algorithm is analyzed in
a series of experiments to identify its various characteristics.

1 Introduction

In searching for web document, the structured document plays an important role in a
searching system. This means that the accuracy of searching can be improved if the
structured document is considered. It is important to extract the keyword that
represents the characteristic of a document for efficient web searching. Therefore,
words are extracted as keywords by the style-based keyword extracting method
presented in this paper. This is because a word with a different style has an important
or an emphasized meaning.

A profile is generated by keywords extracted using the style-based keyword
extracting method, and the web searching is performed by the generated profile. In
this paper, the web searching based on the keyword mining profile is used. The web
searching based on the keyword mining profile can be performed according to the
following steps. First, the web searching offers an example-based query according to
web documents which include contents similar to requirement information to users.
Second, a log is extracted by the example-based query. Third, a profile is generated
by a data mining technique that is applied to the extracted log. Finally, documents

256 K.H. Joo and J. Lee

similar to the profile are found out through web searching. In this method, the query is
performed by the example-based query. This query differs from that of a conventional
searching system. The example-based query is composed of selected pages after the
direct visit to the web pages. Consequently, this paper proposes the style-based
keyword extraction method. Several experiments verify the efficiency and the
accuracy of the style-based keyword extraction method. Moreover, this paper designs
and implements a keyword mining-based web searching system based on the style-
based keyword extraction method.

This paper consists of seven parts. Section 2 describes related works and Section 3
introduces the method of a web document and the style-based keyword extraction
method based on the structured document. In Section 4, a profile generation method
based on the extracted keyword and the web searching based on a keyword mining
profile are shown. In Section 5, the method described in Sections 3 and 4 are analyzed
in a series of experiments to identify its various characteristics. Finally, Section 6
draws overall conclusions.

2 Relate Work

For each word used in a structured document, its term weight is calculated to choose
the keywords of the document. For this purpose, the TF*IDF (Term Frequency
Inversed Document Frequency) [3, 4] is used widely to reflect the importance of a
specific word in a document. The term frequency (TF) of a word in a document is the
number of occurrences of the word in the document. The inverse document frequency
(IDF) of a word is the number of documents containing the word, and it indicates how
commonly the word is used in the documents of the data set. When the IDF of a word
is high, the usage of the word is localized to a small number of documents in the data
set. According to the TF*IDF method, the weight ijtfidf of a word jw in a document

id is defined as follows:

i
ijij df

N
tftfidf ln×=

where N is the total number of documents in a data set and the term frequency ijtf

denotes the frequency of a word jw occurred in a document id . In addition, the

document frequency jdf denotes the number of documents that the word jw appears

in the data set. The TF*IDF function means that the possibility that a specific word
represents the key concept of a particular document is proportional to the frequency of
the word in the document. At the same time, it is also inversely proportional to the
number of documents that contain the word. In other words, a word can be one of
keywords for a document if it appears frequently in a small number of documents in a
data set. However, the TF*IDF function suffers from the following weak point: As
the number of documents in a data set becomes larger, the effect of the IDF of a word
on the term weight of the word in each document increases, especially when most of
the documents contain a small number of words as in web documents.

Generally, the document length normalization is used by the maximum frequency
normalization and the cosine normalization [5]. The maximum frequency normalization

 An Effective Searching Method Using the Example-Based Query 257

is defined by dividing the frequency of each word by the maximum frequency in a
document. The cosine normalization has been widely used in a vector space model.
In the cosine normalization, given a vector },......,,{ 21 nvvvV = , each element of the

vector is divided by a cosine normalization element 22
2

2
1 nvvv +++ . This cosine

normalization makes it possible to normalize the length of a document based on the
frequencies of all words in a document.

The studies for the example-based query have been performed with a document
clustering and a categorization [9, 10, 11]. In order to express the example-based
query, it is important to consider the association rule among words in a document
based on data mining [12]. Association rule [13] is a powerful method for so-called
market basket analysis, which aims at finding regularities in the shopping behavior of
customers of supermarkets, mail-order companies, and the like. With the association
rules one tries to find sets of products that are frequently bought together, so that from
the presence of certain products in a shopping cart one can infer (with a high
probability) that certain other products are present. The association rule is defined in a
frequent itemset which satisfies the minimum support [13]. If a frequent itemset and
an items support are known, the association rule can be easily found. Accordingly, the
study [14, 15] on searching a frequent itemset has been actively carried out. The main
problem of association rule is that there are so many possible rules. For example, for
the product range of a supermarket, which may consist of several thousand different
products, there are billions of possible association rules. It is obvious that such a vast
amount of rules cannot be processed by inspecting each one in turn. Therefore,
efficient algorithms are needed to restrict the search space and check only a subset of
all rules, but, if possible, without missing important rules. Such algorithms are an
Apriori algorithm [14], a DHP algorithm [15], a partition algorithm [16] and a DS
algorithm [17].

3 Style-Based Keyword Extraction Method

A document keyword is the most important factor to structurize document in a web
searching system. Since the keyword of a document represents the contents of the
document, the efficiency of the web searching system can be improved if it extracts
exact keywords. To overcome the weak points of the conventional frequency-based
keyword extraction method, this paper proposes a new keyword extraction method
considering a weight support based on styles of a document. Since the words that are
different from the rest of the words that complete the whole document style have an
important meaning or emphasis, the style-based keyword extracting method extracts
keywords according to the difference of styles. For example, if the size of a font point
of a word is 15 when the size of a font point of the overall style is 10, it is recognized
as an emphasis word. In addition, if the font color of a word is blue when the overall
font color is black, it is also recognized as an emphasis word.

Text Formatting tags among HTML tags represent how an applied word should be
expressed in the browser. Several tags can be applied to a single word, and the word
style can be decided by the integrated results of tags. Therefore, the keyword weight
of the style-based keyword extracting method is calculated by the style expressed on

258 K.H. Joo and J. Lee

the browser as a final result. In this paper, the style of a word is composed of 7
measures presented in [12], and the word is calculated by each measure. The keyword
of document is decided by the frequency of word in the document. All conventional
keyword extracting methods got the same weight as frequency. However, the style-
based keyword extracting method presented in this paper does not regard the
frequency as the same one and calculates frequency by the weight of applied styles.
The frequency is calculated by considering the weight of words after adding up
normalizing weights calculated by 7 style measures in the table 1. In this paper, a
document word extracting method is used by presented in [13] and the style actually
applied in the document is defined as a style instance. For example, if the font sizes in
a document are 12, 14 and 24, those style instances become 12, 14 and 24. The style
instance of the font style can become italic, normal, and oblique.

Let iSW and iSV denote the weight and the value of a style instance i respectively.

The style weight iSW is defined as two kinds of styles. First, the weight is calculated

by the mean value of relevant iSV to decide the relative importance in the document

since the more iSV is, the more important it is. If the iSV becomes bigger than the

mean value, a positive weight is given, and if the iSV smaller than that, a negative

weight is given. In addition, when the value is getting increasingly farther from the
mean value, the weight is getting bigger. In the first method, the normalization of iSV

is carried out by making the value divided by the standard deviation. In addition, let

iSC denote the count of words in which the style instance i is applied, the mean value

of the style instance i is defined as the representative value of iSV . The mean value

and the standard deviation are calculated by regarding iSC as a frequency. The first

style weight can be defined by Equation (1).

sd

avgi
i SC

SCSV
SW

−
= (1)

where avgSC and sdSC denote a mean value and a standard deviation respectively.

The second method decides the importance based on the count of words in which
style instance is applied when it is difficult to decide the importance by the style
instance values such as font family, font style, color, text align and text decoration. In
other words, as the number of the applied word is decreased, the word is more
important. For this reason, the representative value of a style instance is contrasted
with total word count of document, and this is defined as the ratio of the count of
words to which a relevant style instance is applied. The count of words to which a
style instance is applied is defined as a frequency, and a mean value and a standard
deviation are calculated. Given the total word count of document TC, the value of a
style instance i iSV denotes TCSCi / . Therefore, the second style weight can be

defined by Equation (2). Unlike the Equation (1), Equation (2) gets negative number
because iSV is not important.

sd

i

sd

avg

sd

avgi
i SCTC

SC

SC

SC

SC

SCSV
SW

⋅
−=

−
= (2)

 An Effective Searching Method Using the Example-Based Query 259

Given the set of applied tag instance T, the occurrence frequency of word iw , in

which instance j is given, can be defined as jifv , . The occurrence frequency jifv , is

calculated by adding the sum of weight of applied style instance and sum of 1 in
Equation (3).

+=
∈Tk

kji SWfv 1, (3)

Given instance set of word iw I, the total sum of occurrence frequency fv of

instances of iw becomes an occurrence frequency ifv whose weight of word iw is

applied, and it is defined by Equation (4).

=
∈ij

jii fvfv , (4)

The frequency iF in which a normalized weight of word iw is applied should be

calculated by carrying out normalization after supposing that ifv values make the

standard normal distribution. Let avgFV and sdFV denote a mean value and a

standard deviation of ifv values respectively. iF can be defined by Equation (5). As

a result, iF becomes style weight of word iw .

sd

avgi
i FV

FVfv
aaZPF

−
=<=),(. (5)

4 Web Searching Based on a Keyword Mining Profile

A web searching based on a keyword mining profile provides users with necessary
web documents, which includes contents similar to information that users need using
an example-based query. Therefore, a query is evaluated by the example-based query
without the direct input of keyword.

4.1 Target and Context Profiles

The web searching based on a keyword mining profile is carried out by the following
steps. First, the web documents, which include contents similar to the information
users want are provided to the example-based query and a log is extracted. Second, a
profile is generated by applying a data mining technique to the extracted log. Third,
similar documents are searched based on the generated profile. The query method is
performed by the example-based query and it does not need direct input of the
keyword that is performed in the conventional searching system. The query is
completed with the selection of pages that belongs to the query after the visit of the
real web pages that represent the necessary contents. A web site indicates more than
one subject, and the subject should be composed of detailed subjects. For instance, the
documents on the newspaper web site are news articles. However, they are also
divided into political, social, economic, and sports articles in detail. Therefore, the
documents required through the web site belong to the web site subject or its detailed

260 K.H. Joo and J. Lee

subjects, and the subject in which necessary documents are included is regarded as the
context of necessary content.

In the conventional searching method, if a user provides a keyword which
represents the necessary document, Target, pages showing the searching words are
shown as its result. However, these methods have the common weak point that the
meaning of a searching word should be different according to the subject used by
users. For example, when the word "environment" is inputted as a searching word, its
meaning should be different according to subjects that belong to: politics, economics,
academy and education. As a result, the searching word will be included in the
searched results but unwanted meaning can also exist. Given the overall web
document set U and the set of documents that included the searching words S in
Figure 1, C is the subset of S (C⊂ S). The set C is equal to a set of searching results.
In addition, the difference set P(=S-C), the complement of C in S, is the set in which
not only the searching word but also unnecessary searching results due to the various
meanings of words are included. In this paper, a set of documents that include
unnecessary results is called the negative error set. The aim of this paper is to reduce
the negative error set.

The negative error set can be reduced if the users search words using not only a
keyword but also the context which belongs to the keyword. Hence, this paper should
be considered both the Target query and the Context query including the Target
query. Target represents the contents like the objective searching word used in the
conventional searching method. Since Context means the context information
including Target, the exact meaning of Target in Context can be defined and the
negative error set can be reduced. In addition, the searching method proposed in this
paper used the related meaning between Context and Target for exact searching.
Accordingly, the searching method proposed in this paper carried out searching based
on a Context profile, a Target profile and a Context-Target profile.

Fig. 1. A set of web documents

4.2 Generation of the Profile Based on Target and Context

In the searching method proposed in this paper, a query is composed of selected
pages, and each page is composed of words. In addition, keywords extracted from the
keyword extraction method represent a page within a query. As a result, the keyword
is the basic unit that makes a query and the site is the basic unit that represents
contents that a user finds since Target and Context should be chosen together in

 An Effective Searching Method Using the Example-Based Query 261

defining a query. If keywords shown in various sites are extracted at the same time
when the keyword is extracted, the exact information can be provided to the user. If
the query is composed of a single page, the keyword set which represents a page can
be decided by the profile. To increase the accuracy of searching method, this paper
shows a useful summary from much information by choosing a number of examples
as queries. At this time, an Apriori algorithm [13], one of data mining techniques, is
used for the generation of the profile. The steps in which the profiles are generated by
the example-based query consist of four steps with Figure 2.

Fig. 2. The generation procedure of a profile

In Figure 2, steps 1 and 2 are the defining steps of queries. In the case of searching
for Context or Target page which users want in visiting web pages, a keyword is
extracted from the representative page or the needed region in a page. If the region
which needs to be extracted exists in discrete several regions, it is selected and
extracted in order. A query is defined applying repeatedly about all pages. After the
query definition, a log generation process is carried out in step 3. In step 3, the link
structure among web pages selected from Context and Target and the log for making
profile of Context and Target from key sets of each page are generated. Logs
generated in this step are a Context log, a Target log and a Context-Target log
respectively. The Context log is a keyword list of pages decided as Context by each
site. The Target log is also a keyword list of pages decided as Target by each site. The
visiting order of pages in the generating Context-Target log depends on a depth-first
searching method. At this time, the starting page of visiting is page selected by
Context or Target.

4.3 Comparison Measures Between a Log and a Pattern

A frequent itemset is composed of a keyword and the support of the keyword. The
frequent itemset is defined as a pattern. A profile is generated by this pattern, and then
the pattern must be decided in accord with sites by the generated profile. Whether it
corresponds with a query site which users want to search must also be checked. The
generated log should be compared with the profile after generating logs by sites.
When all the words of any patterns of the profile are included to the log, this pattern is
called as a complete match. In addition, when more than half of all the words of any

262 K.H. Joo and J. Lee

patterns of the profile are included to the log, this pattern is called as a partial match.
The ratio of words which represent the agreement in contrast with the count of the
total words of the pattern is called as a matching ratio of the pattern on a log. When a
single log on the site satisfies more than a regular length, it is regarded as a log which
satisfies the profile. This paper proposes 6 comparison measures such as a matched
pattern ratio(MPR), a match word count(MWC), a pattern support(PS), a match
pattern point ratio(MPRR), a pattern matching ratio in an interval(PMRI) and a word
matching ratio in an interval(WMRI). These measures increase the accuracy of the
matching ratio between the log and the pattern.

First, the matched pattern ratio (MPR) means a ratio whose pattern has among
profiles. Second, the matched word count (MWC) describes the mean count of
patterns when they match the complete match or the partial match. In other words, it
shows how many word patterns which satisfy logs correspond with on average. Third,
the pattern support (PS) is the mean support of patterns when they match the complete
match or the partial match. It means how much support patterns they have on average.
For the definition of the matched pattern point ratio (MPPR), a pattern point and a
matched pattern point are defined by the definition 1 and the definition 2 respectively.

Definition 1. Pattern Point (PP)
In order to integrate a pattern which is characterized as a word and a support into a
single value, a pattern point is defined as follows. Given a word count which belongs
to a pattern to be a pattern length, a pattern point is defined by multiplying a pattern
length by a pattern support. It is decided at the time of the generation of a profile.

PSPLPP ×= .

Definition 2. Matched Pattern Point (MPP)
Since a pattern can be the partial matching, a matched pattern point is defined as
follows so that it may be ranked by a matched ratio. The matched pattern point is
defined by multiplying a matched ratio by a pattern point defined by Definition 1.

∈
×=

rulei
ii mPPMPP where im is a matching ratio of a pattern i.

Therefore, the fourth measure, the matched pattern point ratio (MPPR) is defined by
Equation (6). In other words, the MPPR is the ratio of a matched pattern point among
total pattern points.

∈

=
rulei

iPP

MPP
MPPR (6)

Fifth, the pattern matching ratio in an interval (PMRI) is the ratio of a matched pattern
among the total patterns in an interval obtained after dividing patterns into a support
interval. Finally, the word matching ratio in an interval (WMRI) is the ratio of
matching word according to the pattern in an interval. The PMRI and the WMRI
increase the accuracy of a searching result and obtain an exist information because of
observation in detail in an interval. To make a criterion to decide the similarity with
the query, the observation of the query sites is carried out. It is based on above 6
comparison measures. The value of each item is calculated in sites, and then the mean
and the standard variation of the whole query sites are calculated. The similarity with

 An Effective Searching Method Using the Example-Based Query 263

the query is decided on the basis of the calculated mean and standard variation. Given
the constant of a searching system n and the standard deviation of a matching ratio δ,
when the mean of each matched item is allotted as a base value, it is matched in case
it is less than matched region σ×n from the base value.

5 Experiments

In order to illustrate the performance of the proposed searching method, this section
presents several experimental results. In this paper, a domain is considered to identity
the effect of the proposed searching method. The domain is denoted by DOMAIN
whose dormitory is in the USA. All experiments on the DOMAIN are executed with a
total of 281 web pages in 18 dormitory sites randomly. The domain is searched by
Yahoo search engine. The server support of a keyword is the ratio of a site that
includes a keyword among total sites. In these experiments, the minimum server
support is 0.6.

To verify this efficiency, Keyword Extraction based on the Style (KES) proposed
in this paper is compared with Keyword Extraction based on the Frequency (KEF),
the conventional method. In addition, the keyword is extracted from each page in
DOMAIN, and the extracted keywords are divided into KES method and KEF method.
Therefore, they are compared based on both KES and KEF methods. Both quantitative
and qualitative comparisons are done on all experiment results to achieve more
accurate results. The quantitative comparison is the ratio of domain keywords among
extracted keywords. As this ratio becomes higher, the accuracy of a keyword
extraction becomes higher. The qualitative comparison computes the average order in
keywords which include domain keywords. As the average order becomes smaller,
the accuracy of a keyword extraction becomes higher since the domain order of the
extracted keyword becomes higher.

Figures 3 and 4 represent the result of a quantitative comparison and that of a
qualitative comparison for the DOMAIN respectively. The threshold of a page
keyword is varied from 0 to 0.9. As shown in Figure 3, as the threshold of a page
keyword becomes higher, the accuracy of KES method is enhanced. As shown in
Figure 4, as the threshold of a page keyword becomes higher, the average order of
KES method is more decreased. Therefore, KES method provides more exact

Fig. 3. A quantitative comparison Fig. 4. A qualitative comparison

264 K.H. Joo and J. Lee

information than KEF method in both quantitative comparison and qualitative
comparison since KES method extracts the keyword with much higher order.

To verify the accuracy of a profile, the profile-based decision method proposed in
this paper is applied into three kinds profiles, such as a Target profile, a Context
profile and a Context-Target profile. In addition, four kinds of comparison measures
described in Section 4.3, such as a match pattern rate (MPR), a match word count
(MWC), a pattern support (PS) and a match pattern point ratio (MPPR) are compared
with the method based on only keyword. In DOMAIN, the Context profile is set to the
notice and the bulletin board in 18 dormitories. The coefficient of a standard deviation
is varied from 0.25 to 3. Figures 5, 6 and 7 show experiment results according to the
context profile, the target profile and the context-target profile respectively. Y-axis
means a rate of sites decided to an error. As it becomes smaller, the accuracy of a
result is enhanced since it is executed in a query site. X-axis is the coefficient of a
standard variation to decide the matching range and help recognize the distribution of
a matched site.

Fig. 5. Experiment result of a Context profile Fig. 6. Experiment result of a Target profile

Fig. 7. Experiment result of a Context-Target profile

As shown in Figure 5, the result of the profile-based decision method is much
better than or equal to that of the keyword-based decision method in the Context
profile. Figure 6 according to the Target profile is the same with Figure 5. In Figure 7,
if the coefficient of a standard deviation is less than 1, the matching ratio of the
profile-based decision method is better than that of the keyword-based decision

 An Effective Searching Method Using the Example-Based Query 265

method in the Context-Target profile. Otherwise, it is smaller than the keyword-based
decision method. For every profile, the gradient of the profile-based decision method
is less than that of the keyword-based decision method. Therefore, the profile-based
decision method is close to a base value and densely distributed. This means that the
result of the profile-based decision method in a query sites is excellent, and the profile
is a representative in a query site.

6 Conclusion

This paper proposes a style-based keyword extraction method to extract exact
keywords. It is based on the conventional frequency-based keyword extraction
method. The style of a document is analyzed by the style-based keyword extraction
method. Based on the analyzed style, the importance is decided and the weight is
imposed. To verify the effect of the style-based keyword extraction method, it is
compared with the frequency-based keyword extraction method quantitatively and
qualitatively. It was verified that the style-based keyword extraction method was even
more efficient. Since it is certified that extracting keywords with a superior quality is
more exact than extracting an amount of keywords by a series of experiment, the
style-based keyword extraction method is superior The profile with Context
information of a word is generated based on the style-based keyword extraction
method. Based on the generated profile, this paper proposes and implements the web
searching system based on the keyword mining profile. In this system, a query is not
word-based but example-based. It is possible to search and define with the query. To
verify the efficiency of the keyword mining profile, the comparison experiment is
performed in the sites using the query. As a result, the keyword mining profile that
considers context information of a word proved to be much more efficient than that
with only a keyword.

References

1. E. shakshuki and H. Ghenniwa, "A multi-agent system architecture for information
gathering'. Database and Expert Systems Applications, 2000. Proceedings. 11th
International Workshop on, pp. 732-736

2. Ricardo Baeza-Yates and Berthier Ribeiro-Neto. "Modern Information Retrieval".
ADDISON WESLEY, pp. 29-30, 1999.

3. I. Aalbersberg,. "A Document Retrieval Model Based on Term Frequency Ranks". 17th
international ACM SIGIR Conference on Research and Development in Information
Retrieval, 163-172, 1994

4. Amit Singhal, Chris Buckley, and Mandar Mitra. "Pivoted Document Length
Normalization". Proceedings of 19th ACM International Conference on Research and
Development in Information Retrieval, 1996

5. Cazalens S., Desmontils S., Jacquin C., and Lamarre P.. "A Web site indexing process for
an Internet information retrieval agent system". Web Information Systems Engineering
2000. Proceedings of the First International Conference on, Volumn: 1, pp. 254-258 vol.1,
2000

266 K.H. Joo and J. Lee

6. M. Scmidt and U. Ruckert, "Content-based information retrieval using an embedded neural
associative memory". Parallel and Distributed Processing 2001 Proceedings. Ninth
Euromicro Workshop on, pp. 443-450

7. Weifeng Li, Baowen Xu, Hongji Yang, Cheng-Chung Chu W., and Chih-Wei Lu at Dept.
of Compt. Sci. & Eng. Southeast Univ., Nanjing, China. "Application of genetic algorithm
in search engine". Multimedia Software Engineering, 2000. Proceedings. International
Symposium on, pp. 366-371

8. R. Weiss, B. Velez, M. Sheldon, C. Nemprempre, P. Szilagyi, and D. K. Gifford,
HyPursuit: A hierachical Network engine that exploits content-link hypertext clustering. In
Proc. Of the 7th ACM Conference on Hypertext and Hypermedia, pp. 180-193,
Washington, DC, USA, 1996

9. A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic clustering of the web. In
6th Int. WWW Conference, pp 391-404, Snata Clara, CA, USA, April 1997.

10. C-H. Chang and C-C. Hsu. Customizable mulit-engine search tool with clustering. In 6th
Int. WWW Conference, Santa Clara, Ca, USA, April 1997.

11. Jiawei Han, "Data Mining". Encyclopedia of Distributed Computing, Kluwer Academic
Publisher.

12. R. Agrawal and R. Srikant, "Mining association rules betweensets of items in large
databases. Proceeding of the ACM SIGMOD Conference on Management of Data, pp 207-
216, Washington, D.C., May 1993

13. R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", In Proceedings
of the 20th VLDB Conference, Santiago, Chile, Sept., 1994

14. J.S. Park, M-S. Chen, and P.S. Ui, "An effective hash-based algorithm for mining
association rules", In Proceedings of ACM SIGMOD Conference on Management of Data,
pp.175-186, San Jose, California, May, 1995.

15. A. Savasere, E. Omiencinsky and S. Navathe, " An efficient algorithm for mining
association rules in large databases ", In Proceedings of the 21th VLDB Conference, pp
4320444, Zurich, Swizerland, 1995.

16. J.S. Park, P.S. Yu, and M.-S. Chen, "Mining Association Rules with Adjustable
Accuracy", In Proceedings of ACM CIKM 97, pp.151-160, Las Vegas, Nevada,
November, 1997.

17. S.Brin, R. Motwani, J.D. Ullman, and S. Tsur, "Dynamic itemset Counting and Implication
Rules for Market Basket Data", In Proceedings of ACM SIGMOD Conference on
Management of Data, Tucson, Arizona, pp. 255-264, May, 1997.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 267 – 277, 2005.
© Springer-Verlag Berlin Heidelberg 2005

On Communicating with Agents on the Network

Rajat Shuvro Roy1 and M. Sohel Rahman2

1 BRAC University, Department of Computer Science and Engineering,
Dhaka, Bangladesh

rajatshuvroroy@yahoo.com
2 Bangladesh University of Engineering and Technology,

Department of Computer Science and Engineering,
Dhaka, Bangladesh

sohel_rahman_joy@yahoo.com

Abstract. We define an agent to be any node in the network that is prepared to
provide some services to other parties when requested. Such services may be
required for various purposes and then, searching and establishing communica-
tion with the agent will be necessary. The agent search may be oriented along a
particular direction to reduce network load and optimize overall performance.
Such oriented algorithms already exist. In this paper we have given a communi-
cations protocol that may use such oriented algorithm, defined its request and
response packet formats and shown the simulation results for overhead incurred
in such communication.

1 Motivation

The internet began as a communications network for researchers who used it to ex-
change information among themselves. With its growing popularity, its use is expand-
ing into newer and newer spheres. The size and complexity of the internet is growing at
an exponential rate. At one point it was assumed that all internet communications will
know the destination machine. But in some cases we may not know exactly who we
want to communicate with. The following examples will help to clarify the problem.

1. Multicast retransmission node for reliable multimedia stream: Usually the source
of the stream redirects the client to the retransmission node. But in a dynamically
changing network the best retransmission agent cannot be statically defined. And
since the client wants the service, it may be in a better position to search and de-
termine the best retransmission agent. Such nodes may be searched along the path
to the source of the multimedia stream.

2. Application gateway to convert data between incompatible clients: The internet
is a network of networks. Different networks may use different data and packet
formats. If the two communicating parties have incompatible data formats they
might need a gateway to convert the data for them. From the perspective of per-
formance measure, it would be preferable to find a gateway along or around the
shortest path between the two parties.

268 R.S. Roy and M.S. Rahman

3. Mirror Web Sites: Many popular websites in the world use mirror websites to
distribute load and enhance performance. When a request comes in, it is redi-
rected to the nearest possible site. But it would have been more convenient if the
client could have automatically detected a mirror site in its neighborhood without
bothering for redirection from the main website.

With the never-ending increase of the nature and number of services in the Internet,
knowing in advance which service provider (agent) will provide a service is a burden
for the client. Moreover, in a dynamically changing web, a ‘static agent’ selection
may not always give the best performance. For increasing the efficiency or facilitating
newer functions on the internet, we need to take intermediaries into account and find
an efficient way to communicate with them. The most important point to note here is
that the “agent” is initially unknown.

In this paper we try to define a protocol to establish connection with agents for all
types of service request and propose the oriented search of [1] as a good agent search
mechanism. We present the reply methods of the responding agents (based on their
classification) as well as the optimization of these replies messages to the source.
Once the replies are collected, we have to select the best agent if more than one is
found. We have addressed this issue. The protocol implementation of the oriented
agent search algorithm and the reply methods have been proposed. The resulting
agent search and communication protocol may serve many network protocols and
facilitate many different types of interactions which require a topologically smart-
placed intermediary. Finally, we show how much overhead traffic is required for
using the protocol.

2 Agent Search and Communication

We often use agents on the internet. But the problem is, the identity of the agent we
are using (in the form of IP address or any other form) has to be specified in advance.
This can cause serious performance drawbacks as is evident from the following
scenario:
Suppose user 1 wants to communicate with user 2 (Figure 2.1). The communication
needs the mediation of an agent. User 1 knows that AGENT 1 can provide him with

the required service. But unfortunately,
the path via AGENT 1 is far from the
shortest path. Using this path will result
in a considerable loss in performance.
But unknown agents (Agent2) may exist
near the shortest path. So, we need a
method of discovering and communicat-
ing with (initially) unknown agents
which may be near the shortest path.

Please note that by shortest path we
always mean the path selected by the
underlying unicast routing algorithm. Fig. 2.1

 On Communicating with Agents on the Network 269

2.1 Agent Search Algorithm

The classical technique currently used for agent search is the expanding ring search
(ERS) combining the idea of Reverse Path Forwarding (RPF) [7]. For more detail
please see [1, section 2]. It is important to note that, a request packet propagated by an
ERS by a source S does not take into account the position of the other actors of the
communication and floods surrounding nodes in all directions. For efficiency, con-
trolling the flooding and finding a smart placed agent is very important.

However, in most cases, if not all, we could find a special target node serving as a
beacon for the search area. We believe, an agent search protocol based on the oriented
framework, which uses this information (e.g. that of [1]), could give the client the
possibility to find a topologically smart-placed intermediary in the network. The basic
idea of the algorithm is described in brief in the following paragraphs. For more detail
please see [1,section 3].

Let S be the source node and D be the destina-
tion node. S and D are communicating (Figure
2.2) along the path connecting S and D (from here
on referred to as S-D). They need an agent to
assist in their communication. What the algorithm
will do is to conduct a limited search in and
around the shortest path (as indicated by the oval
boundary).

There are many variants of this searching algorithm which will produce different
shapes of the searching area (see [1, section 3] for details). The agent searching pack-
ets contain a special field called the ‘range’. As long as the packet travels along the
shortest path between S and D, it is broadcasted on every link of the node except the
arrival link and the range is not decreased. When it goes out of the shortest path S-D,
the broadcasting policy depends on the parameter settings of the algorithm. It is clear
that the total area of broadcast can be carefully controlled by the way we handle the
parameter ‘range’.

2.2 Classification of Agents

After the service request has been sent out the next steps of establishing connection
will depend on the service requested and agent’s capabilities. We believe a classifica-
tion of the agents based on these factors will make the process more efficient.

TYPE 1: The agent has everything that the client wants and is prepared to start pro-
viding the service immediately (e.g. proxy servers or mirror web sites).

TYPE 2: The agent is capable of providing the service but it cannot immediately start
doing so. The service might need accumulation, compilation and computation of data
depending on the request (e.g. a search engine, a simulator, etc).

TYPE 3: Both the client and the agent needs to be identified (e.g. an online sale
house may have to identify itself to the income tax agent and vice versa).

TYPE 4: The agent is either too busy or unable to provide the service. So, it simply
redirects the request to another agent who might provide the service.

Fig. 2.2

270 R.S. Roy and M.S. Rahman

2.3 Reply Methods

Once a service has been requested and an agent has received the request, the agent
and the user must communicate. We present a mechanism which will enable such a
communication without any parties having any specific prior knowledge of the other.
When the request packet is seen by an agent, willing to provide the service, the first
response packet will contain the following data for agent type 1, 2 & 3:

1. The type of the agent (based on the type shown above).
2. The encoding of the challenge string that will validate the agent. How such a tech-

nique may work will be discussed in section 2.4.
3. Quality of Service Parameters (QOS: Total travel time, Total queue time, Band-

width, etc), that indicate how fast a service may be provided to the client.

Apart form the data above, according to the specific type of the agent, the following
steps should follow.

TYPE 1 Agent: If there is space left in the 1st packet, some data may be piggy-
bagged. The agent will wait for an ACK/NAK form the client. The client on getting
the response will decide which agent to use (see sec 2.5).

TYPE 2 Agent: Since, the service needs to be provided by first preparing the results,
a rough estimate of the time to prepare the service should be provided in the 1st
packet. If the request packet contains enough data for preparing the results, the agent
may simultaneously start processing the request so that if it is selected, it can provide
the service quickly. If the client later rejects this agent, the prepared service, in some
cases, may be cached to be quickly utilized elsewhere.

Note that in both the above cases, the chosen agent will be sent an ACK (Acknowl-
edgement), the others a NAK (Negative Acknowledgement). . The agent will wait for
an ACK for a specific time and if there is no reply form the client within that time, it
will terminate the communication with a NAK.

TYPE 3 Agent: The 1st response packet will also contain a challenge byte stream that
the client will encode to prove its identity. No data may be transferred at this stage.
After receiving the first packet, if the user decides to use this agent, it will send the 2nd
packet with its proper identification (possibly by encoding the challenge string). If the
agent is satisfied with the client’s authentication, the agent may establish the commu-
nication by sending an ACK. If the client makes an unusual delay, the agent will as-
sume the communication to be dead and will terminate with a NAK to the client.

TYPE 4 Agent: The agent will simply redirect the request packet it has received by
encapsulation (IP-within-IP Encapsulation Protocol, [6]), to another agent, who it
believes, may be able to provide the service. This strategy may be employed if the
agent is too busy or unable to provide the service. This would of course require coop-
eration among the agents. The client will have nothing to do with it.

Please note that, at any point any party may terminate the communication by send-
ing a NAK packet.

 On Communicating with Agents on the Network 271

2.4 Authentication

We assume that a Public Key Infrastructure (PKI) [3,sec8.7.5] exists with a directory
structure that hand over the certificates for public keys. The PKI has multiple compo-
nents, including users, Certification Authorities, directories, etc. With this structure
we may authenticate Clients and agents as follows. The client sends out a random
byte stream (Ba) that the agent will encrypt. The Agent encrypts Ba producing cipher
text Ea(Ba), and sends with it another random byte stream Bc that the client will en-
code to prove its identity. The client gets the agent’s decryption key (Da) which is

public and stored at the PKI directory,
and decrypts the encoded byte stream of
the agent. If Da (Ea(Ba))= Ba then the
agent is valid. To prove its identity, now
the client encrypts the byte stream Bc
sent by the agent with its encryption key
producing cipher text Ec(Bc). The agent,
on receiving the cipher text from the
client, will get the decryption key Dc
form the directory and decrypt the ci-
pher text. If it is identical with Bc, then
the client is validated.

2.5 Multiple Agent Scenarios

Multiple agents may respond to the service request. In such circumstances, it is the
responsibility of the user, to choose one agent from the responding agents based on
the service parameters in the reply packets. The selected agent is sent an ACK and the
rejected ones a NAK. We have identified three parameters (QOS) that may be accu-
mulated in the reply packet as it makes its way to the client form the agent. This list
may grow in the future. The parameters are described below:

Total travel time of the Packet: This parameter will give the total travel time of the
packet (i.e. how long the packet has been on the wires) from the responding agent.

Total Queue Wait Time: This is an estimation of how long the response packet has
been in queue. The Queue time is an indication of congestion in the network.

Minimum Bandwidth: As we know, if a path is divided into many segments, each
with a different throughput, then the ultimate throughput will be given by the mini-
mum bandwidth of all these segments. This field will be checked by each hop and
updated if necessary. Thus it will give the ultimate bandwidth of the connection.

The use of these parameters in selecting the best agent is a non-trivial problem. The
solution depends on the type of service that is in question and the volume of data to be
transferred. If the service will be provided in small bursts of packets at regular inter-
val, where speed is necessary (interactive in nature), the user should rely heavily on
the travel time and queue wait time parameters. On the other hand, if the service is
such that the packets will contain large volume of data, ensuring a good bandwidth
may be more important. If the client wants real time service where jitter is an issue,
the user should avoid using path with high queuing delays. If the service is such that
the agent will take some time to prepare it, then the efficiency of the agent should also
be taken into account.

Fig. 2.3

272 R.S. Roy and M.S. Rahman

A responsible client should also send NAK to the agents it is rejecting. This will
help to avoid unnecessary packets from being released on the net which may already
be congested. Instead of relying totally on the clients, an agent may also use timeouts
to determine if it should keep communicating with the user. This can be a serious
issue in defining the dynamic aspects of the protocol and ensuring that the service
providers do not put unnecessary load on the network.

3 Protocol

The routers usually know what services they are hosting. So, for efficiency, we will
define the protocol in Network Layer using IPv6 extension headers, since IPv6 is the
upcoming standard for network layer packets. Note carefully that in our protocol we
are assuming the algorithm given in [1]. The extension headers that we are going to
describe below are both Hop-by-Hop Options header.

REQUEST EXTENSION HEADER FORMAT
Next Header Hdr Ext Len=1 Option Type=X Opt Data Len=6
Algorithm bits Initial Range Function ID Distance Covered
Len of challenge
str

Range Request ID

PAYLOAD(not part of the ext. header)
(The whole payload contains the random challenge byte stream)

Next Header, Hdr Ext Len, Option Type, Opt Data Len: Please see [2] for detail.

Algorithm Bits: Bit fields (6 bits) required for the agent search algorithms of [1].
Initial Range: Defines the initial range value of a packet [1].
Function ID: Identifies the function or service searched by the source.
Distance_covered: Number of hops already covered.
Len of Challenge Str: Length of the Challenge string that is in the payload field.
Range: Integer used to define the degree of multicasting [1].
Request ID: This will be a unique number that will identify each request and will help
the client identify a request and associated responses.

REPLY EXTENSION HEADER FORMAT
Next Header Hdr Ext Len=1 Option Type=X Opt Data Len
Function ID Agent

Type (T)
(For Type 3) Length of new
Challenge String
(For other types) Length of
Piggy Bagged Data

Length of reply
to challenge
string

Request ID (if T=2) Response Processing Time
Total Travel Time(m sec) Total Queue Time(in mSec)
Min. Bandwidth of path(Kbps)
PAYLOAD(not part of the ext. header)
(The payload contains reply to challenge string and new challenge string if T=3.
Else the agent might piggy bag some data)

 On Communicating with Agents on the Network 273

Next Header, Hdr Ext Len, Option Type,Opt Data Len,Function ID, Request ID:
Same as in request extension header.

Agent Type: 4-bit selector, identifies the type of the agent as described in section 2.2.
If the agent type is 3, it means that the user needs to be identified in order to be pro-
vided with the service. In that case the next 12 bits will give the length of the new
challenge string that will be sent to the user for identifying itself. For other cases, if
the agent feels that the service may be provided immediately, it may piggy bag some
data in the payload of the IP packet. In such cases this 12-bit field will give the size of
the piggy bagged data.

Response Processing Time: In case of Agent type 2, the response needs to be pre-
pared. The agent will provide an estimate of the time required in this field.

Total Travel Time, Total Queue Time, Min Bandwidth :As defined in Section 2.5.

We can safely assume that the packet processing time at each hop is negligible
compared to the travel time and queue time. Based on these parameters the source
will have to derive an idea about the line condition between itself and the agent. It is
very important to realize that the packet parameters are giving information about the
path AS i.e. from the Agent to the client. But not the other way round. That is, we
have no information about the path Client-Agent (SA). Although this is definitely an
important issue to further look into, in many cases we can reasonably assume sym-
metric behavior and hence can approximate the information of the SA path form the
information of AS path. This is very important when the service to be provided is
such that a lot of data will travel along SA. Also in such cases, the source may use its
own routing table to know about the line condition leading up to A.

4 Overhead Simulations

All network traffic in excess of the service being provided is considered overhead. So,
all packets for service request, agent searching and selecting are overhead. We here
perform the simulation on the first 3 types of agents. Note that, Type 4 agents merely
redirect the request packets to known agents.

4.1 Simulation Environment

We have coded the simulation for overhead calculation using the JAVA programming
language. In each iteration, we generate a random number of agents and random
amount of data for service (both within their selected group limits). Each agent runs
as a separate thread. The client (another thread) generates request packets and sends
them to the agent threads. The communication then follows the steps as described in
section 2.3. The sizes of all packets are recorded until an agent is finally selected for
service. This gives the overhead of the current communication session. Twenty Thou-
sand (20000) such communications have been aggregated to provide the final result
for each agent type and data set (each bar in the bar chart and each entry in the table).
We ran the simulation on a single-processor 300 MHz Pentium II WindowsXP desk-
top with 192MB RAM.

274 R.S. Roy and M.S. Rahman

4.2 Simulation Results

Data Classes: We have divided the services in to four groups based on their data
volume as follows:

Data Group 1 2 3 4
Data Size 1 KB to 4

KB
4 KB to 10 KB 10 KB to 1 MB 1 MB to 10

MB

Number of Agents Hit: The overhead incurred in an agent search and communica-
tion is directly proportional to the number of agents hit. So, we have performed simu-
lation separately for different number of agents hit. The agent groups are as follows:

Group 1 2 3
Number of Agents 1 to 5 1 to 8 1 to 16

Table 1. Overhead for Agent type 1

Agent Group 1 to
16

Overhead
ratio

1 to
8

Overhead
ratio

1 to
5

Overhead
ratio

Authentica-
tion

No No No

1 0.651303 1 0.297927 1 0.199701
2 0.192156 2 0.089052 2 0.09018
3 0.003143 3 0.001473 3 0.002895

Data Set

4 3.08E-04 4 1.33E-04 4 3.27E-04
Authentica-
tion

Yes Yes Yes

1 1.130803 1 0.523498 1 0.348711
2 0.324915 2 0.150102 2 0.158767
3 0.005219 3 0.002532 3 0.004965

Data Set

4 4.71E-04 4 2.31E-04 4 5.66E-04

1
2

3
4

No Validation (1 to 16 Agents)

No Validation (1 to 8 Agents)

No Validation (1 to 5 Agents)

With Validation (1 to 16 Agents)

With Validation (1 to 8 Agents)

With Validation (1 to 5 Agents)

0

0.2

0.4

0.6

0.8

1

1.2

O
ve

rh
ea

d
 R

at
io

Data Set

Agent Type 1

No Validation (1 to 16 Agents)

No Validation (1 to 8 Agents)

No Validation (1 to 5 Agents)

With Validation (1 to 16 Agents)

With Validation (1 to 8 Agents)

With Validation (1 to 5 Agents)

 On Communicating with Agents on the Network 275

Table 2. Overhead for Agent type 2

Agent Group 1 to 16 Overhead
ratio

1 to 8 Overhead
ratio

1 to 5 Overhead
ratio

Authentication No No No
1 0.594139 1 0.300399 1 0.198723
2 0.170445 2 0.136944 2 0.090371
3 0.002876 3 0.00423 3 0.002835

Data Set

4 2.67E-04 4 4.88E-04 4 3.28E-04
Authentication Yes Yes Yes

1 1.032231 1 0.522339 1 0.345247
2 0.300126 2 0.23413 2 0.159326
3 0.005041 3 0.00735 3 0.005001

Data Set

4 4.50E-04 4 8.33E-04 4 5.60E-04

1
2

3
4

No Validation (1 to 16 Agents)

No Validation (1 to 8 Agents)

No Validation (1 to 5 Agents)

With Validation (1 to 16 Agents)

With Validation (1 to 8 Agents)

With Validation (1 to 5 Agents)

0

0.2

0.4

0.6

0.8

1

1.2

O
ve

rh
ea

d
 R

at
io

Data Set

Agent Type 2

No Validation (1 to 16 Agents)

No Validation (1 to 8 Agents)

No Validation (1 to 5 Agents)

With Validation (1 to 16 Agents)

With Validation (1 to 8 Agents)

With Validation (1 to 5 Agents)

Table 3. Overhead for Agent type 3

Agent Group 1 to
16

Overhead
ratio

1 to 8 Overhead
ratio

1 to 5 Overhead
ratio

Authentication No No No
1 0.930572 1 0.49792 1 0.350326
2 0.271326 2 0.226069 2 0.157163
3 0.004578 3 0.007038 3 0.004952

Data Set

4 4.17E-04 4 8.15E-04 4 5.65E-04
Authentication Yes Yes Yes

1 1.363299 1 0.727958 1 0.504469
2 0.394607 2 0.332561 2 0.227699
3 0.00636 3 0.010078 3 0.007161

Data Set

4 6.19E-04 4 1.19E-03 4 8.10E-04

276 R.S. Roy and M.S. Rahman

1
2

3
4

No Validation (1 to 16 Agents)

No Validation (1 to 8 Agents)

No Validation (1 to 5 Agents)

With Validation (1 to 16 Agents)

With Validation (1 to 8 Agents)

With Validation (1 to 5 Agents)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

O
ve

rh
ea

d
 R

at
io

Data Set

Agent Type 3

No Validation (1 to 16 Agents)

No Validation (1 to 8 Agents)

No Validation (1 to 5 Agents)

With Validation (1 to 16 Agents)

With Validation (1 to 8 Agents)

With Validation (1 to 5 Agents)

Authentication Overhead: Authentication is a stage that, in ideal situation, should
not exist. However practical situations cannot be overlooked and so authentication
can not be omitted. In the simulation we, therefore, show overhead both with and
without authentication of agents.

In the following bar charts, overhead ratio (overhead incurred/actual data trans-
ferred) is plotted against specific data group both with and without authentication.

We highlight a few observations regarding the simulation results as follows:
• For any number of agents, the overhead incurred for small data traffic is quite

substantial for Agent Type 1. For small data, many agents and authentication it is
as high as 113%. But since agents are usually rare in the network, we can take the
results with 1 to 8 agents as standard. Another point is that since small traffic
such as 1KB to 4KB is not the usual case, we may consider 10KB to 1MB group
as standard. This gives only 0.7% overhead with authentication.

• Agents of type 2 are those which offer sophisticated services (e.g. river morphol-
ogy simulation). These agents are usually very rare. So, number of agents hit may
be safely assumed to be 1 to 5. Authentication is important. But note that the data
size may be small. E.g. the service request to solve a linear equation may consist
of a small request and a small reply. So, a 1KB to 4KB data size seems plausible.
Then the overhead is 34.5%. Though it is high, we must keep in mind that the
utility of the service being offered far outweighs the cost of such overhead.

• Since agents of type 3 need authentication of the clients too, hence it is natural
that this type of communication incurs more overhead than the other types.

• Regardless of the number of agents, for large data, the overhead is almost zero.

5 Concluding Remarks

In this paper we gave a protocol for client-agent communication. The resulting agent
search and communication establishment protocol may serve many network protocols

 On Communicating with Agents on the Network 277

and facilitate many different types of interactions which require a topologically smart-
placed intermediary. There remains, however, a number of issues that need serious
considerations as follows.

• The agent or the client after releasing a packet cannot wait for ever for the re-
sponse to come in. Again, too small a wait time may miss some of the more ap-
propriate/better responses. Future research may be directed to finding appropriate
timing criteria for both the agents and the clients.

• We have proposed to address the issue of choosing from among multiple re-
sponding agents basically by using three “Quality of Service” (QoS) parameters
(and also “Time to Process a Response” for type 2) along and the service re-
quired. We have assumed that the client is free to use them as they please. Future
works should be directed to more investigations in this regard.

• Another important point to note is that since we are relying entirely on the under-
lying unicast system to route the packets, the path AS (Agent-Client) may not al-
ways be the same. Due to the dynamic nature of the network, it may change at
any time and thus the best agent candidate may change. If this kind of changes
happens in the middle of an established communication, choosing another agent
means restarting the whole process, which may not be feasible in most of the
cases. Identifying those cases when a complete restart would be feasible is an-
other issue for further consideration. For the time being, however, we ignore this
issue.

Acknowledgement

The authors would like to express their gratitude to the anonymous reviewers whose
helpful comments helped to improve the quality and presentation of the paper.

References

1. D. Magoni and J-J Panisot, Oriented Multicast Routing Algorithm Applied to Network-
level Agent Search, Discrete Mathematics and Theoretical Computer Science, 4, 2001, pp.
255-272.

2. S.Deering and R.Hinden, RFC-2460 ,Internet Protocol, Version 6 (IPv6) specification,
April, 2003.

3. A.S. Tanenbaum, Computer Networks (4th edition), Prentice Hall, 2001.
4. 4. Blumenthal, M.S., and Clark, D.D., Rethinking the design of the Internet: The end to

end Argument vs. the brave new world. ACM Transactions on Internet Technology
1,(August 2001).

5. Davod D. Clark, Sollins, Wroclawski, Braden, Tussle in Cyberspace: Defining Tomorrow’s
Internet, SIGCOMM’02, August 2002.

6. RFC 1700, ASSIGNED NUMBERS.
7. Yogan Dalal and Robert Metcalfe. Reverse path forwarding of broadcast packets. Commu-

nications of the ACM, 21(12):1040–1048, December 1978.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 278 – 289, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Applying Fuzzy Logic to Recommend
Consumer Electronics

Yukun Cao, Yunfeng Li, and Xiaofeng Liao

Department of Computer Science, Chongqing University,
Chongqing 400044, P.R. China
marilyn_cao@163.com

Abstract. Depending on the type of the product, different kinds of personalized
recommender systems can be built to guide the consumers in a large product
feature space. In the approach, we present a fuzzy-based recommender system
for those products that a general consumer does not buy very often, especially
for consumer electronic products. For those consumer electronic products, it is
difficult and not necessary to reason a customer’s previous preferences because
there may not be enough information about the customer’s past purchases and
the customer may have his specific requirements in each single purchase. Hence
the system has specific domain knowledge and capability to interact with the
consumer. Experimental results show the promise of our systems.

1 Introduction

One way to overcome the problem of information overload on Internet is to develop
intelligent recommender systems to provide personalized information services [1]:
retrieving the information a consumer desires and helping him determine which one
to buy. The purpose of personalized information services is to adjust strategies of
promotion and advertisement to fit customer interests [2]. As there is a great deal of
products on Internet, it is impossible to recommend all kinds of products in one
system. But few existing recommendation systems distinguish the type of products,
i.e. the recommendation method for books or CDs is the same method for computer or
digital camera. We believe that the personalized recommendation system should be
build according the special features of a certain kind of products, thereby forming
professional recommendation systems for different products.

Depending on the type of the product, different kinds of personalized recommender
systems can be built to guide the consumers in a large product feature space. For
some type of product that a consumer may purchase frequently, such as books, CDs,
or DVD films, recommender systems can be developed to reason his personal prefer-
ences by analyzing his personal information, his browsing history, and the products
he has purchased through the Internet in the past. Yet, for those products such as
computers or digital cameras that a general consumer does not buy very often as the
other kinds just mentioned, it is difficult and not necessary to reason a customer’s
previous preferences because there may not be enough information about the cus-
tomer’s past purchases and the customer may have his specific requirements in each

 Applying Fuzzy Logic to Recommend Consumer Electronics 279

single purchase. In this situation, advises from domain experts are strongly demanded.
Recommender systems are thus expected to have specific domain knowledge and
capability to interact with the consumer. Consequently the systems can acquire and
analyze a customer’s current needs on the kind of product he has identified, and then
evaluate the relevant products to help him recognize the optimal ones.

In the approach, we present a fuzzy-based recommender system for those products
that a general consumer does not buy very often, especially for consumer electronic
products, such as laptop, cell phone, digital camera, video games computer and so on.
As the majority of purchasers of consumer electronics could use computer masterly,
they might buy products through Internet frequently. Many B2C e-commerce enter-
prises concentrate on the sale of consumer electronic products. For example, the ma-
jority of electronic products sold by Amazon.com are consumer electronic products.
And the system isn’t only applied to e-commerce as an assistant system, but also
could be an independent system for the real-life business.

The remainder of the paper is organized as follows. Section 2 presents the theoreti-
cal background. Implementation issues and the results of empirical studies are pre-
sented respectively in Section 3 and Section 4. Finally, the conclusion can be found in
Section 5.

2 Theoretical Background

2.1 Linguistic Definition and Fuzzy Numbers

Based on the proposed system, the consumer needs and the candidate product features
can be expressed in an appropriate way. In the approach, we use triangular fuzzy
numbers to character consumer needs and product features.

A triangular fuzzy number is a particular case of fuzzy sets. It has a triangle-shaped
membership function, which can be viewed as possibility distribution. It is supposed

that q~ is a triangular fuzzy number with membership function)(~ xpμ , and is de-

noted as),,(~
321 qqqq = , where 1q , 2q and 3q are real numbers with 321 qqq ≤≤ .

To help consumers easily express their judgments, and domain experts easily evaluate
product features, the linguistic terms are used to linguistically evaluate the importance
of customer needs and ratings of product features. Seven linguistic sets, (1) Very Low
(0,1,2), (2) Low (1,2,3), (3) Medium Low (2,3,4), (4) Medium (3,4,5), (5) Medium
High (4,5,6), (6) High (5,6,7), (7) Very High (6,7,8), are allowable to describe the
variables with one’s subjective judgment.

2.2 Similarity Measure of Triangular Fuzzy Numbers

In the study, we utilize Euclidean fuzzy near compactness between two fuzzy num-
bers to measure the similarity between consumer needs and product features.

Suppose),,(~ 321
AAAA qqqq = is a compared triangular fuzzy number, while

),,(~ 321
BBBB qqqq = is the target triangular fuzzy number. Then the Euclidean fuzzy

near compactness between Aq~ and Bq~ is defined as follows:

280 Y. Cao, Y. Li, and X. Liao

2/1
3

1

2

3
11)~,~(−−=

=j

j
B

j
ABAE qqqqN (1)

The above equation denotes one kind of similarity degree by calculating the
Euclidean fuzzy near compactness between two triangular fuzzy numbers. While

the near compactness between Aq~ and Bq~ gets smaller, then Aq~ is more similar

to Bq~ .

Furthermore, assume there are two sets of triangular fuzzy num-

bers, ()nxxxX ~,,~,~~
21 ⋅⋅⋅= and ()nyyyY ~,,~,~~

21 ⋅⋅⋅= . In fuzzy number set X
~

, each

fuzzy number ix~ is individually compared with a target fuzzy number iy~ in fuzzy

number set Y
~

. Because every fuzzy number in fuzzy number sets, X
~

 and Y
~

, repre-
sents a consumer need or a product feature actually, each fuzzy number in a fuzzy
number set has different importance for identifying the consumer needs or the product
features. Hence, by assigning a different weight according to the importance of the
fuzzy number in a set, we can achieve better results. In the approach, a location

weight vector ()nvvv ,,, 21 ⋅⋅⋅ is assigned to X
~

 and Y
~

, what is normalized as

=

=
n

i
iv

1

1. And the fuzzy near compactness between the fuzzy number set X
~

 and

Y
~

 is described as following:

()()
=

×=
n

i
iiiEE vyxNYXN

1

~,~)
~

,
~

((2)

where iv is the corresponding weight for the ith triangular fuzzy numbers. From the

above equation, the smaller value for)
~

,
~

(YXNE denotes the higher synthetic simi-

larity to the target fuzzy number set while the individual values of ()iiE yxN ~,~ and

iv get larger.

3 Implementation Methods

Because collecting and analyzing a consumer’s personal needs is basis of the system.
Our aim is to establish a transformation model for translating customer needs into
optimal combination suggestions of applicable alternatives. To establish this model,
the relationship between customer needs and product features needs to be constructed.
Utilizing fuzzy operation, optimal alternative searching is performed based on the
consumer’s subjective needs. The procedure for establishing this system is described
below.

 Applying Fuzzy Logic to Recommend Consumer Electronics 281

3.1 Establishing and Weighting Customer Needs

In the approach, a laptop computer is taken as the objective product to demonstrate
the effectiveness of the recommendation method. The interface in Fig. 1 presents
some specially designed questions about the products for consumers. Presumably the
consumer does not have enough domain knowledge to answer quantitative questions
that concern about the specifications of the product, the system has to inquire some
qualitative ones instead. For example, it is relatively difficult for an on-line game
player to indicate the speed and the type of processor he prefers, but it is easy to ex-
press his need on the feature of multi-media. Therefore the qualitative questions are
advanced according the consumer’s job, hobby and other aspects what consumer is
concerted about. Each consumer is represented by a qualitative features vector

()321
~,,~,~ qqq ⋅⋅⋅ , where iq~ is a triangular fuzzy number representing ith consumer

need.

Fig. 1. Consumer Interface

After gathering the consumer’s qualitative needs, the interface can then deliver
them to the weight consumer needs model that is capable of conducting certain map-
ping between the needs and the quantitative product features from the expert agent to
find the ideal products.

282 Y. Cao, Y. Li, and X. Liao

3.2 Establishing and Weighting Product Features

A product is specified by a set of critical components and different vendors have their
own ways to categorize their products. For example, a laptop can be described by
processor, memory, monitor, etc. And the processors could be named as Pentium 4 or
AMD each with special meaning. In the approach, the technical data about products
(i.e. laptops) is collected from Internet by hand and stored in the product feature data-
base. A product Pi is represented as a series of critical component names, and the
majority of components have some technical features. The technical features here are
selected by domain experts to consider the quality of the component from different
views. For instance, the technical features of a processor include process frequency,
process type, cache size, etc.

It should be notes that different component has different technical features. Therefore

each component is represented as a vector of technical features names),,,(21 n
iii ccc ⋅⋅⋅ .

Then each component of a certain product is converted to a vector of feature functional

values)
~

,,
~

,
~

(
~ 21 n

iiii fffF ⋅⋅⋅= , in which each ()321 ,,
~ j

i
j

i
j

i
j

i ffff = is a triangular

fuzzy numbers (shown in Table 1), representing the quantitative ability value of jth
technical feature of ith component. Because different technical feature has different

influence on the capability of a component, a feature weight vector),,,(21 n
iii www ⋅⋅⋅ is

assigned to the technical features functional vector. Hence, we could calculate the com-

ponent capability value of a component as following equation, ()321 ,,~
iiii pppp = ,

what is shown as a triangular fuzzy number too.

()
=

×=
n

j

j
i

jk
i

k
i wfp

1

 (3)

where j
i

jk
i ff

~∈ , i
k
i pp ~∈ and 3,2,1=k . The component capability vector

)~,,~,~(
~

21 npppP ⋅⋅⋅= is composed by the quantitative capability values of all com-

ponents, what represents the quantitative ability of the critical components.
To analyze the product features of a laptop computer, two domain experts are em-

ployed to select technical features for each critical component of a laptop according
the quality of the component from different views. Different products where analyzed
to determine the more important features and these where laid out into a hierarchy
structure, shown as table 1.

In the table, 10 critical components of a laptop, 25 technical features, its corre-
sponding feature weight and the candidate value of those components are listed,
where the feature weights is identified by the domain experts according the impor-
tance to the capability of corresponding component.

Once a product Pi has been characterized as a vector of functional values

),,,(21 n
iii fff ⋅⋅⋅ , each value j

if can be further transferred to a rank that represents

the relative performance of the product, among all the products collected, in this di-
mension of the functional value i. As a result, Pi is finally represented as a triangular

fuzzy number ()321 ,,~
iiii pppp = according equation (3).

 Applying Fuzzy Logic to Recommend Consumer Electronics 283

Table 1. Technical features of Critical Component in a laptop

Component Feature

weight (
j

iw)

Technical
feature

Candidates

0.45 Frequency 1.2 GHz, 2.0GHz, 2.4GHz , etc.
0.25 L2 Cache 512KB, 1MKB, etc.
0.1 Type Power PC G4, Petium 4, etc.
0.15 FSB 400MHz, 600MHz, etc.

CPU

0.05 Manufacturer Intel, AMD, IBM, etc.
Mother-
board

0.7 Chipset Type Intel 925, nVIDIA Force4, etc.

 0.3 Chipset Manu-
facturer

Intel, nVIDIA, SiS, VIA, etc.

0.7 Size 256MB, 512MB, etc. Memory
0.3 Type DDR, SDRAM
0.6 Graphic Card ATI Mobility Radeon 9200, ATI

Mobility Radeon X600, etc.
Graphics

0.4 Graphic RAM 64MB, 128MB, etc.
0.1 Size 20GB, 30GB etc.
0.45 Type Ultra ATA, etc.
0.3 REV 5400,7200,etc.

Hard Driver

0.15 Manufacturer Portable, Samsung, etc.
Sound 1 Speaker Built-in stereo speakers, etc.

0.2 Modem 56 Kbps, etc. Connectivity
0.8 Network

Connection
10-/100-Mbps Ethernet, 54g
802.11b/g WLAN with
125HSM/SpeedBooster support, etc.

0.8 Type WXGA Display with XBRITE
technology, etc.

Display

0.2 LCD Native
Resolution

1024×768, etc.

Screen Size 1 Screen Size 12.1 inches, 17.0 inches, etc.
Weight 1 Weight 2kg, 3kg, etc.
Price 1 Price 800$, 1000$,1500$ etc.
Power 1 Time 4 Hours, 3 Hours, etc.

3.3 Measure Similarity Between Consumer Needs and Product Features

To estimate the optimality of each product for a consumer, a quantitative way to rep-
resent customer qualitative needs could facilitate the following similarity measure.
Shown as fig.3, there is an interface for a consumer, who is asked to express his needs
on some qualitative questions. Three types question are listed in the interface, includ-
ing job, hobby and other aspects a consumer might be concerted in. Through those
questions, we could become aware of the purpose a consumer buy a laptop. For in-
stance, a consumer is a game player, so the laptop he needed should have higher ca-
pability on features concerning about some critical components in a laptop, including
memory, graphic card, screen and so on. Furthermore the candidate answers of those
questions are divided into seven levels, the qualitative needs of a consumer is

284 Y. Cao, Y. Li, and X. Liao

expressed in a quantitative way. Owing to the capabilities of critical components in a
laptop could be represented by triangular fuzzy numbers as mentioned before, it is
convenient for the similarity measure between the product capabilities and the con-
sumer needs.

In the system, the qualitative needs of a certain consumer is converted to a vector

of consumer need values ()nrrrR ~,,~,~~
21 ⋅⋅⋅= , in which ir

~ is a triangular fuzzy num-

ber, representing the answer of ith qualitative question in fig. 1, i.e. the quantitative
denotation of ith qualitative customer need.

Table 2. The relationship between the consumer qualitative need and the critical component

Consumer Qualitative need Ability weight (
j

iv) Critical Components

0.2 CPU
0.1 Memory
0.1 Motherboard
0.25 Graphics
0.05 Hard Driver
0.15 Sound

Play Games

0.15 Screen
Listen Music 1 Sound

0.3 Graphics
0.3 Sound
0.3 Screen

See Movies

0.1 Hard Driver
Word Processing 1 CPU

0.5 CPU
0.15 Motherboard

Mathematical Operating

0.35 Memory
0.2 CPU

0.2 Memory
0.25 Graphics
0.1 Hard Driver

Graphical Processing

0.25 Screen
Price Consideration 1 Price
Weight Consideration 1 Weight
Power Consideration 1 Power
Screen Size 1 Screen

Since consumer’s opinions on customer needs are quantified as fuzzy number vec-
tors, there should be a manner to translate the vectors into product feature.

As the qualities of critical components are the key factors in the capability of a laptop,
each qualitative need of a certain consumer is correlative to a number of critical compo-
nents of a laptop. Therefore, assume that the corresponding components of ith customer

need are represented by a component capability vector ()n
iiii pppP ~,,~,~~ 21 ⋅⋅⋅= , where

 Applying Fuzzy Logic to Recommend Consumer Electronics 285

j
ip~ is a triangular fuzzy number calculated by equation (3), representing the quality of

jth component. Considering different component has different influence on the capabil-

ity of a laptop in a certain customer need, an ability weight vector),,,(
~ 21 n

iii vvvV ⋅⋅⋅=

is assigned to the component capability value vector. Hence we could measure the
synthetical capability value of a laptop about a certain customer need. The ith syntheti-

cal capability is represented by a triangular fuzzy number ()321 ,,~
iiii qqqq = and calcu-

lated by the following equation.

()
=

×=
n

j

j
i

jk
i

k
i vpq

1

 (4)

where j
i

jk
i pp ~∈ , i

k
i qq ~∈ and 3,2,1=k . Based on the previous method, a vector

()nqqqQ ~,,~,~~
21 ⋅⋅⋅= is obtained, what denotes the synthetical capability values of a

laptop. The ith fuzzy number iq~ in the vector represents the integrative ability of a

product for the ith qualitative need ir
~ of a consumer.

To evaluate the capability of laptops based on customer needs, relationships be-
tween consumer needs and product components have to be developed with the ability
of product to measure customer needs. In the study, domain experts judge the rela-
tions between customer needs and product features. Table 2 lists the detail of the
relationship between the qualitative needs of a consumer and the critical components
of a laptop.

Based on the previously obtained vectors R
~

 and Q
~

 respectively representing the

quantified consumer needs and the synthetical abilities of a product, we could calcu-
late the fuzzy near compactness of the two fuzzy number vectors according equation
(1) and (2). For each laptops in the product database, the synthetical capability vector
and its fuzzy near compactness with the consumer need vector could be calculated
based on the previous method. And the smaller near compactness denotes the higher
synthetic similarity to the qualitative needs of a certain consumer, i.e. the laptops with
smaller near compactness are the ideal alternatives for the customer. The mechanism
for the most ideal alternative combination to suit consumer’s needs is summarized as
follows.

Step 1: The Domain experts rate the technical features of ith laptop in the product

database and give the ith feature functional vector iF
~

for the technical features of the

critical components.
Step 2: Calculating the corresponding component capability value and the compo-

nent capability vector iP
~

 according the equation (3).

Step 3: Through answering the qualitative question shown in Fig. 1, the consumer

could obtain the consumer need vector R
~

, what quantifies the qualitative needs.

286 Y. Cao, Y. Li, and X. Liao

Step 4: Calculating the product synthetical capability vector Q
~

 according equation

(4), in which each fuzzy number denotes the compositive ability of a laptop on a cer-
tain consumer need.

Step 5: Calculating the fuzzy near compactness value s between R
~

 and Q
~

 ac-

cording equation (1) and (2). If s is smaller than the predetermined threshold, then the
laptop should be recommended to the customer.

Once the currently available products have been ranked by the above equations, the
products with the smallest 10 ranks are then recommended to the customer. If the
customer is not satisfied with the items recommended by the system, he can increase
or decrease his requirements in different need feature dimensions. The modified
specifications are used to calculate the optimality for each product again, and those
products with smallest ranks are thus recommended to the customer.

4 Experiment and Results

The proposed system also could be applied to recommend the products that a con-
sumer generally does not often buy in a short period of time and has his specific needs
in each single purchase. In the experiment, the recommendation system proposed in
the approach is utilized to recommend laptops that best satisfy the consumer’s current
needs and with the optimal quality. As performance measures, we employed the stan-
dard information retrieval measures of recall (r), precision (p), and F1(F1=2rp/(r+p)).

4.1 Experiment Data Set

The purpose of the experiment is to test the effects of the recommendation system in
this research. We collect a data set of laptops from Amazon.com, which contains 128
laptops of different brands, including Sony, Apple, IBM, Compaq, and so on. To com-
pare the products or components of different vendors, domain expert knowledge is
required to define the common criteria. For example, we can set the performance value
of the 13.3 inches screen to medium and the 10.6 inches screen to low, where medium
and low are two triangular fuzzy number. For the recommendation system presented
here, as an example, four technical feature criteria of CPU are listed in Table 3, what
includes the technical parameters of the familiar notebook CPU in market.

4.2 Simulation Results

The recommendation system described above is to recommend products that best
satisfy the consumer’s current needs and with the optimal quality. Therefore the ex-
periments concentrate on evaluating the system behaviors. 7 consumers use our ex-
perimental system and give their opinion about it, what illustrates in Table 4. And the
corresponding recall, precision and F1 values are listed in Table 5. The average of
precision, recall and F1 measures are 83.82%, 87.57%, 85.39%, respectively. Fur-
thermore, Fig. 2 shows the typical recommendation results corresponding to the con-
sumer needs, in which fifteen laptops in all 138 laptops are recommended to the cus-
tomer, according the fuzzy near compactness value between the consumer qualitative
need and the product synthetical capability.

 Applying Fuzzy Logic to Recommend Consumer Electronics 287

Table 3. Common Criteria of CPU Technical Features

Frequency Type L2 Cache FSB Manu-
fac-
turer

Feature
value

Upwards of
3.0GHz (include
3.0GHz)

Intel Pentium4 M
(Dothan), AMD
Athlon 64-M

— — — VH

2.4GHz—3.0GHz
(include 2.4GHz)

Intel Mobile
Pentium4 Sup-
porting HT,
PowerPC G5

2MB 533MHz Intel H

1.8GHz—2.4GHz
(include 1.8GHz)

Intel Pentium4 M
(Centrino), AMD
Athlon XP-M,
Power PC G4

1MB — AMD MH

1.5GHz—1.8GHz
(include 1.5GHz)

Intel Mobile P4 512KB 400MHz IBM M

1.2GHz—1.5GHz
(include 1.2GHz)

Intel Mobile
Pentium4 M

256KB — — ML

1.0GHz—1.2GHz
(include 1.0GHz)

Intel Celeron-M 128KB 133MHz — L

Downward of
1.0GHz (Not
include 1.0GHz)

Intel Mobile
Celeron

— 100MHz — VL

Table 4. The evaluation of seven consumers

 User1 User2 User3 User4 User5 User6 User7
The number of products
what satisfy a certain user
in the 15 recommended
products.

12 13 13 12 11 14 13

The number of products
what satisfy a certain user
in the other 123 products.

2 3 2 1 1 3 1

The number of products
what don’t satisfy a
certain user in the ten
recommended products.

3 2 2 3 4 1 2

Table 5. The three measures’ values

 Recall Precision F1
User 1 80% 85.7% 82.75%
User 2 86.7% 81.25% 83.89%
User 3 86.7% 86.7% 86.7%
User 4 80% 92.3% 85.71%
User 5 73.3% 91.7% 81.47%
User 6 93.3% 82.4% 87.51%
User 7 86.7% 92.9% 89.69%
Average 83.82% 87.57% 85.39%

288 Y. Cao, Y. Li, and X. Liao

Fig. 2. Typical recommendation results

5 Conclusions

In the paper, we explain the need for Internet enterprises to provide personalized
information services in making a successful Internet business, in addition to develop-
ing or improving the software and hardware equipment directly related to the Internet
infrastructure. We have also suggested that developing personalized recommendation
system is a promising way to achieve this goal. Therefore in this work, we present a
personalized recommendation system for the digital products.

Because the digital products (such as laptops, digital cameras, etc.) are expensive
opposite those commondities, and a general customer does not buy frequently, we can
not built to reason about a customer’s personal preferences from his purchasing his-
tory and provide the appropriate information services to meet his needs. And those
recommendation system based on the consumer’s preferences are not proper to rec-
ommend the kind of products. Hence it is required to construct a new recommenda-
tion system for the digital products. The system proposed in the approach concen-
trates on finding optimal products for a consumer by using the ephemeral information
provided by him and the domain expert knowledge. In the system, different interfaces
are developed to interact with the consumer, transfer external domain knowledge for
internal use, and calculate the optimality of each product. Here a multi-attribute deci-
sion making method is used to recommend optimal laptop computer for a customer,
based on his needs and the quality of the product. Experimental results have shown
the promise of our systems. And the system isn’t only applied to e-commerce as an
assistant system, but could be an independent system for the real-life business.

Our future works will concentrate on consummating the fuzzy logical algorithm
utilized in the paper, and investigating how the product knowledge from experts can
be derived more easily.

 Applying Fuzzy Logic to Recommend Consumer Electronics 289

References

1. Schafer, J.B., Konstan, U.: E-commerce recommendation applications, Journal of Data
Mining and Knowledge Discovery, (2001)

2. S.W. Hsiao, M.C. Huang: A neural network based approach for product form design, De-
sign Studies, 23 (1) (2002) 67-84

3. C.H. Hsieh, S.H. Chen: A model and algorithm of fuzzy product positioning, Information
Sciences, 121(1999) 61-82

4. J. Sun, D. K. Kalenchuk: Design candidate identification using neural network based fuzzy
reasoning, Robotics and Computer Integrated Manufacturing, 16 (2000) 383-396

5. Hung-Cheng Tsai, Shih-Wen Hsiao: Evaluation of alternatives for product customization
using fuzzy logic, Information Sciences, 158 (2004) 233-262

6. Wei-Po Lee, Chih-Hung Liu: Intelligent agent-based systems for personalized recommenda-
tions in Internet commerce, Expert Systems with Applications, 22 (2002) 275-284

7. Tung-Lai Hu, Jiuh-Biing Sheu: A fuzzy-based customer classification method for demand-
responsive logistical distribution operations, Fuzzy Sets and Systems, 139 (2003) 431-450

8. Jae Kyeong Kim, Yoon Ho Cho: A personalized recommendation procedure for Internet
shopping support, Electronic Commerce Research and Applications, 1 (2002) 301–313.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 290 – 296, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Generic XML Schema Definition (XSD)
to GUI Translator

V. Radha, S. Ramakrishna, and N. Pradeep Kumar

1 Institute for Development and Research in Banking Technology (IDRBT),
Road No 1, Castle Hills, Masab Tank,

Hyderabad-50057, India
vradha@idrbt.ac.in,

{sramakrishna, npkumar}@mtech.idrbt.ac.in

Abstract. Organizations are seeking for a special kind of browser for exchang-
ing structured information across business entities. In this paper, we present a
generic solution called as XML Schema Definition (XSD) [6] to GUI translator.
This translator processes data model defined in XML schema document and
then generates user interface dynamically. This translator generates user inter-
faces in different rendering languages such as Java swings, HTML and WML.

Keywords: XML, XSD, WML.

1 Introduction

The presence of a standardized modeling language is a must for generating graphical
user interface dynamically. An accurate description of the data structures i.e. data
model is needed to exchange data effectively. These data structures represent relations
and rules of the data to be exchanged. The XML Schema Definition specification [6]
serves the purpose of modeling XML data [5]. It describes the structure and defines
constraints of XML documents and is the key element in exchanging XML based
data.

XML-based GUI description languages like XHTML, XForms or WML are easily
generated from XML schema definition. XML based languages are also device-
compliant as well as platform-compliant, so they can be adaptable to any platform and
device.

2 Objectives

The main objective of this paper is to develop generic software that can generate user
interfaces dynamically from any XSD document in different rendering languages such
as (X)HTML, WML, Java, etc. This software also creates XML instance document
once the user inputs the data through UI and validates instance document with the
given XSD document. We intend to develop a special browser for exchanging struc-
tured information in the form of XML documents.

 Generic XML Schema Definition (XSD) to GUI Translator 291

3 XSD to GUI Translator

In this section, we present how the translator is implemented by using XSD specifica-
tion as reference. The workflow of the solution is as follows:

 Dynamic transformation from XML schemas to various types of user interface
elements in rendering languages such as Java swings, HTML, WML.

 Culling of information from the user through generated interface
 Creation of XML document after data is entered completely
 Validation of the XML document with the associated XSD document
 Serialization

Schema document is parsed with DOM parser bundled with Apache Xerces-J as XSD
itself is an XML document. The resultant of this step is a DOM tree representation of
nodes, which correspond to elements, and attributes of given document. In DOM,
both elements and attributes are treated as nodes. The nodes represent the schema
vocabulary containing description about instance data nodes.

The nodes of DOM tree are to be interpreted according to their context i.e. func-
tionality, structure and etc. Then they are to be transformed into instance with out
values as well as GUI components using DOM API. We discuss underlying logic in
transforming schema to GUI in the next section.

3.1 Transformation from XSD to GUI

Every XSD document does have one root element schema, also called as document
element. The schema node contains global elements, global types, groupings and
annotations as immediate children that include element, complexType, simpleType,
group, attributeGroup, annotation nodes. One of global elements is the actual root
element in the instance document. The following conditions need to be checked in
selecting a root element for instance if there are many global elements.

1. It must not be an empty element
2. If more than one global element is present (one with simple and other with com-

plex type), then the element of complex type is to be taken as root.
3. It should not be referred from non-global elements using ref attribute.

Once the root element of instance is identified, it is inserted into a new DOM tree
(or document) say Instance created using DocumentBuilderFactory class. It will serve
as DOM representation for XML instance for the given schema and also allows the
application to insert data when the user enters data later.

We designed a recursive algorithm (Fig.1) to navigate the entire DOM tree of
schema document until all the nodes are transformed into GUI components and whole
XML instance is created. For Transform method, the global element identified as root
node is passed as input. The Transform method in turn has one handler for each and
every element type of schema vocabulary. The node passed as parameter is an ele-
ment node, so it is handled by element_handler method (Fig.2).

Element_handler. In this handler, elements are classified into two types. They are
global elements and non-global elements. The distinction is that global elements don’t
have ref attribute and occurrence constraints. So, they are handled separately. Initially,

292 V. Radha, S. Ramakrishna, and N.P. Kumar

Algorithm: Transform (Node node) Comments

Begin
1: If (node->name equals “element”)
2: Element_handler(node);
3: If (node->name equals “complexType”)
4: ComplexType_handler(node);
5: If (node->name equals “simpleType”)
6: SimpleType_handler(node);
7: If (node->name equals “attribute”)
8: attribute_handler(node);
End

node – represents a node in
DOM tree of schema

Handler for each element of
schema vocabulary of w3c
specification

Fig. 1. Transform Algorithm

Algorithm: Void Element_handler (Node node) Comments
Begin
1: elem-name:=Lookfor_name_attribute(node);
2: comp-node:=Lookfor_type_attribute_node(node);
3: ref-node:=Lookfor_ref_attribute_node(node);
4: oldprefix:=prefix;
5: prefix:=prefix+”:”+elem-name;
6: If (node->childs==null And comp-node==null
 And ref-node==null)
7: If (elem-name!=null)
8: Add node with elem_name to the domdoc DOM tree
9: type-info:=Lookfor_type_attribute_name(node);
10: Add GUI components w.r.t to simple type element
11: If (type-info is one of simple types of schema)
12: E();
13: Else If (comp-node <> null And elem-name
14: <> null //C;
15: Add node with elem_name to domdoc DOM tree
16: Transform (comp-node);
17 Else If (ref-node <> null) {Transform(ref-node)};
18: Else Child:=node->FirstChild;
19: While (child <> null)
20: Add node with elem_name to domdoc tree
21: Transform(child);
24: child:=child->NextSibling;
25: End while
26: Prefix:=oldprefix;
End

Lookfor_name_attribute()
 - Returns the value of name
attribute of node

Look-
for_type_attribute_node()
- Returns the node defined
using type attribute of node

Look-
for_ref_attribute_node()
- Returns the node refer-
enced using ref attribute of
node
Look-
for_type_attribute_node()
- Returns the value of type
attribute of node
E() - Enforce a mechanism
to ensure that data entered
conforms to type-info;
C - It is a complex type
node i.e. having child nodes
and/or attributes. It declares
complex type definition
defined with a name speci-
fied in type attribute
value

Fig. 2. Element_handler algorithm

 Generic XML Schema Definition (XSD) to GUI Translator 293

element_handler is called with root element. An element may be of different types as
per schema specification. The handler first checks for type attribute of document ele-
ment. If type attribute is not present, it will look for child (i.e. complexType) and then
it calls complexType_handler to further explore sub elements. Otherwise, it finds the
node with the name as specified in type attribute. For non-global elements, the handler
calls Lookfor_type_attribute, Lookfor_ref_attribute methods, which return the com-
plex type definition node/referenced node if the current element is complex type or
referencing another element. Only label component is added to interface, but it will
not add text box for data entry. If the returned values are null, it indicates that element
is simple type. So the label and text box components are added to the interface.

ComplexType_handler. In this handler, the structure of xsd:complexType is ana-
lyzed. Generally, every complex type has one of the following three basic structures:

Sequence: P-> abc i.e. consecutive elements, denoted by the xsd:sequence element.
Repetition: B-> b* i.e. elements that occur n times (with 0 <= min <= n <= max <=

infinity), specified by the minOccurs, maxOccurs attributes in xsd:element of the
schema document respectively.

Alternative: D->(e|f), denoted by xsd:choice elements
Arbitrary order: The sub elements of xsd:all tag can appear in any order in the in-

stance document.

After processing these structures, further attributes are looked for and if there are any
attributes or attribute groups, then it will invoke attribute_handler or attribute-
group_handler for further transformation.

SimpleType_handler. A simple type element is one with no child or attribute ele-
ments . A simpleType element can occur as child of element or attribute and it can
also be defined as a global type. Accordingly, it is handled and transformed into inter-
face.

Similarly we handled other handlers like Attribute Group handler, Restriction
handler, Sequence_handler, Choice_handler, Enumeration_handler etc for corre-
sponding constructs defined the XML schema definition.

3.2 Creation of XML Instance

Each received parameter is a pair of parameter name and parameter value. The pa-
rameter name is divided into tokens using stringTokenizer class. Each token repre-
sents a node name in the partially created instance DOM tree (i.e. without values). For
each parameter, it will navigate from root of the DOM tree as per tokens in parameter
name until the end of the tokens is reached. Then the parameter value will be inserted
as text node in the DOM tree. This is repeated until all parameters are inserted into
DOM tree of Instance. The procedure for accomplishing this phase is also given in
algorithm insertNode (Fig.3).

We used JAXP API as part of Xerces parser to validate the instance document with
the corresponding schema. We implemented a SchemaValidator class that takes XML
instance and its schema document as parameters and. Then it reads the XML instance
using SAX API and validates it with schema. We used XMLSerializer class to serialize

294 V. Radha, S. Ramakrishna, and N.P. Kumar

Algorithm: Void insertNode (Node node, String node-
name, String text)

Comments

1: desirednode:=node
2: For each tokeni of nodename
3: Begin
4: If (desirednode->name equals tokeni)
5: If (there exists no further token)
6: desirednode:=desirednode -> FirstChild;
7: Else textnode->value:=text;
8: desirednode->appendChild:=textnode;
9: End if
10: Else desirednode:=desirednode->NextSibling;
11: While (desirednode !=null)
12: Begin
13: If (desirednode->name equals tokeni)
14: If(there exists no further tokens)
15: desirednode:=desirednode->FirstChild;
16: Else textnode->value:=text;
17: desirednode->appendChild:=textnode;
18: break;
19: End while // C;
20: If (token does not find a match in current DOM
21: level nodes)
22: parent:=desirednode->ParentNode;
23: If (there exists any attributes)
24: For each attri of Attrs[i]
25 If (attri equals tokeni)
26 attri ->value:=text;
27 End else End for

node – denotes the docu-
ment element (i.e. root) of
XML instance

nodename – a prefix (node
name) that contains collec-
tion of nodes separated by
colon in hierarchical tree
fashion (top to bottom)

text - the data to be inserted
at the last node represented
in nodename

desirednode - node object
used to navigate the DOM
tree

C - If match is not found for
token in current DOM level,
then it checks for names of
attributes to find a match

Fig. 3. InsertNode Algorithm

XML instance document from the Instance DOM tree to make an XML file. We also
set certain parameters for this class such as output format details, file name and etc.

5 Results and Conclusions

We present screenshot of this translator corresponding to transformation from XSD to
Java swings.

We showed how to generate GUIs dynamically from composite schema documents
and also developed a generic translator that consists of three modules that corresponds
to XSD to HTML transformation for PCs and PDAs, XSD to Java swings transforma-
tion for PCs, XSD to WML transformation for mobile devices. The XSD to HTML,
WML transformation modules are web based tools and the third one, XSD to Java
Swings transformation, is a stand-alone offline client.

 Generic XML Schema Definition (XSD) to GUI Translator 295

Fig. 4. Employee XSD and corresponding GUI

296 V. Radha, S. Ramakrishna, and N.P. Kumar

References

1. Luyten, K. und Coninx, K. “An XML-based runtime user interface description language for
mobile computing devices”, Lecture Notes in Computer Science: Interactive Systems: De-
sign, Specification, and Verification: 8th Int. Workshop, DSV-IS 2001, Glasgow, Scotland,
UK. 2220:1.15. 2001

2. Giulio Mori, Fabio Paterno, and Carmen Santoro, “Design and Development of Multi de-
vice User Interfaces through Multiple Logical Descriptions”, IEEE Transactions on Soft-
ware Engineering, Vol.30, No.8, August 2004

3. Pureta, A, “Issues in automatic generation of user interfaces in model-based systems”, In:
Vanderdonckt, J. (Hrsg.), Proceedings of the 2nd International Workshop on Computer-
Aided Design of User Interfaces (CADUI'96) Namur, 5-7 June 1996

4. F. Paterno and C.Santoro, “One Model, Many Interfaces”, Proc Fourth Int’l Conference on
Computer-Aided Design of User Interfaces, pp 143-154, 2002

5. T. Bray, J. Paoli, C. M. Sperberg-McQueen and E. Maler, “Extensible Markup Language
(XML) Version 1.0 (Second Edition)”, http://www.w3c.org/TR/2000/REC-xml-20001006/,
W3C Recommendation, October 2000

6. David C. Fallside, Priscilla Walmsley, “XML Schema Definition (XSD) Version 1.0”,
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/, W3C Recommendation.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 297 – 307, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Off-Line Micro-payment System for Content Sharing
in P2P Networks

Xiaoling Dai1 and John Grundy2, 3

1 Department of Mathematics and Computing Science,
The University of the South Pacific, Laucala Campus, Suva, Fiji

dai_s@usp.ac.fj
2 Department of Electrical and Computer Engineering,

University of Auckland, Private Bag 92019, Auckland, New Zealand
3 Department of Computer Science,

University of Auckland, Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

Abstract. Micro-payment systems have the potential to provide non-intrusive,
high-volume and low-cost pay-as-you-use services for a wide variety of web-
based applications. We propose an extension, P2P-NetPay, a micro-payment
protocol characterized by off-line processing, suitable for peer-to-peer network
services sharing. Our approach provides high performance and security using
one-way hashing functions for e-coin encryption. In our P2P-NetPay protocol,
each peer’s transaction does not involve any broker and double spending is de-
tected during the redeeming transaction. We describe the motivation for P2P-
NetPay and describe three transactions of the P2P-NetPay protocol in detail to
illustrate the approach. We then discuss future research on this protocol.

1 Introduction

A peer-to-peer architecture is a type of network in which each workstation generally
has equivalent capabilities and responsibilities. Peer-to-peer networks are often sim-
pler than client-server but they usually do not offer the same performance under
heavy loads. A P2P network relies on computing power at the ends of a connection
rather than from within the network or dedicated servers.

A Central Indexing Server (CIS) is sometimes used to index all users who are cur-
rently online. This server does not host any content itself but provides support for
peers to locate content from other peers. Queries on the index server are used to find
other connected users with content required and when a match is found the central
server will tell clients where to find the requested content. Users can then choose a
result from the search query and their peer will attempt to establish a connection with
the computer hosting the information requested.

In a P2P CIS system, peers cooperate to search the relevant information in the sys-
tem. However, in some peer-to-peer systems, peers often cannot find suitable services
since many peers choose to decline requests from others for security or other reasons.
This problem characterises the “free rider” problem in P2P – users who search and
use content but don’t allow others to use their client for services.

A natural approach to control free riding is to introduce a payment protocol into
CIS systems, in which each peer has to pay for the services it receives from others,

298 X. Dai and J. Grundy

e.g., [11]. However, traditional heavy weight macro-payment protocols are unsuitable
in this domain of high-volume, low cost-per-item searches and information
downloads. We propose an off-line micro-payment protocol, P2P-NetPay, to address
this common free-rider problem. Our protocol allows peers to buy “E-coins”, worth
very small amounts of money, from a broker and spend these E-coins at various peers
to pay for large numbers of searches and digital files of small value each. P2P-NetPay
shifts the communication traffic bottleneck from a broker and distributes it among the
peers by using transferable E-coin Touchstones and Indexes, much in the same way as
micro-payment in client-server network applications [2].

In this paper, we briefly describe Ppay protocol and the NetPay micro-payment
protocol with the three kinds of e-wallets in the client-server networks. We then pro-
posal an off-line micro-payment protocol called P2P-NetPay to control free riding
problem in peer-to-peer networks. We conclude with an outline of our further plans
for research and development in this area.

2 Motivation

While there is an emergence of new technologies and applications to enable users to
exchange content over P2P networks, the success of such systems depend on users’
willingness to share computing resources and exchange content. One of the first and
most well-known P2P file-sharing systems, Napster [15], has attracted great public
attention for the P2P systems as well as at one time having tens of millions of users.
Napster was designed to help its users to trade music files, however, P2P applications
could exchange any kind of digital document. The file sharing is free by peers in most
current P2P systems. Since peers do not benefit from serving files to others, many
users decline to provide services to others. In fact, a recent study of the Gnutella net-
work found that more than 70% of its peers have made no contribution to the P2P
system [12]. This emerging phenomenon of “selfish” individuals in P2P systems has
been widely studied, and is known as the free-rider problem. There is a trend towards
charging peers for access CIS or charging for every file download in order for peers
make direct profit from files they upload [12].

One payment model for peer-to-peer systems is a subscription-based method. In
this approach the CIS charges a membership fee per time period as a way of recover-
ing the overhead involved in running its services. The subscription charge does have
an impact on peers’ decisions about whether or not to participate in the P2P network.
However, the contribution to the system of such a fee is irrelevant to their efforts to
maximize utility when they have made this decision. Most importantly, the fact that
subscription fees are unrelated to peers’ behavior implies that they still give rise to a
free rider problem.

In order to encourage peers to balance what they take from the system with what
they contribute to the system we present an on-line micro-payment approach used to
charge peers for every download and to reward peers for every upload [11]. For each
registered peer the Central Indexing Server tracks the number of files downloaded and
the number of files uploaded during the time period. Each time a file is successfully
exchanged between two peers, the server increments the download count of the peer
who downloaded the file and the upload count of the peer who uploaded it. Observe
that in such a model server involves all such transfers and it’s an on-line, client-server
brokered system.

 Off-Line Micro-payment System for Content Sharing in P2P Networks 299

A point-based mechanism that is similar to the micro-payment mechanisms dis-
cussed above is introduced in [11]. In order to make use of an internal currency, peers
are allowed to buy points either with money or with contributions to the network, but
peers are not allowed to convert points back into money. Since peers cannot “cash
out” their points, the mechanism must allow them to maintain a balance from one
time period to the next. This system also uses an on-line mechanism. There are a
number of micro-payment systems for client-server networks in various stages of
development from proposals in the academic literature to systems in commercial use
[1], [7], [8], [9], [10]. Micro-payment systems can be used to support payment of
vendors from customers in client-server networks. In peer-to-peer applications, there
is not any clear distinction between vendors and customers. There are simply peers
which can be vendors or customers or both. Ppay is an example off-line micro-
payment system in peer-to-peer networks [14].

3 Ppay: A Peer-to-Peer Micro-payment Protocol

The Ppay micro-payment system was proposed by Yang and Garcia-Molina [14]. The
concept of floating and self-managed currency is introduced, so each peer’s transac-
tion does not involve any broker. The coins can float from one peer to another peer
and the owner of a given coin manages the currency itself, except when it is created or
cashed. Fig. 1 shows key Ppay interactions.

PeerA
Broker

PeerB

PeerC

1. Open Account

2. Raw coins

3. Assigned
 coins

4. Reassignment
 request

4.New Assignment
coins

Fig. 1. Ppay protocol participant interactions [based on 14]

• Open an account with a broker: The PeerA opens an account with the broker scrip
at start of the day and the broker returns initial raw coins to the PeerA. Now PeerA
is the owner of the coins.

• Assigned coins: when PeerA wants to purchase an item or a service from PeerB,
PeerA will send the assigned coins to PeerB. Now PeerB is the holder of the coins.
PeerB can decide to cash them or re-assign them to another peer (PeerC).

• Reassignment request: If PeerB wants to re-assign the coins, PeerB sends the reas-
signment request to PeerA

• New assigned coins: after receiving the request, PeerA PeerA processes and sends
the new reassignment to PeerB and PeerC.

300 X. Dai and J. Grundy

The problem with this approach is that PeerA can be down when PeerB wants to reas-
sign his own coins. A peer can be down with almost 97% probability, on average,
when a payment must be made, so a downtime protocol is presented in Ppay [14]. In
the downtime protocol, the Broker generates the newly assigned coins and sends the
assigned coins back to PeerA when PeerA comes back online in order to detect frauds
committed. Key drawback with downtime protocol includes: the broker must be on-
line when the peers wish to re-assign the coins and the broker has to check when
peers came back on-line. Due to the high percentage of off-line periods for a peer, the
broker’ load significantly grows up.

In order to avoid the above problems, a concept of layered coins is used in the
Ppay protocol. The layered coins are used to float the coins from one peer to another.
Each layer represents a reassignment request and the broker and the owner of the
coins can peel off all the layers to obtain all the necessary proofs. The layered coins
introduce the delay of the fraud detection and the floating coins growing in size.

4 NetPay in Client-Server Networks

We developed a protocol called NetPay that provides a secure, cheap, widely avail-
able, and debit-based protocol for an off-line micro-payment system [1]. We have
developed NetPay-based systems for client-server broker, vendor and customer net-
works [3], [4]. We have also designed three kinds of “e-wallets” to manage e-coins in
our client-server NetPay systems [3], [4], [5]. In one model the E-wallet is hosted by
vendor servers and is passed from vendor to vendor as the customer moves from one
site to another. The second is a client-side application resident on the client’s PC. The
third is a hybrid that caches E-coins in a web browser cookie for debiting as the cus-
tomer spends at a site.

The client-side e-wallet is an application running on the client PC that holds e-coin
information. Customers can buy article content using the client-side e-wallet at differ-
ent sites without the need to log in after the e-wallet application is downloaded to their
PC. Their e-coins are resident on their own PC and so access to them is never lost due
to network outages to one vendor. The e-coin debiting time is slower for a client-side
e-wallet than the server-side e-wallet due to the extra communication between vendor
application server and customer PC’s e-wallet application. In a client-side e-wallet
NetPay system, a Touchstone and an Index (T&I) of a customer’s e-wallet are passed
from the broker to each vendor. We designed that the broker application server com-
municates with vendor application servers to get the T&I to verify e-coins. The vendor
application servers also communicate with another vendor application server to pass
the T&I, without use of the broker. The main problem with this approach is that a
vendor system cannot get the T&I if a previous vendor system down.

5 P2P-NetPay Protocol in Peer-to-Peer Networks

Based on the client-side e-wallet NetPay protocol, we propose an adaption to a P2P-
NeyPay protocol that is suitable for P2P-based network environments. Our
P2P-NetPay protocol uses touchstones that are signed by the broker and an e-coin
index signed by requesting peers. The signed touchstone is used by a supplying peer
to verify the electronic currency – paywords, and signed Index is used to prevent

 Off-Line Micro-payment System for Content Sharing in P2P Networks 301

double spending from peers and to resolve disputes between peers. In this section, we
describe the key transactions in P2P-NetPay protocol in P2P networks.

In this section, the details of a peer-to-peer micro-payment NetPay model are dis-
cussed. Consider a trading community consisting of Peers and Broker (B). The CIS
system can also act as a Broker in the P2P networks. Assume that the broker is honest
and is trusted by the peers. The peers may be or may not be honest. The peers open
accounts and deposit funds with the broker. The payment only involves Peers and
Broker is responsible for the registration of peers and for crediting the peer's account
and debiting the peer's account. In a P2P-NetPay system, there are three transactions
which are requesting peer-broker, requesting peer – supplying peer1, and peer - bro-
ker transactions. How the NetPay protocol works in each transaction will now be
described in more detail. We adopt the following notations:

IDa --- pseudonymous identity of any party A in the trade community issued by the
broker.
PK-a --- A's public key.
SK-a --- A's digital signature.
{x}SK-a --- x signed by A.

{x}PK-a --- x is encrypted by A's public key.
{x}SAK- a --- x signed by A using A’s asymmetric key.

There are a number of cryptography and micro-payment terminologies used in the
P2P-NetPay micro-payment protocol. The details of these terminologies are given as
follows

1. One-way Hash Function. The one-way hash function MD5 used in the NetPay
implementation is an algorithm that has the two properties. It seems impossible to
give an example of hash function used in hash chain in a form of normal func-
tions in mathematics. The difficulties include:
• The value of a mathematical function is a real or complex number (a data

value for hash function);

• It is always possible to compute the set (){ }yhxxX 1−== for a given y

for a mathematical function h (not satisfying the two properties of the hash
function).

2. Payword Chain. A “payword chain” is generated by using a one way hash func-
tion. Suppose we want to generate a payword chain which contains ten “pay-
words”. We need randomly pick a payword seed W11 and then compute a pay-
word chain by repeatedly hashing

W10 = h(W11), W9 = h(W10),
……,
W1 = h(W2), W0 = h(W1)

where h(.) is a hash function such as MD5 and W0 is called the root for the chain. The
MD5 (Message Digest) algorithm is one of the series of messages in hash algorithms
and involves appending a length field to a message and padding it up to a multiple of
512 bit blocks. This means that every payword Wi is stored as a 32 length string in a
database. A payword chain is going to be used to represent a set of E-coins in the
P2P-NetPay system.

302 X. Dai and J. Grundy

5.1 Transaction 1: Requesting Peer1 – Broker

Before a Requesting Peer1 (RP1) asks for service from the Supplying Peer2 (SP2),
she has to register and send an integer n (M1), the number of paywords in a payword
chain the RP1 applied for, to the broker (Fig. 2). The broker completes two actions:

• Debits money from the account of RP1 and creates a payword chain W0, W1,
W2,…,Wn, Wn+1 which satisfy Wi = h(Wi+1), where i = n, …, 0. (here h(.) is a one
way hash function). Root W0 is used to verify the validity of the paywords W1,
W2, …, Wn by peers and the broker. Seed Wn+1 is kept by the broker to be used to
prevent the peer1 from overspending and forging paywords in that chain. The
peer1 only receives IDe (e-coin ID) and paywords W1, W2,…,Wn that are en-
crypted by RP1’s public key from the broker (M2) as shown in Fig. 2.

M2 = { IDe, W1, W2, … ,Wn }PK-RP1

The broker computes the touchstone for the payword chain:

M3 = T = {IDe, W0} SK-broker

and sends it to RP1.

• Save IDe, W0, Wn+1, and amount to the broker database.

Broker Requesting

Peer1
M2, M3

M1

Fig. 2. Requesting Peer buys e-coins transaction

For example, the requesting peer sends n=50 to the broker who generates the IDe=1
and payword chain {W0, W1, W2, … ,W50, W51}. The RP1’s e-wallet is thus {IDe, W1,
W2, … ,W50} and T. The broker saves IDe, W0, Wn+1, and 50 to its database.

The requesting peer - broker transaction guarantees no overspending and forging.
The broker selects the seed Wn+1 to create the payword chain which satisfy Wn =
h(Wn+1), Wn-1 = h(Wn), …, W1 = h(W2), W0 = h(W1) and keep the seed Wn+1 secretly.
It is impossible to forge the paywords in that chain by peers and attackers, since they
do not have the seed Wn+1, i.e. it is impossible to generate other paywords in a chain
by knowing some of them in the chain since h() is a truly one-way hash function [16].

5.1 Transaction 2: Requesting Peer1 – Supplying Peer2

The following sequence of messages describes a transaction between a requesting
peer and a supplying peer1 in the course of a download of information from Peer1 to
Peer2. The requesting peer1 (RP1) and supplying peer2 (SP2) needs to agree on the
amount that RP1 pays.

When a RP1 find a desired file that belongs to SP2, the RP1’s e-wallet sends mes-
sage M4 and T to the SP2.

M4 = { IDe, paywords}

 Off-Line Micro-payment System for Content Sharing in P2P Networks 303

where paywords = {W1, W2, …, Wm}. For example, to make a 2cs (m=2) payment,
the peer1 sends the paywords W1, W2: Paywords = {W1, W2} to the SP2. The RP1
also signs the following transmission message:

Index = {IDe, i} SAK-RP1

and transmits them to SP2, where i is the index of the last payword SP2 received. The
Index is used to prevent double spending from RP1 and may be used for disputes
between the peers. The touchstone authorises SP2 to verify the paywords using root
W0 and redeems the paywords with the broker as shown in Fig. 3.

 Requesting
 Peer1

 Supplying
 Peer2 M5

M4, T, Index

Fig. 3. Requesting peer buys digital file transaction

The paywords are verified by taking the hash of the paywords in the order W1 first,
then W2, and so on. The paywords W1 and W2 are valid if the hash matches the root of
the chain (W0) in the touchstone (h(W1)=W0, h(h(W2))=W0). This works because the
hash function with the property Wi-1= h(Wi) (i = 1, 2, …, n) and SP2 gets W0 from the
broker.

On the other hand, it is hard for SP2 to create W1 even though he knows W0 since
the generation of a value that would hash to W0 is computationally infeasible due to
the nature of the one-way hash function [16]. For the same reason, it is also hard for
an attacker to generate valid paywords in the chain even if he knows W0 or some
paywords except for the seed Wn+1 [16], [17].

If the paywords are valid, they will be stored for a later offline transaction with the
broker. The RP1 downloads the file from SP2 (M5). Multiple payments can be
charged against the length of the payword chain, until the payword chain is fully spent
or the RP1 no longer requires files with other peers [16].

When the RP1 wishes to purchase files with supplying peer2, RP1 repeats the
transaction2 with M4, M5, and M6.

For example, the RP1 requests to buy a file which costs 3cs. The RP1 sends M4 =
{IDe, W1W2W3}, T and signed Index to the SP2. The current state of the RP1 e-wallet
database is shown in Fig. 4.

Paywords … W50

 4 Index

1 e-coinID

W4 W5 W6 W7 W8 W9 W10

Fig. 4. Example of RP1’s e-wallet database after first transaction

304 X. Dai and J. Grundy

The SP2 gets T from the RP1 and then verifies W1, W2, W3 by using W0 such as
h(W1)=W0, h(h(W2))=W0, h(h(h(W3)))=W0. If the paywords are valid, the RP1
download the file from SP2 (M6) and saves IDe=1, index=4, price=3, W0, paywords=
W1W2W3 in a redeem database as shown in Fig. 5.

4 Index

3 Price

1 E-coinID

Touchstone W0

Paywords W1 W2 W3

Fig. 5. Example of redeem database after first transaction

The RP1 continues to buy another file which costs 2cs, the RP1 sends M4 = {IDe,
W4W5}, T and Index=6 to the SP2. The current state of the RP1’s e-wallet database is
shown in Fig. 6.

Paywords … W50

 6 Index

1 E-coinID

W6 W7 W8 W9 W10

Fig. 6. Example of the e-wallet database after second transaction

The SP2 verifies W4, W5 by using W0 obtained before. If the paywords are valid,
RP1 downloads the file from SP2 (M6) and saves IDe, index=6, price=2, W0, pay-
words= W4W5 to the redeem database as shown in Fig. 7.

When PP1 wishes to make a purchase at a different peer RP3, he/she sends M4 , T
(where T = {IDe, W0} SK-broker) and Index to the SP3. RP1 can download the file if the
paywords are valid.

 Off-Line Micro-payment System for Content Sharing in P2P Networks 305

6 Index

2 Price

1 E-coinID

Touchstone W0

Paywords W4 W5

Fig. 7. Example of redeem database after second transaction

5.3 Transaction 3: Peer – Broker Offline Redeem Processing

At the end of each day (or another suitable period), for each payword chain, all
supplying peers need to send all paywords that they received from requesting peers to
the broker and redeem them for real money. To do this a supplying peer must
aggregate the paywords by each e-coinID and send the following message to the
broker

M6 = {IDp, IDe, Payments}

The broker needs to verify each payword received from the peer by performing
hashes on it and counting the amount of paywords. If all the paywords are valid, the
broker deposits the amount to the peer’s account, and then sends an acknowledgement

M7 = {Balance Statement of the peer's account}

to the supplying peer as shown in Fig. 8.

Broker Peer

M7

M6

Fig. 8. Peer-redeem transaction

The protocol is credit based. There is no protection mechanism to prevent a peer
from double spending. Double spending is detected at the time of the redeeming proc-
ess. The broker checks the peer’s paywords whether they are already in the database
or not. Once double spending is detected, the malicious peers are penalized by termi-
nating to use P2P-NetPay and access the peer-to-peer networks.

For example, at the end of each day, SP2 aggregates two payments as shown in
Fig. 5 and Fig. 7 for IDe=1 and sends IDSP2 and IDe along with 6 (index), 5 (price),

306 X. Dai and J. Grundy

W1W2 … W5 (paywords) (M7) shown as Fig. 9 to the broker. The broker verifies the
paywords (W1W2 … W5) by using W0, index (6) and price (5). If they are valid, the
broker deposits 5cs to the SP2's account and send the balance to the SP2 (M8).

6 Index

5
Price

1 E-coinID

Paywords W1 W2 W3 W4 W5

IDSP2 8

Fig. 9. SP2 aggregates two payments

6 Discussion

As we discussed in Section 3, existing P2P micro-payment protocols like Ppay have a
down time protocol which is almost an on-line micro-payment system. The use of
layered coins of Ppay protocol introduces the delay of the fraud detection and the
floating coins growing in size. We have presented a real off-line and credit-based
protocol suitable for micropayments in peer-to-peer networks. The protocol prevents
peers from double spending using after-fact policy and any internal and external
adversaries from forging, so it satisfies the requirements of security that a
micropayment system should have. The protocol is economical since it does not
involve public-key operations per purchase. Netpay can easily handle more
transactions between peers. The major thrust of Netpay protocol is that it shifts the
communication traffic bottleneck from the broker and distributes it among the peers,
thus placing some processing burden on the requesting peer when a requesting peer
wishes to purchase from a supplying peer. Work is underway to implement a trading
community on the proposal protocol to evaluate its feasibility using our client-server
based NetPay e-wallets and e-coin purchase/redemption as a prototype infrastructure.

References

1. Dai, X. and Lo, B.: NetPay – An Efficient Protocol for Micropayments on the WWW.
Fifth Australian World Wide Web Conference, Australia (1999)

2. Dai X. and Grundy J.: Architecture for a Component-based, Plug-in Micro-payment Sys-
tem, In Proceedings of the Fifth Asia Pacific Web Conference, LNCS 2642, Springer,
April 2003, pp. 251-262.

 Off-Line Micro-payment System for Content Sharing in P2P Networks 307

3. Dai, X., Grundy, J.: Architecture of a Micro-Payment System for Thin-Client Web Appli-
cations. In Proceedings of the 2002 International Conference on Internet Computing, Las
Vegas, CSREA Press, June 24-27, 444--450

4. Dai, X. and Grundy J.: Customer Perception of a Thin-client Micro-payment System Is-
sues and Experiences, Journal of End User Computing, 15(4), pp 62-77, (2003).

5. Dai X. and Grundy J., Three Kinds of E-wallets for a NetPay Micro-payment System, The
Fifth International Conference on Web Information Systems Engineering, November 22-
24, 2004, Brisbane, Australia. Lecture notes in Computer Science 3306, pp. 66 - 77

6. Gabber, E. and Silberschatz, A.: Agora: A Minimal Distributed Protocol for Electronic
Commerce, Proceedings of the Second USENIX Workshop on Electronic Commerce,
Oakland, California, November 18-21, 1996, pp. 223-232

7. Gabber, E. and Silberschatz, A.: "Micro Payment Transfer Protocol (MPTP) Version 0.1".
W3C Working Draft, 1995. http://www.w3.org/pub/WWW/TR/WD-mptp

8. Herzberg, A. and Yochai, H. : Mini-pay: Charging per Click on the Web, 1996
http://www.ibm.net.il/ibm_il/int-lab/mpay

9. Manasse, M.: The Millicent Protocols for Electronic Commerce. First USENIX Workshop
on Electronic Commerce. New York (1995)

10. Rivest, R. and Shamir, A.: PayWord and MicroMint: Two Simple Micropayment
Schemes. Proceedings of 1996 International Workshop on Security Protocols, Lecture
Notes in Computer Science, Vol. 1189. Springer (1997) 69—87

11. Golle, P., Leylton-Brown, K. and Mironov, I.: Incentives for sharing in peer-to-peer net-
works. In Proc. of Second workshop on Electronic Commerce (WELCOM’01), Heidel-
berg, Germany, November, 2001.

12. Shneidman, J. and Parkes, D.: Rationality and self-interest in peer-to-peer networks. In
Proc. of 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA,
USA, February 2003.

13. Eytan Adar and Bernardo Huberman. Free riding on Gnutella. First Monday, 5(10), 2000.
14. Yang, B. and Garcia-Molina, H.: Ppay: micropayments for peer-to-peer systems. In prooc.

Of the 10th ACM conference on computer and communication security, pages 300-310.
ACM press, 2003.

15. The Napster home page, http://www.napster.com/
16. Rivest, R.: "The MD5 Message-Digest Algorithm". RFC 1321, Internet Activities Board,

1992.
17. Menezes, A. J., Oorschot , P. C. and Vanstone, S. A.: Handbook of Applied Cryptography.

New York, 1997.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 308 – 313, 2005.
© Springer-Verlag Berlin Heidelberg 2005

FlexiRank: An Algorithm Offering Flexibility and
Accuracy for Ranking the Web Pages

Debajyoti Mukhopadhyay1 and Pradipta Biswas2

1 Cellular Automata Research Lab, Techno India,
(affiliated to W.B. University of Technology),

EM 4/1 Salt Lake Sector V, Calcutta 700091, India
debm@vsnl.com

2 Indian Institute of Technology, School of Information Technology,
Kharagpur 721302, India

pbiswas@sit.iitkgp.ernet.in

Abstract. The existing search engines sometimes give unsatisfactory search
result for lack of any categorization. If there is some means to know the
preference of user about the search result and rank pages accordingly, the result
will be more useful and accurate to the user. In the present paper a web page
ranking algorithm is proposed based on syntactic classification of web pages.
The proposed approach mainly consists of three steps: select some properties of
web pages based on user’s demand, measure them, and give different weightage
to each property during ranking for different types of pages. The existence of
syntactic classification is supported by running fuzzy c-means algorithm and
neural network classifier on a set of web pages. It has been demonstrated that,
for different types of pages, the same query string has produced different page
ranking.

1 Introduction

Web page ranking algorithms are used to order web pages according to their
relevance. Exactly what information the user wants is unpredictable. So the web page
ranking algorithms are designed to anticipate the user requirements from various
static (e.g., number of hyperlinks, textual content) and dynamic (e.g., popularity)
features. The goal of the present paper is to introduce an algorithm called FlexiRank
to offer some flexibility to the user while searching the web pages. A search engine
interface is incorporated with some option buttons to fine-tune the options while
sending the query to the search engine. The option buttons are easy to use for naïve
users and not as complicated as some of the existing advanced search engine
interfaces.

2 Related Work

Among the existing page ranking algorithms the most important algorithms are
Kleinberg’s HITS algorithm, Brin & Page’s PageRank algorithm, SALSA algorithm,

 FlexiRank: An Algorithm Offering Flexibility and Accuracy 309

CLEVER Project etc. The AltaVista Search Engine implements HITS algorithm. But
the HITS (Hyperlink Induced Topic Search) is a purely link structure-based
computation, ignoring the textual content [1]. According to PageRank algorithm used in
Google [2], a page has a high rank if the sum of the ranks of its back-links is high.
CLEVER project [3] mainly emphasizes on enhancements to HITS algorithm, hypertext
classification, focused crawling, mining communities, modeling the web as a graph. The
weight assignment to hyperlinks is more exploited in [4] where each link gets a weight
based on its position at the page, length of anchor text and on the tag where the link is
inserted. In [5] the links of a web page are weighted based on the number of in-links and
out-links of their reference pages. In [6] a new approach of dissecting queries into crisp
and fuzzy part has been introduced. In [7], a parameter viz. query sensitiveness is
measured which signifies the relevance of a document with respect to a term or topic. In
[8], the damping factor of PageRank algorithm is changed to a parameter viz.
confidence of a page with respect to a particular topic. The confidence is defined as the
probability of accessing a particular page for a particular topic.

3 Our Approach

Approach taken in this paper is to make a classification of web pages based on only
syntax of the page. This type of classification is independent to the semantics of the
content of a page. The search engine interface is incorporated with some option
buttons to take the proper class of a page along with the query topic. The web page
classification will be like Index page, Home Page, Article, Definition, Advertisement
Pages etc. As for example, if a search topic is given like "Antivirus Software" and
given category of page is "Homepage" then the homepages of different Antivirus
companies will get higher ranking. If for the same query, the category given is
"Article", then the pages giving general description of Antivirus Software will get
higher ranking. Again if the given category is "Index" then a page having large
number of links to different antivirus software vendors will get higher ranking. Thus
in the proposed page-ranking algorithm for a single query term, a particular page can
get different ranking based on users’ demand.

4 Parameters Used for Ranking

In this section different parameters, selected for web page ranking, are discussed. The
page ranking will be done by taking a weighted average of all or some of the
parameters. The weight given to a particular parameter will depend upon the category
of the page. In the proposed algorithm a single query may give different ranking to a
page depending on the category of the page-which is not possible in any existing
search engines. The algorithm is flexible in the sense that just by changing the
weights, the same algorithm satisfies user demands for different types of pages.

4.1 Relevance Weight

Relevance weight measures the relevance of a page with respect to a query topic by
counting the number of occurrences of the query topic or part of the query topic within

310 D. Mukhopadhyay and P. Biswas

the text of the document. In the present paper, the page relevance algorithm used has
taken an approach of the Three Level Scoring method. In the proposed algorithm, firstly
the words in “Stop List” are removed from the search string. After proper stemming, the
relevant keywords or terms are extracted from the search string. Next, the occurrence of
each term is found out, and a weightage is given to it as the ratio of its length to the
length of the given query topic. As for example, for a query string “data mining,” the
term “data mining” will get a weightage of “1” whereas the term “mining” will get a
weightage of “6/11” i.e., 0.545. Finally the algorithm is as follows:

function Calc_Relev_Wt(File F: A Text File, String S: The
Search String)
return Relev_weight
/* relevance of textual content of file F w.r.t. Search
string S */
var KEYWORD_SET[1…N]
/* To store the subset of relevant strings within the search
string */
var CNT /*Number of relevant substrings */
var OCCURRENCE[1…N]
/* OCCURRENCE[I]= Occurrences of substring KEYWORD_SET[I]
within file F */
KEYWORD_SET=Set of relevant substrings within S
CNT=|KEYWORD_SET|
For (I=1 to CNT)
OCCURRENCE[I]= Number of Occurrences of substring
KEYWORD_SET[I] within file F
For (I=1 to CNT)
Relev_Weight=Relev_Weight+(Length(KEYWORD_SET[I])/Length(S))*
OCCURRENCE[I]

4.2 Hub and Authority Weight

Authorities are pages that are recognized as providing significant, trustworthy, and
useful information on a topic. Hubs are index pages that provide lots of useful links
to relevant content pages. The authority value of page p is the sum of hub scores of all
the pages that points to p and the hub value of page p is the sum of authority scores of
all the pages that p points to. It has been observed that the small number of pages with
the largest authority converged value should be the pages that had the best authorities
for the topic.

4.3 Link Analysis of a Page

The HITS algorithm analyzes the link structure information of a web graph. The
hyperlink information of a single page (e.g., number of hyperlinks, anchor text and
positions of the pages in the domain tree with respect to a particular page) are also
found to give useful information during syntactic categorization of a web page. The
number of hyperlinks of a page is calculated by getting the total number of a href
tags. For getting the exact number of hyperlinks the number of frame src tags should
be added to the number of a href tags and links to the same page should be excluded.
By analyzing anchor text the glossary pages can very easily be identified. It has been
found the portals have large number of hyperlinks pointing to same level nodes in the

 FlexiRank: An Algorithm Offering Flexibility and Accuracy 311

domain tree rooted at the next higher level node of the source of the page; e.g., if
source is a.b.com nature of hyperlinks is x.b.com or y.b.com. The site maps and
home pages have large number of hyperlinks pointing to lower level nodes in the
domain tree rooted at the source of the page; e.g., if source is a.b.com nature of
hyperlinks is a.b.com/x, a.b.com/y.

4.4 Types of Content

The syntactic analysis of the content also gives useful properties about the type of a
page. Examples of this type of properties are: number of images in a page; proportion
of text length to number of images; relevance weight of the query string within
special tags like header tag, title tag, etc.

5 The FlexiRank Algorithm

The FlexiRank algorithm operates on a set of web pages returned by a web crawler and
gives a ranking of the pages as output. It operates according to the following steps:

• Select attributes based on user demand: Based on the users’ demand the
algorithm chooses a set of properties of a web page. Some properties are chosen
irrespective of the users’ demand. Examples of such mandatory properties are
Relevance weight, Hub weight and Authority weight. The other attributes are
chosen based on user demand to provide an accurate ranking. Examples of such
optional attributes are number of hyperlinks, number of images, properties of
anchor text, etc.

• Measure the attributes: The selected attributes are measured for each web page.
• Calculate rank: The rank is calculated by taking a weighted average of the

measured values. The weight assigned to each attribute is based on users’ demand.
The algorithm provides flexibility in two grounds:
• In selection of properties: As for example when the users’ demand is index type

pages, number of hyperlinks of a page will be measured whereas number of
images or text to image proportion will not be measured.

• In determining weightages of properties: The selected attributes get different
weightage for difference in user demand. As for example, for article type of
pages, relevance weight and authority weight will get highest weightage whereas
for advertisement type of pages, number of thumbnails (i.e., number of images)
and hub weight will get higher weightage.

Due to these varying selections of properties and their corresponding weightages, the
algorithm provides more flexibility to the user and also gives more accurate result.

6 Experimental Results

The experiment has been done in two parts. In the first part, several web pages are
downloaded and classified according to the proposed properties. In the second part,
some web pages are downloaded again from an existing search engine and ranked
according to the FlexiRank algorithm. Each of these parts is discussed below.

312 D. Mukhopadhyay and P. Biswas

6.1 Clustering the Web Pages

In this part about 50 web pages are downloaded from Google search engine. The
pages are clustered according to different properties like Relevance weight, Number
of Images, Number of Links, Document Length etc. For clustering purpose, Fuzzy c-
means algorithm is used. Cluster validation is done by Classification Entropy. With c
= 4, we got a hint of the existence of syntactic classification. To confirm the existence
of syntactic classification, we use a neural network software viz. NeuNet Pro
downloaded from http://www.cormactech.com. Using this software we define a feed
forward neural network with 5 hidden nodes and use back-propagation learning
algorithm for classifying 30 web pages downloaded from Google. After completing
1000 cycles with learning rate=60 and verify rate=10 (these rates are defined by the
software internally) we get the following scatter graph in Fig. 1 and time series graph
in Fig. 2. Since the classification is carried on using only 7 properties, we do not get a
very accurate classification. Still the result of the fuzzy clustering algorithm and the
less than 20% R.M.S. error in classification confirm the existence of syntactic
classification of web pages.

Fig. 1. Scatter graph for Syntactic Classification Fig. 2. Time Series Graph for Syntactic
Classification

6.2 Ranking the Web Pages

For testing the actual change in ranking for different types of pages, the proposed
ranking algorithm is run on top 30 pages downloaded using Google search engine
with the search topic “Human Computer Interaction”. The screenshot of the proposed
interface of a search engine is shown in Fig. 3. When the type of page is given as
index, the following three pages get first three ranks:

1. http://is.twi.tudelft.nl/hci/
2. http://dmoz.org/Computers/Human-Computer_Interaction/
3. http://www-hcid.soi.city.ac.uk/

The first two pages are literally index pages while the third one is the home page of
Centre of HCI Design, City University London. The page contains a lot of hyperlinks.
Again when the type of page is given as article the following three pages get first
three ranks:

1. http://sigchi.org/cdg/cdg2.html
2. http:// www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
3. http://www.id-book.com/

 FlexiRank: An Algorithm Offering Flexibility and Accuracy 313

Fig. 3. Screenshot of the Proposed Interface of a Search Engine

Here also, the first two sites are text intensive articles. As can be seen in the interface
a default option is also being kept for ranking all types of pages.

7 Conclusion

The present paper discusses a web page ranking algorithm, which consolidates web
page classification with web page ranking to offer flexibility to the user as well as to
produce more accurate search result. The classification is done based on several
properties of a web page which are not dependent on the meaning of its content. The
existence of this type of classification is supported by applying fuzzy c-means
algorithm and neural network classification on a set of web pages. The typical
interface of a web search engine is proposed to change to a more flexible interface
which can take the type of the web page along with the search string.

References

1. Kleinberg, Jon; “Authoritative Sources in a Hyperlinked Environment;” Proc. ACM-SIAM
Symposium on Discrete Algorithms, 1998; pp. 668-677

2. Brin, Sergey; Page, Lawrence; “The Anatomy of a Large-Scale Hypertextual Web Search
Engine;” 7th Int. WWW Conf. Proceedings, Brisbane, Australia; April 1998

3. Chakrabarti, S. et. al.,; “Mining the link structure of the World Wide Web;” IEEE
Computer, 32(8), August 1999

4. Baeza-Yates,Ricardo; Davis, Emilio; “Web page ranking using link attributes,” Proceedings
of the 13th international World Wide Web conference on Alternate track papers & posters,
May 2004

5. Xing, W.; Ghorbani, A.; “Weighted PageRank algorithm;” Proceedings of the Second
Annual Conference on Communication Networks and Services Research, 19-21 May 2004;
pp. 305 – 314

6. Dae-Young Choi ; “Enhancing the power of Web search engines by means of fuzzy
query” Decision Support Systems, Volume 35, Issue 1, April 2003, pp. 31-44

7. Wen-Xue Tao; Wan-Li Zuo;” Query-sensitive self-adaptable web page ranking algorithm”
International Conference on Machine Learning and Cybernetics, Vol. 1, 2-5 Nov. 2003; pp.
413 - 418

8. Mukhopadhyay, Debajyoti; Giri, Debasis; Singh, Sanasam Ranbir; “An Approach to
Confidence Based Page Ranking for User Oriented Web Search;” SIGMOD Record,
Vol.32, No.2, June 2003; pp. 28-33

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 314 – 320, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Adaptable Web Browsing of Images in Mobile
Computing Environment: Experiments and Observations

Atul Kumar1, Anjali Bhargava1, Bharat Bhargava1, and Sanjay Madria2

1 Department of Computer Science, Purdue University, West Lafayette, IN
2 Department of Computer Science, University of Missouri-Rolla, MO

Abstract. In this paper, we report some experiments and observations to make
browsing of images more adaptable using small devices. We highlight the
usability of such an alternative in mobile e-commerce and bandwidth-
constrained systems.

1 Introduction

The cellular phones, wearable PCs, personal digital assistants (PDA) being mobile,
wireless and small, pose new challenges for browsing. Some issues include low
bandwidth availability, limited memory, limited display area, frequent disconnection,
fast changing locations etc [4]. In addition there is a problem of redundant
information which becomes all the more costly in the context of limited resources.
Full quality and high-resolution images may not be needed when the user just wants
the stock quote of a company on his cell phone screen. Why burden a user with high
quality thumbnail images for choices when the content provider is sure that the user
will like to see in more detail and in better quality, the particular items he/she is more
interested in?

New features started appearing in the widespread browsers including offline
browsing and also some type of filtering. But they are not flexible enough in the sense
that they can not download a web page with varying levels of compression on the fly
so that the user can select what is suitable in current context nor can they offer
choices with multi-resolution display of a page. Content based editing is difficult
because of the inherent difficulty in understanding the semantics of the contents. The
methodologies in this category offer text-only version or fixed pre-decided contents.
An example is a text-based technology called "Web Clipping" developed by 3Com for
its wireless Palm [16]. Web Clipping allows mobile users to download short bursts of
text information from Web sites that have tailored content for 3Com's technology but
it doesn't allow users to surf the Web at large.

We propose experimental observations [11] that can result in savings in download
time and in easing the strain on the network bandwidth. We consider a novel approach
to bridge the gap between the time required to download a website in its entirety and
the time, the user is ready to wait for that website, by offering information at various
levels of quality. These various levels of qualities are made possible by compressing
the inline images at different ratios. Our solution is scalable as it can add on many
other filtering criteria and can support various modes of compression as well as

 Adaptable Web Browsing of Images in Mobile Computing Environment 315

selective compression. We didn’t emphasize on algorithm of compression as many
standards and effective compression techniques [5] are now supported in most of the
high level languages. The solution is ‘robust and scalable’ in the sense that it can
service a large number of these small devices in parallel without a loss of generality.
It is ‘transparent’ in the sense that the user is totally unaware of the calculations going
at the server side and it appears as if the user is directly connected to the actual web
server. The scheme will work effectively with the new media streaming applications
such as [4,5,9].

In trying to cut down the download time for the entire web site, we compress all
the inline images in it. It warranties trapping all the multiple HTTP requests issued in
effect while trying to access a single URL. We decided to enhance the existing
applications by adding adaptability features in the browsing software (or more
appropriately by changing the way the clients would browse a site) rather than
building a complete new one. This decision is based on following pragmatic assertion:
most users want to use their traditional browsers to surf even on their portable devices
in a fashion similar to their desktop browsers.

2 Background and Relevant Work

Different research groups are developing prototypes to suggest the adaptable features
and the tradeoff between the cost and applicability [1,13]. NetBlitz [1] is a
multiresolution -based system for the WWW. This involves setting up a proxy server
housing the URL cache and the multiresolution techniques. It dynamically generates
different versions and delivers them to the users. It focuses on multiresolution as the
parameter for quality of service. We concentrate on compressing many details and
embedded information in fine quality images that can be taken off without any loss of
generality of the image but in turn savings in the download time. [7] discusses about
techniques to provide dynamic distillation of image and video over the web. Work is
going on in the direction of transcoding images and content negotiation amongst the
web community. We have not come across browsers that support vast adaptability
criterion suitable for hand-held devices. [15] discussed methodologies to adapt
multimedia traffic which is basically based on the idea of the application having some
knowledge about the underlying network and the network having some knowledge of
the kind of application currently running. It tries to fragment packet semantically
rather than using the current IP fragmentation scheme. We observe that the above
scheme when applied to our technique of compressing the images can help in
guaranteeing much better QoS for the application.

2.1 Mobility Issues and Constraints

Providing Internet and WWW services on a wireless data network presents many
challenges [2,3,8]. Mass-market, hand-held wireless devices present a more
constrained computing environment compared to desktop computers. The wireless
data networks present a more constrained communication environment compared to
wired networks. Because of fundamental limitations of power, available spectrum,
and mobility, wireless data networks tend to have less availability, stability, and

316 A. Kumar et al.

bandwidth as well as greater latency. Mobile networks are growing in complexity and
the cost of providing new value-added services to wireless users is increasing.

3 Experimental Set Up

The experimental set up consists of setting our own proxy server. This proxy server
ideally should be a powerful workstation servicing many mobile devices in parallel.
All these devices here configure their client browser to talk to this server instead of
directly connecting to the actual web server. The paradigm is a standard client-server
model [1].

The compression engine, CE, is responsible for compressing the in-line images on
the fly. The cache is supported in proxy to speed up the computation and performance
of our adaptable web browser in the case where the compressed image is already in
the cache. The experiment consists of directing the browsers (i.e. clients) to talk to
the proxy server, which is waiting infinitely for clients’ connections. The server
dispatches a thread to handle each request to minimize loss of any client request. Now
each request consist of multiple HTTP messages being sent to server. From the HTTP
request format (e.g. using the content-type and content-length), the proxy makes
decisions whether to compress the image or let it go as it is. The compression ratio in
our case is determined by the available bandwidth at the client side. So the users can
select the browsing speed at which they want to browse a particular web page. Based
on the browsing speed selected, a compression ratio ranging from 0.0 to 1.0 (lower
quality image implies more compression or equivalently more compression ratio) is
determined by the proxy using JPEG image compression algorithms.

3.1 Experiments and Observations

We conducted an extensive set of experiments on popular websites especially sites
related to e-commerce to evaluate our proposed model. The sites were downloaded at
different browsing speeds and hence at different image compression levels.
Compressing the image results in reduction of the sizes, this finally leads to reduction
in time because of transporting smaller files across the network. There have been
many other researchers in this direction [1,10]. We computed the savings in download
time with different network connection speed. The sample data presented in Table 1
has been collected at two different speeds – 28.8 kbps and 56.6 kbps. Note that this
can be easily extended to any other types of connectivity and speed.

The leftmost column represents all the files present on a single web page. The next
column represents the uncompressed sizes of the files. Measurements for two
different levels of compression were taken. The figure ‘COMPR 1’ represents
maximum compression without losing the sense of images while the next
compression level ‘COMPR 2’ is the compression level which the end user will
gladly accept. The idea was to prove that even at the 2nd compression level, there are
substantial savings in the download time. So the end user can carry out e-business or
any other applications without substantial loss of quality in a much lesser time. The
next column shows the download time that each file takes assuming 28.8 kbps
connection speed. There are three time measurements under that category. Time 0

 Adaptable Web Browsing of Images in Mobile Computing Environment 317

represents the download time for uncompressed image. Time 1 is the time for
maximally compressed images (hence the smallest time) while Time 2 represents time
for lesser compression level, a better quality level. Exactly similar calculations were
made out assuming 56.6 kbps connection. Finally the sum totals were calculated.

Table 2 shows a sample data and the corresponding graph depicting the reduction
in size with varying quality of image. The image is one of the pictures of the planet
Mars posted on the NASA website. The same experiment was carried on large variety
of images and on different kinds of web sites. We took in consideration images
varying from very detailed fine quality to the ones having courser appearance. Also
the sample images were chosen to be representative of largely varying sizes. The
resulting graph was basically of the same nature confirming our experiments.

Table 1. Measurements for the embedded images and text files

Table 3 and 4 shows the effect of trying to compress the original image as well as
image conceived when we extrapolate to better quality size. We found out that many
images are not put at their best quality but are at reduced quality due to the same
underlying assumption as ours i.e. sacrificing quality a bit does not lead to appreciable

318 A. Kumar et al.

Table 2. Size of the image as a function of the quality

Table 3. Compression at original size and quality of image

distortion of the image. The original image (peacock.jpg), for example, here was
between quality 0.8 and 0.9. We tried to extrapolate the image to a better quality (and
hence larger size) and then apply our techniques on that trying to compress it at
different levels. We observe the same trends in the resulting graph. This was repeated
for different original starting quality and hence different initial sizes.

We make the following observations from the sample data. Definitely, compressing
the images result in savings of download time as well as the amount of storage
required to cache the inline images. The obvious drawback is the loss in visual quality
of the images [2,3,6,12]. But this is immaterial here, to an extent, because most of the
times (especially in e-commerce web sites), the user is more concerned with the
contents of the web page rather than the quality of images e.g. the quality of the
various icons or the quality of the images that external advertiser embed in the web
page. This is more pertinent in cases of mobile devices supporting browsers. A more
subtle question is the tradeoff between the overhead associated with the compression
and the final savings in download time. We argue on the basis of the table 2, 3, 4 and
the corresponding graphs that, we get substantial savings in the size of image with a
sacrifice in the quality of image. These savings in turn reflect in the savings in the
download time. Compressing every image even to correspond to just 1 lower level of
quality can benefit us with an appreciable savings in download time. We justify that

 Adaptable Web Browsing of Images in Mobile Computing Environment 319

this kind of application is primarily aimed for users doing lots of e-business and also
assuming that they have a slower Internet connectivity, even though they have top-of-
line fast computers (in terms of processing power). Even with faster network
connectivity, the problem envisioned is the rate at which network bandwidth is being
hogged. Since the available bandwidth is, more or less, constant but the applications
consuming them are burgeoning, it might result that even with a faster link, people
have to suffer considerable delay because of network congestion. Hence it makes
sense to bear the overhead of image compression. Also with now more and more
support being built in programming languages for images, this can be done on the fly.
In other words, this adaptability makes sense if the client is being supported on
mobile devices or it has a low bandwidth connection to the network. Also it is most
effective for sites where we can achieve significance compression without major
sacrifice in visual quality. Another adaptable browser based on multi-resolution [8],
has been studied and it also deduces similar conclusions based on different set of
experiments and setup.

Table 4. Compression at extrapolated size and quality of image

4 Conclusions and Future Research

We reported some experiments and observations for mobile application requirements
such as Web browsing. The experimental results show the huge savings in time that
can be achieved by compressing high resolution and big inline images. This approach
is a step in the direction of making browsing more user-friendly and easing the
constraints on system resources. We also discuss the tradeoff associated with it and
the favorable factors under which proposed solution works best. For future work, we
are using finer criterion for compressing the images. The compressed images should
also be effectively cached at the proxy servers to avoid duplication of work in
compression of same images. This work can be extended to support all the image
types and even the text portion of the pages as they form a major chunk in many of
the web-sites. This would result in further savings of the download time.

320 A. Kumar et al.

References

[1] Swarup Acharya, Henry Korth & Viswanath Poosala. Systematic Multiresolution and its
Application to the World Wide Web, ICDE, 1999, pp. 40-49.

[2] Bharat Bhargava, Shunghe Li et al. Impact of Codec Schemes on Multimedia
Communications, In Proceedings of the IETE International Conference on Multi-media
Information Systems (MULTIMEDIA 96)}, Feb., 96, New Delhi, India, Published by
McGraw Hill, pp. 94-105..

[3] Bharat Bhargava, Shunghe Li et al. Performance Studies for an Adaptive Video
Conferencing System. In Proceedings of the IETE International Conference on Multi-
media Information Systems MULTIMEDIA 96)}, Feb., 96, New Delhi, India, Published
by McGraw Hill, pp 106-116.

[4] Bharat K. Bhargava, Changgui Shi, Sheng-Yih Wang: MPEG Video Encryption
Algorithms. Multimedia Tools Appl. 24(1): 57-79 (2004).

[5] Bharat K. Bhargava, Changgui Shi, Sheng-Yih Wang: MPEG Video Encryption
Algorithms. Multimedia Tools Appl. 24(1): 57-79 (2004)

[6] Ron Frederick. Experiences with Real-time Software Video Compression. In proceedings
of the packet video workshop, Portland, Oregon, 1994.

[7] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting to Network and Client
Variability via On-demand Dynamic Distillation. ASPLOS Proceedings, Oct. 1996.

[8] Martin Gaedke, Michael Beigl, Hans-Werner Gellersen, Christian Segor: Web Content
Delivery to Heterogeneous Mobile Platforms. ER Workshops 1998: 205-217

[9] Mohamed Hefeeda, Bharat K. Bhargava, David K. Y. Yau: A hybrid architecture for cost-
effective on-demand media streaming. Computer Networks 44(3): 353-382 (2004)

[10] Van Jacobsen. Congestion Avoidance and Control. In proceedings of Symposium on
Communications Architectures and Protocols (SIGCOMM’88)

[11] Atul Kumar, Adaptable Web Browsing, Project Report, Purdue University, 2000.
[12] Overview of the MPEG-4 Standard. International Organization for Standardization for

Coding of Moving Pictures and Audio, March 1999.
[13] Standards for Mixed Media Communications. Lucent Technologies, June 1997.
[14] Sanjay Madria, Mukesh Mohania, Sourav Bhowmick, Bharat Bhargava. Mobile Data and

Transaction Management, Information Science Journal, 2002.
[15] Sheng-Yih Wang, Bharat Bhargava. An adaptable network architecture for multimedia

traffic management and control, IEEE International Conference on Multimedia and Expo
(III) 2000: 1615-1618.

[16] Web Clipping. URL: http://cnn.com/TECH/computing

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 321 – 332, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Incremental Document Clustering Algorithm Based
on a Hierarchical Agglomerative Approach

Kil Hong Joo and SooJung Lee

Dept. of Computer Education, Gyeongin National University of Education,
Gyodae Street, 45, Gyeyang-gu, Inchon, Korea, 407-753

{khjoo, sjlee}@ginue.ac.kr

Abstract. Document clustering is classifying a data set of documents into
groups of closely related documents, so that its resulting clusters can be used in
browsing and searching the documents of a specific topic. In most cases of such
as application, a set of new documents are incrementally added to the data set
and there can be a large variation in the number of words in each document.
This paper proposes an incremental document clustering method for an
incrementally increasing data set of documents. The normalized inverse
document frequency of a word in the data set is introduced to cope with the
variation of the number of words in each document. Furthermore, an average
link method for document clustering instead of using one similarity measure
used in two similarity measures: a cluster cohesion rate and a cluster
participation rate. Furthermore, a category tree for a set of identified clusters is
introduced to assist the incremental document clustering of newly added
documents. In this paper, the performance of the proposed method is analyzed
by a series of experiments to identify their various characteristics.

1 Introduction

Various methods and techniques for processing unstructured data such as textual data
are introduced in the field of information retrieval (IR). Basically, the main purpose of
these techniques is to construct a large set of well-categorized documents
automatically for effective searching and browsing [1]. For this purpose, document
clustering and classification are actively studied [2] since they can play an important
role in helping an information retrieval system with a huge number of documents.
Given a predefined set of document classes, document classification is identifying the
appropriate class of a particular document [3]. Traditionally, the document
classification is carried out manually. In order to assign a document to an appropriate
class manually, a user should analyze the contents of the document. Therefore, a large
amount of human effort would be required. There has been some research work on
automatic document classification. One approach is learning appropriate text
classifiers by machine learning techniques [4, 5] based on a training data set
containing positive and negative examples. The accuracy of a resulting classifier is
highly dependent on the fitness of the training data set. However, there are lots of
terms and various classes of documents. In addition, many new terms and concepts

322 K.H. Joo and S. Lee

are introduced everyday. Consequently, it is quite impossible to learn a classifier for
each document class in such a manner.

In order to group a set of related documents automatically, clustering techniques
[6, 7, 8] have been widely employed. The attractiveness of these cluster techniques is
that they can find a set of similar data objects as a cluster directly from a given data
set without relying on any predefined information such as training examples provided
by domain experts [6, 7]. In most cases of such an application, a set of new
documents is incrementally added to the data set.

This paper proposes an incremental document clustering method. The
characteristics of a document are represented by a set of keywords that are extracted
by evaluating the term weight of each word in the document. The term weight of each
keyword for a document indicates the relative importance of the keyword in the
document. Given a finite data set of documents, most document clustering algorithms
use a TF*IDF function [12] to find the term weight of a word in a document. The
term frequency (TF) of a word in a document is the number of occurrences of the
word in the document. The inverse document frequency (IDF) of a word is the
number of documents containing the word and it indicates how commonly the word is
used in the documents of the data set. When the IDF of a word is high, the usage of
the word is localized to a small number of documents in the data set. However, the
TF*IDF function is not suitable for an incremental document clustering algorithm due
to the following reasons: (1) A word with a relatively low document frequency tends
to have a high term weight, so that a large number of document clusters can be
generated potentially. (2) As the number of documents in a data set becomes larger,
the effect of the IDF of a word on the term weight of the word in each document is
increased specially when most of the documents contain a small number of words as
in web documents. This is because the TF of a word in a document becomes small
relative to its IDF. Furthermore, if document clustering should be performed in an
incremental way, this effect is amplified since the value of IDF is increased
continuously. For these reasons, a normalized inversed document frequency (NIDF) is
used instead in this paper.

Given an initial set of documents, the initial clusters of similar documents are
found by a seed document clustering method called SCUP (Seed Clustering Using
Participation and cohesion) in this paper. The SCUP algorithm is a kind of an average
link method of hierarchical agglomerative clustering [9, 10]. In a hierarchical
agglomerative clustering algorithm, two clusters of the highest similarity are merged
in each step. However, there may be a more similar cluster in the future when a set of
new documents is incrementally added. Accordingly, the accuracy of a cluster can be
degraded in the future. To resolve this problem of a hierarchical agglomerative
clustering algorithm, this paper proposes two similarity measures: a cluster cohesion
rate and a cluster participation rate. The cluster participation rate is examined to
merge a new document with current set of clusters. By using the cluster participation
rate, the accuracy of end cluster can be guaranteed at any time. In addition, the
hierarchical agglomerative clustering algorithm generally requires a great amount of
memory space since it is proportional to the square of the number of documents in a
data set [11]. In order to minimize the usage of memory space, the SCUP algorithm
produces dendrogram. The resulting dendrogram of the SCUP algorithm is used by an
incremental document clustering algorithm (IDC) proposed in this paper in order to

 An IDC Algorithm Based on a Hierarchical Agglomerative Approach 323

construct the category tree of identified clusters. Consequently, as a new document is
incrementally added to the data set, the most appropriate cluster for the document can
be found in the IDC algorithm based on the category tree efficiently.

Figure 1 illustrates the overall procedure of the proposed seed clustering SCUP
algorithm. The SCUP algorithm is composed of the following steps. First, the
keywords of each document in the initial set of documents are selected by the
TF*NIDF method. Second, the proposed SCUP algorithm is performed to generate a
set of initial clusters. Finally, a category tree for the resulting clusters is generated to
be used by the incremental document clustering (IDC) algorithm for a new document.

Fig. 1. Procedure of the SCUP algorithm

This paper is organized as follows. Section 2 introduces how the term weight
of a word for a document in a dataset of documents is calculated to choose the
keywords of the document. In Section 3, the proposed SCUP algorithm is presented
in detail. Furthermore, the structure of a category tree for identified clusters is
described. In Section 4, an incremental document clustering (IDC) algorithm
is proposed. Section 5, several experiment results are comparatively analyzed to
illustrate the various characteristics of the proposed algorithms. Finally, Section 6
draws overall conclusions.

2 Extraction of Keywords by Normalized Term Weight

For each word used in a document of an initial data set, its term weight is calculated
to choose the keywords of the document. For this purpose, the TF*IDF (Term
Frequency Inversed Document Frequency) [12] is used widely to reflect the

324 K.H. Joo and S. Lee

importance of a specific word in a document. According to the TF*IDF method, the
weight ijtfidf of a word jw in a document id is defined as follows:

j
ijij df

N
tftfidf ln×= (1)

where N is the total number documents in a data set and the term frequency ijtf

denotes the frequency of a word jw occurred in a document id . In addition, the

document frequency jdf denotes the number of documents that the word jw appears

in the data set. Equation (1) means that the possibility of a specific word representing
the key concept of a particular document is proportional to the frequency of the word
in the document. As the same time, it is also inversely proportional to the number of
documents that contain the word. In other words, a word can be one of keywords for a
document if it appears frequently in a small number of documents in a data set.

However, as the total number of documents N becomes larger, the effect of the
inversed document frequency on a term weight is increased. This is because the term
frequency of a word in a document is usually in a certain range specially for a short
document. On the other hand, the IDF has the range of [0, lnN], and hence the value
of the IDF is greatly influenced by the total number of documents in a data set.
Furthermore, when new documents are incrementally added to a data set
continuously, the number of documents N is continuously increased. In order to avoid
this, the value of the IDF should be confined within a certain range regardless of N.
This paper introduces a TF*NIDF (Term Frequency Normalized Inversed Document
Frequency) function in which the maximum value of the IDF is normalized within a
range [0, μ] for a fixed value of μ . The IDF jidf of a word jw is represented as

follows:

j
j

j dfN
df

N
idf lnlnln −==

the target range of its normalized inversed document frequency (NIDF) jnidf is

],0[μ , so that jnidf can be represented like jidf as follows:

ynidf j ln−= μ

where y is a certain linear function of jdf . Given the range of jdf],1[N , the

following function makes the value of yln be the range],0[μ .

1)1(
1

1 +−
−
−= jdf

N

e
y

μ

Based on the above function y, the term weight ijtfnidf of a word jw in a document

id is defined by Equation (2).

+−×
−
−−×= 1)1(

1

1
ln jijij df

N

e
tftfnidf

μ

μ (2)

 An IDC Algorithm Based on a Hierarchical Agglomerative Approach 325

A word in a document is chosen as a keyword of the document if the term weight
TF*NIDF of the word is larger than the average term weight of words in the
document. Since the number of words in each document can be different, the range of
the term frequency TF of a word in each document is not the same. In other words,
when a word appears frequently in a long document, the TF of the word becomes
large. As a result, its term weight can become large even though its NIDF is relatively
small. To prevent this, the length of a document should also be normalized.

To normalize the number of words in a document, the maximum frequency
normalization [13] can be considered. In this method, it uses the ratio of the frequency
of each word in a document over the most frequently used word in the document.
However, this can cause a problem when the frequency of a specific word is
exceptionally large. This paper uses a cosine normalization which has been widely
used in a vector space model. In the cosine normalization, given a vector

},......,,{ 21 nvvvV = , each element of the vector is divided by a cosine normalization

element 22
2

2
1 nvvv +++ . This cosine normalization makes it possible to

normalize the length of a document based on the frequencies of all words in a
document together. In this paper, the normalized term weight of a keyword jk in a

document id containing n distinct words represented by the cosine normalization is

denoted by),(ji kdt as follows:

=

=

n

k
ik

ij
ji

tfnidf

tfnidf
kdt

1

2

),(. (3)

3 Seed Clustering Using a Participation and Cohesion Method

Given an initial data set of documents, the SCUP algorithm finds the initial clusters of
the data set. Although the SCUP algorithm can be solely used as a clustering method
for a set of documents, it can also provide an initial set of document clusters for an
incrementally growing data set of documents. It is basically the same as the
hierarchical agglomerative clustering algorithm [10] but uses different similarity
measures defined in Definition 1 and Definition 2.

Definition 1. Document Similarity
Given two documents id and jd with their keyword sets iK and jK respectively,

their document similarity measure),(ji dds is defined as follows:

+=
∈

∩∈

∈

∩∈

i

ji

i

ji

Kw
j

KKw
j

Kw
i

KKw
i

ji wdt

wdt

wdt

wdt

dds
),(

),(

),(

),(

2

1
),((4)

The above document similarity measure can provide the rate of similarity between
only two documents. As a similarity measure for all the documents of a cluster, a
cluster cohesion measure is defined in Definition 2. A cluster cohesion measure

326 K.H. Joo and S. Lee

indicates how tightly the documents of a cluster are related in terms of their
keywords. It is the average of the document similarities of all pairs of documents in a
cluster.

Definition 2. Cluster Cohesion
Given a cluster C, let C denotes the number of documents in C and),(ji dds

denotes the document similarity of two documents id and jd in the cluster C. The

cluster cohesion rate)(Ch of the cluster C is defined as follows:

2

}{
),(

)(
C

dds

Ch
C

dCd
ji

Cd iji=
−∈∈

 (5)

In the conventional agglomerative approach, a cluster is forced to be merged with
another cluster until a predefined number of clusters are left. However, the SCUP
algorithm is intended to be used in an incrementally growing set of documents.
Consequently, clusters should be carefully merged. In other words, a cluster should
not be merged with another cluster unless the documents of the two clusters are
similar enough to be merged. If a cluster can not find another cluster that is eligible to
be merged in the current set of clusters, it should not be merged. This is because there
may be a more similar cluster in the clusters of incrementally added documents in the
future. For this purpose, a cluster participation measure between two clusters of
documents is defined in Definition 3. The union of the document keyword sets of all
documents in a same cluster is named as the cluster keyword set of the cluster.

Definition 3. Cluster Participation
Given two clusters mC and nC of documents with cluster keyword sets mCK and

nCK , a cluster participation rate)|(nm CCCP of the cluster nC to the cluster mC is

defined as follows:

=
∈∈

∩∈∈

nni

nmmi

CKw
i

Cd

CKCKw
i

Cd
nm wdt

wdt
CCCP

),(

),(
)|((6)

Given a minimum cluster participation rate MinClPar and a minimum cluster
cohesion rate MinClCoh, two clusters mC and nC are eligible to be merged into one

cluster mnC which contains all the documents of the two clusters if the following

conditions are satisfied.

(i) MinClParCCCPandMinClParCCCP mnnm ≥≥)|()|(and

(ii) MinClCohCh mn ≥)(

Among the pairs),(nm CC of clusters that satisfy the above two conditions, the one

with the highest cluster cohesion rate)(mnCh merged into one cluster. The

dendrogram [9] of the SCUP algorithm is used as a category tree. It is widely used to
represent the hierarchical cluster structure of a data set. It is generated by keeping

 An IDC Algorithm Based on a Hierarchical Agglomerative Approach 327

merging two similar clusters repeatedly until all documents of the data set are grouped
into one cluster. A node of a category tree represents a category. It contains its
category keywords which are the union of the cluster keyword sets of all the clusters
of its sub-tree. A category tree can be used as an index in searching and browsing a
specific cluster.

4 Incremental Document Clustering (IDC)

Most conventional document clustering algorithms [10, 14] are not intended to be
used in an incrementally growing set of documents. Therefore, whenever a set of new
documents is added incrementally, all documents in the enlarged data set should be
reclustered from scratch. To avoid this, this section presents an incremental document
clustering algorithm (IDC) based on the result of the SCUP algorithm presented in
Section 4. When a new document is added to a data set of documents, among the
current clusters, the most appropriate cluster is identified by traversing the category
tree of the clusters starting from the root node of the category tree. The node
participation rate of a new document ld for a node N in the category tree defined in

Definition 4 is used to traverse the tree.

Definition 4. Node Participation in the category tree
Given a new document md with its keyword set mK and a node N of a category tree,

let NK denote the set of category keywords in the node N. The node participation rate
)|(NdNP m of the document md for the node N is defined as follows:

∈∈

∩∈∈=

NKw
i

Nd

KNKw
i

Nd
m wdt

wdt

NdNP

i

mi

),(

),(

)|(

(7)

For a newly added document d, starting from the root node of a category tree, a
document d recursively searches down to its corresponding leaf node based on the
node participation rate of each node in its path from the root node. Figure 2 illustrates
how a newly added document is incrementally clustered.

Whenever visiting a node of the category tree for a new document d, among the
children of the node N, the one with the highest node participation rate for the
document is identified. If the highest node participation rate is greater than or equal to
a predefined minimum node participation rate, the corresponding child node is visited.
Otherwise, the document is regarded as a noise document temporarily. This traversal
is performed repeatedly until a document d visits a leaf node. When a leaf node is
visited successfully, the document d is inserted to the cluster of the leaf node if the
document d is greater than or equal to a predefined minimum cluster cohesion rate. If
the above condition is not satisfied, the document is regarded as a noise document
too. When a considerable number of noise documents are collected, the SCUP method
is performed to generate a set of new clusters from the set of noise documents and the
category tree is modified accordingly. On the other hand, when a document in a

328 K.H. Joo and S. Lee

(a) Search an eligible cluster in a category tree

MinNodeParNdNP ≥)|(1

)|()|(21 NdNPNdNP ≥

MinClCohdCh

andMinClPardCCP

andMinClParCdCP

andCdCPCdCP

≥
≥
≥
≥

)(

)|(

)|(

)|()|(

1

1

1

21

MinNodeParNdNP <)|(1

(b) Insert into the most eligible cluster

Fig. 2. Example of an incremental document clustering

cluster is deleted, if the updated cluster cohesion rate of the cluster becomes less than
a minimum cluster cohesion rate, the documents of the cluster are reclustered by the
SCUP algorithm to partition the documents into groups of more similar documents.

5 Experiments and Analysis of Result

To illustrate the performance of the proposed method, several experiment results are
presented in this section. Among news categories provided in ‘Yahoo’, documents in

 An IDC Algorithm Based on a Hierarchical Agglomerative Approach 329

10 different domains such as business, science, politics and society are extracted as a
data set of documents to be used in these experiments. For each domain, the average
number of documents is 1026 and the average number of words in a document is 800.

In Figure 4, the clustering result of the SCUP algorithm is compared with that of
the hierarchical agglomerative clustering algorithm (HAC). To show the relative
effectiveness of the proposed clustering algorithm the same similarity measures as
described in Section 4 is used for the hierarchical agglomerative clustering algorithm.
The resulting number of clusters generated by each algorithm is compared in Figure
4-(a). The average number of documents in a cluster is compared in Figure 4-(b). In
addition, the average cluster cohesion rate is compared in Figure 4-(c). The number of
clusters generated by the proposed SCUP algorithm is much smaller than that by the
hierarchical agglomerative clustering algorithm. However, their order is reversed in
terms of the average number of documents in a cluster. However, the average cluster
cohesions of two algorithms are almost the same.

(a) The number of clusters (b) The average number of documentsin a
cluster

(c) Average cohesion of clusters

Fig. 4. Performance of the SCUP algorithm

About 10000 documents in the business domain of Yahoo are used to illustrate the
performance of the proposed IDC algorithm. The proposed IDC algorithm requires a
minimum cluster participation rate additionally. When the value of a minimum cluster
participation rate is set to 0.2, the IDC algorithm shows the best result. When the

330 K.H. Joo and S. Lee

value of a minimum cluster participation rate is set 0.2, in Figure 5, the result of the
IDC algorithm is composed with the HAC algorithm. Since the HAC clustering is not
an incremental algorithm, all documents of the data set are clustered together at the
same time in terms of the number of generated clusters and the average number of
documents in a cluster by varying the value of a minimum cluster cohesion rate.

(a) The number of clusters (b) The average number of documents in a
cluster

Fig. 5. Performance of the IDC algorithm

Given a set of document clusters },......,,{ 21 mpppHC = generated by the HAC

algorithm and a set of document clusters },......,,{ 21 nqqqIC = generated by the IDC

algorithm, let),(HCqsim i denote the ratio of the number of common documents of a

cluster)1(niqi ≤≤ in the IC and a cluster)1(mjp j ≤≤ in the HC over the number

of documents in the cluster iq . The cluster jp includes most documents belonging

to a cluster iq among clusters in HC. Accordingly,),|(HCICqsim i is defined by

Equation (8).

∩
=

||

||
max),(

i

ji
i q

pq
HCqsim))1((miHCp j ≤≤∈∀ (8)

Based on this, the similarity),(HACIDCsim between the result of the HAC

algorithm and that of the IDC algorithm is defined by Equation (9).

=
=

n

i
i HCqsim

n
HACIDCsim

1
),(

1
),((9)

Hence, the difference between the result of the HAC algorithm and that of the IDC
algorithm is defined by Equation (10).

),(1 HACIDCsim−=δ (10)

In Figure 6, the difference is illustrated when the values of a minimum cluster
participation rate and a minimum cluster cohesion rate are varied from 0.5 to 0.9. As

 An IDC Algorithm Based on a Hierarchical Agglomerative Approach 331

the value of a minimum cluster cohesion rate becomes higher, the results of the two
algorithms become more similar. By varying the number of documents,
the processing times of the HAC algorithm and the IDC algorithm are compared in
Figure 7. As the number of documents is increased, the processing time of the HAC
algorithm is increased more rapidly since the HAC algorithm is not incremental.

Fig. 6. Difference ratio between

 HAC and IDC
Fig. 7. Processing times between

 HAC and IDC

6 Conclusion

A TF*NIDF function is introduced to overcome the weak points of the TF*IDF
function since the SCUP algorithm should be performed in an incremental way. This
paper proposes the SCUP algorithm to find the initial clusters of similar documents in
a set of document based on a cluster cohesion rate as well as a cluster participation
rate. This paper introduces a category tree for incremental hierarchical document
clustering, so that it is used by the incremental document clustering (IDC) algorithm
to find the most appropriate cluster if any efficiently. In the IDC algorithm, a newly
added document is examined to be clustered to the most appropriate cluster in the
category tree. By comparing the IDC algorithm with the HAC algorithm, the cluster
accuracy of the IDC algorithm is more similar relatively to the HAC algorithm.
However, the processing time of the IDC algorithm is faster than that of the HAC
algorithm when the number of document is increased.

References

1. Zamir, O. and Etzioni, O. “Web Document Clustering: A Feasibility Demonstration”,
SIGIR, pp. 46-54, 1998

2. Wai-cjiu Wong and Ads Wai-chee Fu, Incremental Document Clustering for Web Page
Classification, In Proceedings of 2000 International Conference on Information Society in
the 21st Century: Emerging Technologies and New Challenges (IS2000), Aizu-
Wakamatsu City, Fukushima, Japan November 5-8, 2000

3. C. J. Van Rijsvergen, "Information Retrieval", Butterworth, London, 2nd edition, 1979

332 K.H. Joo and S. Lee

4. Wai Lam and Chao Yang Ho. Using a generalized instance set for automatic text
categorization. In Proceedings of the 21th annual international ACM SIGIR conference on
Research and development in information retrieval, p.81-89, Melbourne, Australia, August
1998.

5. Sean Slattery and Mark Craven, Combining statistical and relation methods for learning in
hypertext domains. In proceedings of the 8th International Conference on Inductive Logic
Programming, Madison, Wisconsin, USA, July 1998.

6. David D. Lewis, Robert E. Schapire, James P.Callan, Ron Papka, "Training Algorithms
for Linear Text Classifiers", Proceedings of 19th ACM International Conference on
Research and Development in Information Retrieval, 1996

7. Eui-Hong (Sam) Han, George Karypis, and Vipin Kumar, "Text Categorization Using
Weight Adjusted k-Nearest Neighbor Classification", 5th Pacific Asia Conference on
Knowledge Discovery And Data Mining, 2001

8. Yiming Yang, "Expert Network: Effective and efficient learning from human decisions in
text categorization and retrieval", 17th ACM SIGIR Conference on Research and
Development in Information Retrieval, 13-22, 1994

9. B. W. Frakes and R. Baeza-Yates, "Information Retrieval: Data Structures & Algorithms",
Prentice Hall, 1992

10. Jain, A. K. and Dubes, R. C., "Algorithms for Clustering Data", Prentice Hall, 1988
11. Arnard Ribert, Abdel Ennaji, Yves Lecourtier, An Incremental Hierarchical Clustering,

Vision Interface ’99. Trois-Rivieres, Canada, 19-21 May, p.586-591.
12. G. Salton, C. Buckley, "Term-weighting approaches in automatic text retrieval",

Information Processing and Management, Vol. 24 No. 5 pp. 513-523, 1988
13. Amit Singhal, Chris Buckley, and Mandar Mitra, "Pivoted Document Length

Normalization", Proceedings of 19th ACM International Conference on Research and
Development in Information Retrieval, 1996

14. Drug fisher, Iterative Optimization and Simplification of Hierarchical Clusterings, Journal
of Artificial Intelligence Research, 1995

System Security Track Chair’s Message

Indrajit Ray

Colorado State University, USA

Abstract. The objectives of the System Security track of the 2nd Inter-
national Conference on Distributed Computing and Internet Technology
were to discuss in depth the current state of the research and practice
in computer security with emphasis on network and distributed systems
security, enable participants to benefit from personal contact with other
researchers and expand their knowledge and disseminate the research
results. This volume contains the 10 papers that were presented at the
System Security track of the conference. These papers which had been
selected from 77 submissions were rigorously reviewed by members of the
Program Committee comprising of internationally recognized researchers
in the area of computer security. The topics covered include a broad range
of sub-areas - from emerging areas such as security issues in mobile and
ad-hoc networks, security policy integration and code fingerprinting, to
more traditional areas such as digital watermarking, intrusion detection
and defense against virus and worms. These papers, the program com-
mittee believes, address some of the most pressing needs of the day for
computer security. We would like to thank all the authors for submitting
reports of their leading edge research to this conference and making it a
success. A special thank you goes to the members of the System Security
track program committee and other external reviewers who helped with
the review process in spite of their busy schedule.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, p. 333, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Game Based Model of Security for Key
Predistribution Schemes in Wireless Sensor

Network

Debapriyay Mukhopadhyay and Suman Roy

Honeywell Technology Solutions Lab Pvt Ltd.,
151/1, Doraisanipalya, Bannerghatta Road,

Bangalore 560076, India
{debapriyay.mukhopadhyay, suman.roy}@honeywell.com

Abstract. Many random key predistribution schemes have been pro-
posed for pairwise key establishment in sensor networks recently. A gen-
eral model of security under which these key predistribution techniques
can be formally analyzed for correctness is required. In this paper, we
have made such an attempt. We use the well known computational model
of probabilistic turn based 2 1

2 -player games to model the key predistri-
bution schemes and have shown how this model can be translated in
formally specifying a property that these schemes should have. To the
best of our knowledge this is the first work where we show the signifi-
cance of probabilistic turn based 2 1

2 -player games in modelling security
requirement of key predistribution schemes.

1 Introduction

Distributed sensor networks are now being widely deployed to monitor and pro-
tect different targeted infrastructures including life-critical applications such as
wildlife monitoring, military target tracking, home security monitoring and sci-
entific exploration in hazardous environments. Sensor nodes are typically small,
battery powered, and resource constrained devices. They usually communicate
with each other through wireless links and the fundamental nature of communi-
cation is broadcast.

As one of the most fundamental security services, pairwise key establishment
enables the sensor nodes to communicate securely with each other using cryp-
tographic techniques. But, because of the resource constrained nature of sensor
nodes and lack of trusted infrastructure, public key cryptography and trusted
server based pairwise key establishment techniques are not feasible to be used in
sensor network. A third way of establishing pairwise key is through key predis-
tribution, where (secret) key information is pre-distributed to all sensor nodes
prior to deployment. Such schemes are most appropriate for distributed sensor
networks. Many random key predistribution schemes [8, 10, 11] for pairwise key
establishment in sensor networks have been proposed recently. The main idea
here is to let each sensor node randomly pick a set of keys from a key pool before

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 334–347, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Game Based Model of Security for Key Predistribution Schemes 335

the deployment so that any two sensor nodes have certain probability to share
at least one common key.

A wide range of security protocols have been found to have flaws years after
their publication - the most well known example being Needham-Schroeder’s
protocol [1]. For this reason, it has been realized that formal methods can be
useful for the analysis of the security of the cryptographic protocols. Two major
approaches in this area are logic analysis and attack construction and a formal
computational model of the protocol under test forms the backbone of both.
Games provide a powerful mathematical framework with a well-developed theory
and rich models of computation. Many problems of computer science can be
seen as a game between two or more players, which occur naturally in many
computational settings. As for example, in a network a set of compromised nodes
may join hand to compromise the whole network, so we can conceive it as a game
between the set of compromised nodes and the set of uncompromised nodes.
Games provide versatile models of computation which naturally captures the
interplay between the involved players. From this observation a new direction
of research to model cryptographic protocol interactions as games to obtain a
powerful notion of security against adversaries has emerged and has been found
to have made some steady progress in last few years [3, 4, 5].

Again, it has been identified [2] that its not just enough to abstract the proto-
col actions through a model for its formal specification and analysis; one should
also have means of formally specifying the properties that a protocol must have.
This essentially means modelling the security requirements of a protocol as it
provides with a language for precise specification of the properties to be veri-
fied. In this paper, we have made an attempt to model the security requirement
of random key predistribution schemes for wireless sensor network. We use the
well known computational model of probabilistic turn based 21

2 -player games to
model the key predistribution schemes and have shown how this model can be
translated in formally specifying a property that these schemes should have. To
the best of our knowledge this is the first work where we show the significance
of probabilistic turn based 2 1

2 -player games in modelling security requirement
of key predistribution schemes. In the security definition of random key predis-
tribution schemes adversary is considered as a polynomial time algorithm that
may exploit oracles and security requirement is defined in terms of probability
of adversary’s success. Proposed model can exactly capture this definition of an
adversary and also being probabilistic in nature helps in precise specification of
the security requirement (of key predistribution protocol) and thereby formal
verification of the requirement being possible.

We organize the paper as follows. In Section 2, we introduce the probabilistic
turn based 2 1

2 -player game and also describe some of the properties associated
with this game. We also introduce Message Authentication Code in this section,
as it will be needed in subsequent sections. A general framework of security in
which to analyze the random key predistribution schemes for wireless sensor
network is detailed in Section 3. We describe in Section 4 a random key predis-
tribution scheme and illustrate how security of such a scheme can be analyzed

336 D. Mukhopadhyay and S. Roy

under the general framework discussed in Section 3. The applicability of the
probabilistic turn based 2 1

2 -player game in modelling security requirement of
random key predistribution schemes and also its relevance in formally verifying
it is justified in Section 5. Conclusions of our work and the future line of research
are described in Section 6.

2 Preliminaries

2.1 Probabilistic Turn Based 21
2 Player Game

A turn-based probabilistic 2 1
2 -player game graph G = ((S, E), (S1, S2, SO), δ)

consists of a directed graph (S, E), a partition (S1, S2, SO) of the finite set S
of states, and a probabilistic transition function δ : SO → D(S), where D(S)
denotes the set of probability distributions over the state space S. The states in
S1 are the player 1 states, where player 1 decides the successor state; the states
in S2 are the player 2 states, where player 2 decides the successor state; and
the states in SO are the probabilistic states, where the successor state is chosen
according to the probabilistic transition function δ. We assume that for s ∈ SO

and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0. Sometimes we designate by s0 the
”start state” and indicate the game graph by Gs0 . s0 can only belong to S1 or
S2 and if s0 ∈ Si, then the player i starts the game, for i = 1, 2.

Plays and Strategies: A play in the game graph Gs0 is an infinite sequence
α =< s0, s1, . . . , sk, sk+1, . . . > of states such that (sk, sk+1) ∈ E for all k ∈ N .
For each k ∈ N , we denote by α(k) the kth state in the sequence α, i.e., α(k) =
sk. For a state s0 ∈ S, we write Ωs0 for the set of all plays that start from s0.
A strategy for player 1 is a function ρ : S∗.S1 → D(S) (or ρ : S+.S1 → D(S), if
s0 /∈ S1) that assigns a probability distribution to all finite sequences w ∈ S∗.S1
(or w ∈ S+.S1) of states ending in a player1 state. A strategy must prescribe
only available moves, i.e., for all w ∈ S∗ (or w ∈ S+), s ∈ S1, and t ∈ S,
if ρ(w.s)(t) > 0, then (s, t) ∈ E. The strategies for player 2 can be defined
analogously. We denote by Σ and Π the set of all strategies for player 1 and
player 2 respectively.

Once a starting state s0 and strategies ρ ∈ Σ and π ∈ Π for the two players
are fixed, the outcome of the game is a random walk αρ,π

s0
∈ Ωs0 for which

the probabilities of events are uniquely defined, when an event E ⊆ Ωs0 is a
measurable set of paths. For the start state s0 and an event E ⊆ Ωs0 , we denote
by Prρ,π

s0
(E) the probability that a path belongs to E if the game starts from

the state s0 and the players follow the strategies ρ and π, respectively. The
strategies that do not use randomization are called pure. A player1 strategy ρ
is pure if for all w ∈ S∗(or w ∈ S+) and s ∈ S1, there is a state t ∈ S such that
ρ(w.s)(t) = 1. A strategy that is not necessarily pure is called randomized. A
strategy ρ for player 1 is called memoryless if ρ is a map from S1 to D(S), i.e.,
ρ : S1 → D(S). Memoryless strategy for player 2 can be defined similarly. Thus,
a strategy which doesn’t depend on the whole history of the play, but only on the
current state(vertex of Gs0) is called a memoryless strategy. A pure memoryless

A Game Based Model of Security for Key Predistribution Schemes 337

strategy of player 1 is thus a function ρ : S1 → S such that (s, ρ(s)) ∈ E for all
s ∈ S1. Note that in the game graph Gs0 if player 1 follows a pure memoryless
strategy ρ, then that can be interpreted as an 1 1

2 -player game played on the
game graph Gρ

s0
, where Gρ

s0
is a subgraph of the game graph Gs0 obtained by

removing the edges (s, t) ∈ E of Gs0 such that ρ(s) �= t.

Objectives: The decision who wins a play in the game Gs0 is fixed by an ω-
regular set Φ ⊆ Ωs0 , and is referred as the winning objective the game. Objectives
of the two players are complementary, i.e., if the objective of one player is Φ, then
the objective of the other player is Ωs0/Φ. For a play α =< s0, s1, s2, . . . >, let
Inf(α) be the set {s ∈ S : s = sk for infinitely manyk ≥ 0} of states that occur
infinitely often in α. For a set F of final states, reachability objective in the game
Gs0 is defined as ReachF = {α =< s0, s1, s2, . . . >∈ Ωs0 : sk ∈ F for some k ≥
0}, and Büchi objective in the game Gs0 is defined as BüchiF = {α ∈ Ωs0 :
Inf(α)∩F �= ∅}. Let, p be a function p : S → {0, 1, 2, . . . , d} assigning a priority
p(s) to every state s ∈ S, where d ∈ N . The even parity objective is defined
as Even(p) = {α ∈ Ωs0 : min

s∈Inf(α)
{p(s)}is even}, and the odd parity objective

can be equivalently defined. Büchi objective can be derived from an even parity
objective with priority function p : S → {0, 1} such that p(s) = 0 iff s ∈ F , and
p(s) = 1 otherwise, and reachability objective comes as a special case of Büchi
objective, where all states of F are absorbing, i.e., if s ∈ F , and (s, v) ∈ E, then
s = v. In this paper, we only consider reachability objective for our purpose. But
still we make special mention of Büchi and parity objectives, for, certain results
that hold for 2 1

2 -player parity game thus holds good for 2 1
2 -player reachability

game too.
Given reachability objective ReachF ⊆ Ωs0 for player 1

and Ωs0/ReachF for player 2 corresponding to the game Gs0 ,
we define V al1(ReachF)(s0) and V al2(Ωs0/ReachF)(s0) for
players 1 and 2, respectively, as follows,V al1(ReachF)(s0) =
sup
ρ∈Σ

inf
π∈Π

Prρ,π
s0

(ReachF), and V al2(Ωs0/ReachF)(s0) = sup
π∈Π

inf
ρ∈Σ

Prρ,π
s0

(Ωs0

/ReachF). In other words, V al1(ReachF)(s0) gives the maximal probabil-
ity with which player 1 can achieve her objective ReachF from ”start state”
s0, and analogously for player 2. Form the determinacy result of 21

2 -player
parity games [7], following then can be written for the game graph Gs0 with
reachability objective.

Theorem 1. For a 2 1
2 -player game with reachability objective, played on the

game graph Gs0 , we have V al1(ReachF)(s0) + V al2(Ωs0/ReachF)(s0) = 1.

A strategy ρ in the game graph Gs0 for the player 1 is called optimal for
the objective ReachF if V al1(ReachF)(s0) = inf

π∈Π
Prρ,π

s0
(ReachF). The opti-

mal strategies for player 2 can be analogously defined. Computing the values of
V al1(ReachF)(s0) and V al2(Ωs0/ReachF)(s0) for players 1 and 2 respectively,
is referred as the quantitative analysis of the game. The quantitative decision
problem for the game graph Gs0 is, given a real number ε ∈ (0, 1], to determine
whether V al1(ReachF)(s0) > ε. It has been shown in [6] that pure memoryless

338 D. Mukhopadhyay and S. Roy

optimal strategies exist for quantitative 2 1
2 -player parity games and hence holds

true for the 2 1
2 -player game played on the game graph Gs0 with reachability ob-

jective, for it being a special case of the former. Once a pure memoryless strategy
for a 2 1

2 -player parity game is fixed, we then have a 1 1
2 -player parity game, for

which the following result is known.

Theorem 2. Quantitative 1 1
2 -player parity games can be solved in polynomial

time by solving a linear program.

A detailed description on the procedure of finding the quantitative solution of
1 1

2 -player parity games can be found in [6].

2.2 Message Authentication Code

We now describe what it means for a MAC to be secure, but we start by defining
MAC which are keyed hash functions. A hash family is a four tuple (X ,Y,K,H),
where X is a set of possible messages, Y a set of authentication tags, K a finite
set of possible keys and H a set of hash functions. For each K ∈ K, there is a
hash function hK ∈ H such that hK : X → Y. We assume that X and Y are
both finite sets and such that |X | ≥ 2|Y|. A pair (x, y) ∈ X × Y is said to be
valid under the key K if hK(x) = y.

The objective of an adversary is to try to produce a pair (x, y) that
is valid under an unknown but fixed key, K ∈ K. The adversary is al-
lowed to request (up to) q valid MACs on messages x1, x2, . . . , xq of his
own choice. Adversary thus obtains a list of valid pairs (under the unknown
key K): (x1, y1); (x2, y2); . . . ; (xq, yq) by querying the oracle with messages
x1, x2, . . . , xq. Then, the adversary outputs the pair (x, y), it is required that
x /∈ {x1, x2, . . . , xq}. If this pair (x, y) comes out to be a valid pair with respect
to the unknown key K, then the pair is said to be a forgery. If the probability
that the adversary outputs a forgery is at least ε, then the adversary is said to
be an (ε, q) forger for the given MAC. For a particular value of q, let us now
define the deception probability Pdq to be the maximum value of ε such that
(ε, q) forger exists. Suppose, (x1, y1); (x2, y2); . . . ; (xq, yq) is a set of valid pairs
under the unknown but fixed key K. Now, let x′ ∈ X , where x′ �= x. Define
pK{(x′, y′)|(x1, y1); (x2, y2); . . . ; (xq, yq)} to be the probability that (x′, y′) is a
valid pair under the key K, given that (x1, y1); (x2, y2); . . . ; (xq, yq) are also valid
pairs under the same key. Then, it can be computed as follows:

pK{(x′, y′)|(x1, y1); (x2, y2); . . . ; (xq, yq)}= |K∈K:y′=hK(x′),y1=hK(x1),...,yq=hK(xq)|
|K∈K:y1=hK(x1),...,yq=hK(xq)| .

We can then compute Pdq using the following formula: Pdq =max{pK : K ∈ K}.

3 A Security Framework for Key Predistribution
Schemes

In this section, we describe a general framework in which to analyze the secu-
rity of random key predistribution schemes, borrowed from [8]. We first define

A Game Based Model of Security for Key Predistribution Schemes 339

key predistribution schemes and the ”basic” level of security desired from them,
which essentially captures the idea that an adversary should (except with low
probability) be unable to determine the key shared by some pair of nodes. A
stronger notion of security is then imposed on these schemes by requiring that
an adversary remains unsuccessful in inserting a bogus message which gets ac-
cepted as legitimate by one of the nodes. Adversary’s attempt to deceive a node
by inserting a bogus message can be seen as an attack against message authenti-
cation code and a successful attack thus defeats the purpose of key predistribu-
tion schemes. This justifies why such a stronger notion of security is required -
a formal definition of which is given in sequel.

Key predistribution schemes can be seen as being composed of algorithms
for key generation, key distribution, and key derivation. In the randomized key
generation phase, some master secret information S is established. Given S and
a node identity i, a key distribution algorithm randomly picks a subset Si of S
and generates information ki which will be stored by node i. Finally, during the
key derivation phase, two distinct nodes i and j holding ki and kj respectively,
execute an algorithm Derive and output a shared key Kij ∈ {0, 1}l or ⊥ if no
such key can be established. Execution of the algorithm by node i is denoted
as Derive(ki, i, j) and such that Derive(ki, i, j) = Derive(kj , j, i) = Kij . It is
not mandatory for every pair of nodes i and j to be able to establish a key
Kij �= ⊥ and the probability with which i and j can establish such a key Kij(�=
⊥) is called the connectivity probability of the scheme. Let’s now assume that
adversary has compromised x randomly-selected nodes {i1, i2, . . . , ix} and thus
the piece of information he has access to is I = {(i1, ki1), (i2, ki2), . . . , (ix, kix)}.
Adversary’s aim is then to output (i, j, K), where i, j /∈ I and K ∈ {0, 1}l
represents its ”guess” for the key Kij . Basic level of security demanded from these
key predistribution schemes is then to ensure that probability of adversary’s
success in correctly guessing the key Kij has to be negligibly small.

In order to define a stronger notion of security, in [8] key predistribution
schemes have been augmented with an additional message authentication algo-
rithm and message verification algorithm. For the sake of simplicity, we con-
sider here that these algorithms are implemented as Message Authentication
Codes(MACs). Therefore, once nodes i, j establish a shared key Kij �= ⊥, node i
can authenticate its communication to node j (j can authenticate its communi-
cation to node i similarly) by sending the pair (m, tag), where tag = hKij (m) for
some hash function h. On receiving (m, tag) node j checks whether tag is really
equal to hKij (m) or not. If it is, then accepts the message, otherwise rejects. For
completeness, we define h⊥(m) �= tag for all m, tag.

Cryptographic key predistribution then can be defined by the following game.
We assume as before that adversary has compromised x randomly selected nodes,
and has learnt the information I = {(i1, ki1), (i2, ki2), . . . , (ix, kix)}. Addition-
ally, an adversary can make unbounded number of message authentication re-
quests of the form h̄(m, i′, j′), with the effect that node i′ authenticates message
m for node j′ (using key Ki′j′) and returns the resulting tag = hKi′j′ (m) to
the adversary. One standard practice to study security of MAC is to provide

340 D. Mukhopadhyay and S. Roy

the adversary with a random oracle which it can query to get message-tag pairs
valid under a secret key. So, adversary’s ability to make message authentication
requests of the form h̄(m, i′, j′) can be justified by saying that it has access to
some random oracle and we consider q as the bound on the number of oracle
queries that it can make. Fixing this bound q limits the computational capabili-
ties of the adversary since making unbounded number of message authentication
requests is impossible otherwise.

Adversary then attempts to output (i, j, m∗, tag∗) and its success depends on
satisfaction of the following two conditions: (1) hKij (m∗) = tag∗ (this requires,
Kij �= ⊥), and (2) he had never requested h̄(i, j, m∗) or h̄(j, i, m∗). So, adver-
sary’s ability to ”insert” a bogus message m∗ which gets accepted as valid by
one of the nodes i and j even though neither has authenticated this message is
considered as its success. Let us now denote probability of adversary’s success
conditioned on the values of S and I by Pr[Succ|S, I]. A scheme will be called
(λ, ε, δ)-secure cryptographic key predistribution scheme if, for any adversary run-
ning in time T we have,

PrS,I [Pr[Succ|S, I] ≤ ε] ≥ 1− δ

as long as the number of compromised nodes is less than λ. In this paper, we at-
tempt to formally model this security requirement of key predistribution scheme.

4 A Key Predistribution Scheme and Its Security
Analysis

4.1 Polynomial Pool Based Key Predistribution Scheme

Polynomial-based key predistribution protocol was first described in [9]. A t-
degree symmetric bi-variate polynomial f(x, y) =

∑t
i,j=0 aijx

iyj over a finite
filed Fq, where q is a large prime, is randomly chosen by the key setup server.
It is assumed that each sensor node has a unique ID. For each node i, the
setup server computes f(i, y) and this single variate polynomial share is pre-
distributed to node i. Thus, for any two sensor nodes i and j, node i can compute
the key f(i, j) by evaluating f(i, y) at point j, and node j can compute the
same key f(j, i) = f(i, j) by evaluating f(j, y) at point i. This scheme is t-
collusion resistant since a coalition of up to t compromised sensor nodes can
not reveal the bivariate polynomial and hence the pairwise key between any two
non-compromised nodes still remains secure.

A random key predistribution technique based on the polynomial based
scheme described above, called polynomial pool based key predistribution [10],
is what we consider here in this paper as an example. In this scheme, pairwise
key establishment is done in three phases: setup, direct key establishment, and
path key establishment.

Setup: Setup server randomly generates a pool S of bi-variate t-degree symmet-
ric polynomials over the finite field Fq such that |S| = s, where |.| denotes the
cardinality of a set. For each sensor node i, setup server then randomly picks a

A Game Based Model of Security for Key Predistribution Schemes 341

subset Si of S with |Si| = s′, and for each f ∈ Si, assigns the polynomial share
f(i, y) to node i. It is recommended that this random selection of subsets should
be evenly distributed over S.

Direct Key Establishment: The main issue in this phase is the polynomial
share discovery problem, which specifies how to find a common bi-variate poly-
nomial of which both nodes have polynomial shares. One simplest way to do
so is to let two sensors exchange the IDs of polynomials of which they both
have shares, and then to identify the common polynomial. This method of es-
tablishing key reveals the subset assignment (Si) pattern among nodes to the
adversary. Alternate method which hides this information from an adversary is
called private shared-key discovery and goes as follows. Sensor node i that ini-
tiates the process establishing key with node j sends to j an encryption list α,
EKv (α), where Kv = fv(i, j), for v = 1, 2, . . . , |Si|, is a potential pairwise key
between them and α is a challenge. Node j then attempts to decrypt EKv (α)
with K

′
v = fv(j, i), for v = 1, 2, . . . , |Sj|, and the value of K

′
v for which the

challenge α gets revealed is considered as the pairwise key between them, since
that ensures existence of some v = m, such that Kv = fv(i, j) = fv(j, i) = K

′
v.

A pairwise key established in this phase is called a direct key and henceforth the
secure link established using this key is referred as direct link.

Path Key Establishment: If two sensors fail to establish a direct key, then
they need to start path key establishment phase. To establish a pairwise key
with node j, sensor node i needs to find a sequence of nodes between itself and
node j such that any two adjacent nodes in this sequence can establish a direct
key. Such a sequence of nodes is called a key path and the key established in this
way is called an indirect key and henceforth the secure link established using
this key is referred as indirect link. In this context, we assume that two adjacent
nodes in a path not only can establish direct key, but also they are neighbors of
each other with respect to wireless communication range.

4.2 Security Analysis

A graph formed out of the nodes in a sensor network as vertices and with edges
connecting a pair of nodes if and only if (1) they can establish a direct key, and
(2) within wireless transmission region they can reach each other. This graph
is called a key sharing graph. We assume here that key sharing graph is fully
connected and the probability that an edge exists between a pair of vertices is
denoted by p (also called connectivity probability). Security of the polynomial
pool based key predistribution scheme can then be calculated in probabilistic
terms for two different cases.

Two nodes share a direct key: When two nodes can establish a direct key for
secure message authentication then that essentially means that two nodes share
a common bivariate polynomial. Now, in this case an adversary can achieve
success in either of the following two ways - 1) by compromising the common
bivariate polynomial between the sensor nodes, and 2) by launching a successful
attack on MAC.

342 D. Mukhopadhyay and S. Roy

The probability of launching a successful attack on MAC when adversary
is allowed to make q oracle queries is given by Pdq, which has already been
discussed in an earlier section. We will now calculate the probability that a
bivariate polynomial (common key space) is compromised and will denote this
probability by Pcd. From the security analysis in [9], it follows that an attacker
can only determine non-compromised keys established with a polynomial only
when he/she has compromised more than t sensor nodes that have shares of this
polynomial. Assume an attacker has compromised x sensor nodes out of total N
nodes in a network. Thus, for x ≤ t, Pcd = 0. Lets now consider the case when
x > t. Let f be any polynomial in S. The probability of f being chosen for a
sensor node is s′

s , and the probability of this polynomial being chosen exactly i
times among x compromised sensor nodes is,

P [i compromised shares] =
x!

(x− i)!i!
(
s′

s
)i(1− s′

s
)(x−i).

Thus, the probability of a particular bivariate polynomial being compromised
(when x ≥ t) is Pcd = 1−∑t

i=0 P [i compromised shares].
Let A denote the fact that two nodes share a direct key, B denote that common

key space between them is compromised, and C denote the fact that an attack
against the MAC is successful. The independence between the events B and C
can be safely assumed. Then, the probability that a direct link between two
non-compromised nodes is not compromised is given by,

Pdirect = P (A).P (Bc ∩ Cc) = p(1− Pcd)(1 − Pdq).

Two nodes share an indirect key: When two sensor nodes will fail to
establish a direct key, then they will establish an indirect key through path
discovery. In this context, we assume that topology of the network gurran-
tees that such a pair of nodes will always be able to find an intermediate
node with which both the nodes can establish a direct key and thus help-
ing key establishment through path discovery being possible. Now, an adver-
sary can achieve success through any one of the following ways - 1)by com-
promising the intermediate node facilitating the key establishment, 2)by com-
promising the common bivariate polynomial between intermediate node and
at least one of the sensor nodes (who are trying to establish the key), and
3) by launching a successful attack on MAC. Let A denote the fact that two
nodes share an indirect key, B denote that intermediate node is compromised,
C denote the fact that common bivariate polynomial of the intermediate node
with at least one of the sensor nodes is compromised, and D denote the fact
that an attack against the MAC is successful. The independence between the
events B, C, and D can be safely assumed. Then, the probability that an in-
direct link between two non-compromised nodes is not compromised is given
by,

Pindirect = P (A).P (Bc ∩Cc ∩Dc) = (1− p)(1− x

N
)(1− Pcd)2(1− Pdq).

A Game Based Model of Security for Key Predistribution Schemes 343

Therefore, the probability that any secure link (direct or indirect) between two
non-compromised nodes is not compromised can be estimated by,

Psecure = Pdirect + Pindirect = (1−Pcd)(1− Pdq){p + (1− p)(1− x

N
)(1−Pcd)}.

5 Modelling Security of Key Predistribution Schemes

In this section, we show how 2 1
2 -player probabilistic game discussed in Section 2

finds its application in modelling security requirement of random key predistri-
bution schemes for wireless sensor network. Let there be N nodes in a wireless
sensor network and out of which x(≤ N) nodes are compromised by an adversary.
We denote the remaining N − x uncompromised nodes as 1, 2, . . . , N − x = k,
and let U = {1, 2, . . . , k}. We have already described that adversary’s success
corresponds to its ability in inserting a bogus message which gets accepted as
valid by one of the uncompromised nodes i and j even though neither has au-
thenticated this message. Without loss of generality, let us fix this node to be k
which accepts the bogus message as valid and considers as if it has been sent by
some other node j from the set of uncompromised nodes U .

An adversary’s attempt to cheat a node by sending bogus message, can be
seen as a game played between the adversary and the set of uncompromised
nodes, where a win in the game corresponds to adversary’s success. We thus
consider adversary as player 1, the set of nodes comprising U − {k} as player 2,
and the node k, adversary’s target as player random. The game will be played
on the game graph Gs0 = ((S, E), (S1, S2, SO), δ) (Figure 1) where

1. S = {s0, s1, s2, s3} with S1 = {s0, s1}, S2 = {s2} and SO = {s3} are the
set of states with S1, S2, SO denoting the corresponding states of player 1, 2
and random respectively.

2. The set E of directed arcs consists of the following E = {(s0, s2); (s2, s0); (s0
, s3); (s3, s0); (s3, s1); (s1, s1)}. The state s0 ∈ S1, is the start state of the
game and hence player 1(the adversary) starts the game.

3. The probabilistic transition function δ : SO → D(S) is such that δ(s3) =
μ(μ ∈ D(S)) such that μ(s0) = Psecure and μ(s1) = 1 − Psecure. The term
Psecure has already been explained in Section 4.

For this game to be played on the game graph Gs0 , we consider here a reachability
objective with F = {s1} as the set of final states. Note that because of the
directed arc (s1, s1) ∈ E the states in F are absorbing.

The game gets started at state s0 by the adversary who aims to cheat node
k by sending bogus message. In the process, it could have chosen any node from
the set U − {k} to obtain valid message-tag pairs. In order for that it sends
message m to node j ∈ U − {k} and this we model in the game as player 1
from state s0 chooses the successor state as s2. On receiving the message m,
node j computes tag = hKjk

(m) and sends it back to the adversary. This can be
interpreted in the game as player 2 chooses the successor state as s0. In order
to cheat k, adversary outputs the pair (m∗, tag∗) and sends it to node k. Thus,

344 D. Mukhopadhyay and S. Roy

s2

�

s1

�

�

s3

�

�

�

s0

Fig. 1. Probabilistic 2 1
2 -player game graph Gs0

from state s0, player 1 can also select s3 as the successor state. Now, whether
node k will accept the pair (m∗, tag∗) as valid or not depends on whether the
secure link (direct or indirect) between the nodes j and k is compromised or
not. From the analysis given in Section 4, it therefore follows that the pair
(m∗, tag∗) is accepted as valid with probability 1 − Psecure, while it gets re-
jected with probability Psecure. This we model in the game as player random
from state s3 can select the successor states as s0 or s1 with μ(s0) = Psecure

and μ(s1) = 1 − Psecure respectively, depending on whether the pair (m∗, tag∗)
gets rejected or not. Correspondingly, when player random selects the successor
state as s1, game then stays there forever. This thus ensures that reachability
objective is met since s1 is the only final state in the game and hence player 1
wins.

From the game graph its evident that at any point of time in a play, from state
s2 ∈ S2, player 2 can only select s0 as the successor state. This can alternatively
be stated as - player 2 is following a pure memoryless strategy π : S2 → S
such that π(s2) = s0. Whereas in any move of player 1, it can select any one of
the state from the set {s2, s3} as the successor state. Player 1 thus can adopt
randomized strategy to win the game and also its strategy may depend on the
history of the game. The reason for this discrimination in strategy is that we
are interested in seeing how good a strategy of player 2 is against any possible
sequence of moves of player 1 and thus helping us to analyze the robustness of
the key predistribution scheme.

From Theorem 1, it follows that the above defined game to be played on the
game graph Gs0 (Figure 1), being a probabilistic turn based 21

2 -player game
with reachability objective is determined. Again, since player 2 is following a
pure memoryless strategy, so we can consider this to be an 1 1

2 -player game and
as such from Theorem 2 it follows that the game can be solved for its quanti-
tative solution in polynomial time. Note that, the value of V al1(ReachF)(s0),
here in this context gives the maximum probability with which player 1 can suc-
ceed in cheating node k by sending bogus message. Since quantitative optimal
strategies exist, so we assume here that adversary will play the game using this

A Game Based Model of Security for Key Predistribution Schemes 345

strategy to increase his chances of success to a maximum to attain the value
V al1(ReachF)(s0) and this of-course is true when an adversary can play the
game for an unbounded amount of time. But, in the definition of the (λ, ε, δ)-
property its given that adversary is running in time T . So, what we essentially
need to look for is the maximum probability with which player 1 can meet its
winning objective within time bounded by T .

Since we only need to account for the running time of an adversary, so
in the context of our game, we assume that time used by player 1, and
not player 2 or player random, is counted as the time used by the game.
We also assume here that player 1 spends unit time in selecting the suc-
cessor state from each of its state in S1. For any α ∈ Ωs0 and for any
k ∈ N , we define, Indexα

k = {i ∈ N : i < k and α(i) ∈ S1}. Note
that, for any α ∈ Ωs0 , we have Indexα

0 = ∅. Given that player 1 is run-
ning in time bounded by T , we can partition the winning objective ReachF

as Reach≤T
F ∪ (ReachF − Reach≤T

F), where Reach≤T
F = {α ∈ Ωs0 : α(k) ∈

F for some k ≥ 0 such that k = min{k′ ∈ N : α(k′) ∈ F} and |Indexα
k | ≤ T }.

Its now clear that Reach≤T
F consists of those plays from ReachF , for which

player 1 can ensure a win in the game within time bounded by T . In a sim-
ilar line, we can then define V al1(Reach≤T

F)(s0) as the maximum probability
with which player 1 can ensure a win in the game graph Gs0 (Figure 1) with
reachability objective within time bounded by T and that is exactly what we
need for the purpose of specifying the (λ, ε, δ)-property. In this paper, we don’t
deal with the problem of computing the value of V al1(Reach≤T

F)(s0) for any
probabilistic 2 1

2 -player game and also don’t attempt to answer the question
whether optimal strategies exist for that or not. We leave these questions as
open.

Since V al1(Reach≤T
F)(s0) < V al1(ReachF)(s0), and if V al1(Reach

)
F (s0) ≤ ε,

then it necessarily implies that probability of success for any adversary run-
ning in time T is bounded above by ε. But, if V al1(ReachF)(s0) > ε, then
V al1(Reach≤T

F)(s0) can either be greater than or less that equal to ε. The
fact that V al1(ReachF)(s0) can assume different values can be justified by
saying that with the value of x varying, the probability with which the ran-
dom player selects the successor state also changes, since in the definition of
Psecure the term x is involved. So, with each value of x ∈ [0, N], we can
associate V al1(Reach≤T

F)(s0) as the probability of adversary’s success condi-
tioned on the values of S, I and also when the adversary is running in time T .
PrS,I [Pr[Succ|S, I] > ε] can then be calculated as the fraction of the values of
x ∈ [0, N] for which V al1(Reach≤T

F)(s0) > ε. Let, y be the number of differ-
ent values of x for which Pr[Succ|S, I] is greater than ε and as such, we have
PrS,I [Pr[Succ|S, I] > ε] = y

N+1 .
Note that, (λ, ε, δ) security property of a random key predistribution scheme

can be equivalently written as PrS,I [Pr[Succ|S, I] > ε] ≤ δ. Hence, from above,
we should have, y

N+1 ≤ δ and hence y ≤ δ(N + 1). Since, the probability of
adversary’s success monotonically increases with each additional node being
compromised, so corresponding to each y ≤ δ(N + 1), we have a set of val-

346 D. Mukhopadhyay and S. Roy

ues of x for which Pr[Succ|S, I] > ε and we denote this set by Xy. Note that,
X0 = ∅ and Xy−1 ⊂ Xy for all 0 ≤ y ≤ �δ(N + 1)� and thus Xδ(N+1)� contain-
ing all possible values of x for which Pr[Succ|S, I] > ε. Average of the values
of x ∈ Xδ(N+1)� then can be considered as an estimate for λ and hence we

set λ = � x∈X�δ(N+1)� x

|X�δ(N+1)�| �. Its clear now from the above discussion that as long

as the number of compromised nodes is less than equal to � x∈X�δ(N+1)� x

|X�δ(N+1)�| �,
PrS,I [Pr[Succ|S, I] > ε] ≤ δ and hence justifying our claim that this value can
indeed be considered as an estimate for λ.

6 Conclusion

We have thus shown that how probabilistic 2 1
2 -player turn based games can be

used to model random key predistribution schemes in wireless sensor network
and have also demonstrated how this model facilitates in precise specification of
(λ, ε, δ) security property desired out of these schemes. We emphasize that the
framework presented here is a work in progress and much work remains to be
done. Our work also leaves few questions as open. First, for a probabilistic 21

2 -
player turn based games with reachability winning objective how to evaluate the
maximum probability with which a player 1 can force a win in the game within
time bounded by T , i.e., how to calculate the value of V al1(Reach≤T

F)(s0). We
also have provided a means to estimate the value of λ given ε and δ. Naturally,
the next question is how good this estimate for λ is and whether we can improve
upon this.

References

1. Lowe, G.: An attack on the Needham-Schroeder Public-Key Authentication Pro-
tocol. Information Processing Letters 56(3) (1995) 131–133

2. Syverson, P.F., Meadows, C.: Formal Requirements for Key Distribution Protocols.
In: Santis, A. D.(eds): Advances in Cryptology, Eurocrypt 94. LNCS, vol. 950.
Springer-Verlag (1995) 320–331

3. Kremer, S., Raskin, J.-F.: A game-based verification of non-repudiation and fair
exchange protocols. CONCUR 2001 - Concurrency Theory. LNCS, vol. 2154.
Springer-Verlag (2001) 551–565

4. Morselli, R., Katz, J., Bhattacharjee, B.: A Game-Theoratic Framework for An-
alyzing Trust-Inference Protocols. 2nd Workshop on Economics of Peer-to-Peer
Systems Cambridge MA USA (2004)

5. Mahimkar, A., Shmatikov, V.: Game-Based Analysis of Denial-of-Service Preven-
tion Protocols. 18th IEEE Computer Security Foundations Workshop (CSFW05)
(June 2005) (to appear)

6. Chatterjee, K., Jurdziński, M., Henzinger, T. A.: Quantitative stochastic parity
games. SODA’04 SIAM (2004) 114–123

7. de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games.
STOC’01 ACM Press (2001) 675–683.

A Game Based Model of Security for Key Predistribution Schemes 347

8. Du, W., Deng, J., Han, Y. S., Varshney, P. K., Katz, J., Khalili, A.: A Pairwise
Key predistribution Scheme for Wireless Sensor Networks. ACM Transactions In-
formation and System Security (TISSEC) 8(2) (2005) 228–258

9. Blundo, C., Santis, A. D., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.:
Perfectly-Secure Key Distribution for Dynamic Conferences. In Proceedings of
the 12th Annual International Cryptology Conference on Advances in Cryptology.
LNCS, vol. 740. Springer-Verlag (1992) 471–486

10. Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In
Proceedings of the 10th ACM conference on Computer and communication security
(2003) 52–61

11. Eschenauer L., Gligor, V. D.: A key-management scheme for distributed sensor
networks. In Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security (2002) 41–47

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 348 – 356, 2005.
© Springer-Verlag Berlin Heidelberg 2005

E-mail Worm Detection Using the Analysis of Behavior*

Tao Jiang1, Wonil Kim2,** , Kyungsuk Lhee1, and Manpyo Hong1

1 Digital Vaccine and Internet Immune System Laboratory,
Graduate School of Information and Communication, Ajou University,

Suwon, Korea
{taojiang, klhee, mphong}@ajou.ac.kr

http://iislab.ajou.ac.kr
2 College of Electronics and Information Engineering, Sejong University,

Seoul, Korea
wikim@sejong.ac.kr

http://dasan.sejong.ac.kr/~wilkim

Abstract. With the appearance of a number of e-mail worms in recent years, we
urgently need a solution to detect unknown e-mail worms rather than using the
traditional solution: signature-based scanning which does not deal with the new
e-mail worms well. Our collected data shows that the quantitative trend of e-
mail worms is really exploding. In this paper, we propose an e-mail worm De-
tection System that is based on analysis on human and worm behavior for de-
tecting unknown e-mail worms. Message data such as e-mail or short messages
are the result of human behavior. The proposed system detects unknown worms
by assessment of behavior in communication because human behavior and
worm behavior have different projection on data.

1 Introduction

An obvious trend of Internet worms is the application of mass-mailing [2,5]. Almost
all of the major virus and worms have utilized mass-mailing since March 1999 of
Melissa accident. Kaspersky Lab presents the most active top 20 virus for several
months in 2004 and the report indicates that More than 70% of them employ the ap-
proach of mass-mailing [1,2].

E-mail worms are malicious e-mails which contain an executable attachment or
script and propagate themselves to other user's e-mail box by tricking victim users
into running the malicious functions. Since an e-mail worm is extremely simple to
create, a huge amount of e-mail worms and their variants are active in the Internet
with rapid birth of new sorts of worms. The collected data showing the exploding
trend of e-mail worms are presented in Table 1 [5].The traditional solution, the signa-
ture-based detection, depends on the manually created signatures which are effective
only for known e-mail worms. In order to detect varied e-mail worms, we should
focus on the mechanism which is able to detect the unknown worm.

 * This research is supported by the ubiquitous Autonomic Computing and Network Project, the

Ministry of Information and Communication (MIC) 21st Century Frontier R&D Program in
Korea.

** Author for correspondence: +82-2-3408-3795.

 E-mail Worm Detection Using the Analysis of Behavior 349

Table 1. Observed worms from 1998 to 2003

Category 1998 1999 2000 2001 2002 2003
Conventional Worm 1 1 0 10 3 4
E-mail Worm 1 18 44 93 159 192

Many systems are proposed in an attempt to detect unknown e-mail worm, such as
Bayesian Classifier of email, Sandbox for suspicious code, and auto analysis of at-
tachment of email [8]. However, the content of message is not the nature of worm and
examination of the purpose of the executable code is an extremely complex work.

To overcome these weaknesses, we advance a new approach here: because e-mail
messages are data strongly related to human will, by comparing the characteristics of
user behavior and worm behavior at the client side, we could recognize whether a host
is infected by any e-mail worm.

The rest of the paper is organized as follows: we describe related work in Section 2.
In Section 3, we present the proposed unknown e-mail worm detection system. Next,
in Section 4, we give details on how to conduct a characteristic formulation and some
created formulations. Further simulation data is showed in Section 5. Finally, we
summarize our work in Section 6.

2 Related Work

To protect Internet from the threat of e-mail worms, a number of solutions have been
proposed by researchers.

The Malicious Email Filter, MEF, is a system integrating with UNIX mail server
and detects malicious Windows attachments [12]. Its core idea is that by using
data-mining, knowledge of known malicious executables can be generalized to detect
unknown malicious executables. The detection rate of the MEF is up to the relevance
between the known malicious executable and the unknown malicious executable.
The weakness is that the e-mail worm maker could change the code byte sequence
easily to make it different from the appeared pattern of the malicious code. Especially
considering various versions of compilers existed in Windows platforms, which could
produce different bytes, the detection relying on data mining on pattern of malicious
code may not be effective in discovering the e-mail worms with unknown code
patterns.

A system that relies on the observation that e-mail worms send messages at a high
rate is designed to limit the propagation of e-mail worms [11]. The system is deployed
on mail server to throttle the rapid e-mails from a particular user. Therefore, a weak
point is that the system could be fooled on the estimation of a particular user when e-
mail worms use a fake sender address. On the other hand, if the e-mail worms slow
down the propagation speed under the threshold value, the system would not try to
throttle it.

Our contribution is that we do not consider data semantic of e-mail attachment
which most of existing detection systems used. Judgment on e-mail attachment is
usually relevant to platform implementation and prior knowledge on appeared e-mail
worms. The proposed detection system focuses on the deviation between worm

350 T. Jiang et al.

behavior and user behavior. Moreover, we base our approach on macro view of whole
system activity and communication caused by user.

3 Proposed Worm Detection System

In nature, human beings have spirit or life, but worm is machine code. Different na-
ture decides that worm’s behavior and human being’s are destined to be different. Our
behavior comparison works effectively on a data strongly relating to human’s activa-
tion. In other words, the characteristics of data are decided by human beings and are
affected by individual’s habit. For instance, E-Mail and an Instant message in ICQ are
such kind of data. Another point of crucial importance is that comparison occurs be-
tween a single user’s behavior and worm’s behavior. Different users have different
habits so the corresponding communication shows difference. However, worm’s be-
havior will interrupt projection of human’s habits and show its own particular charac-
teristic so we construct our comparison on a basis of knowledge of user’s behavior.
Each person has his own habit of using email or other message techniques. Some
would like to send all e-mails on morning. Some keep frequent correspond with old
friend or boss. Some use only one e-mail account. These are human’s personal habit.
We can see other common habits among people: different friends have different
communication frequency; different style of the words of the message. Some research
even report that it is possible to judge the gender of the sender of an e-mail by the
content recognition [10].These human’s habit are mapped on data of e-mail in the
form of time, size, name, frequency etc.

When worm is active, the characteristic of data will show a difference, contrast
with the human’s habits. We consider this variation of value of the characteristics as
the evidence of worm infection.

The proposed worm detection system presented in Figure 1 is made up of four
components: data gathering, characteristic evaluation, profile of user behavior and
behavior comparison. The data gathering component is responsible for watching

Fig. 1. Components Diagram of the Worm Detection System

 E-mail Worm Detection Using the Analysis of Behavior 351

Internet traffic and gathering data under the definition of characteristic formulations.
The characteristic evaluation component receives the selected data from data gather-
ing component and calculates the characteristic value under the definition of the char-
acteristic formulation. Next, it will submit the characteristic value array to the behav-
ior comparison component or to the profile of user behavior as an updating data. Pro-
file of user behavior is a database recording the characteristic value representing user
behavior. In the behavior comparison component, the characteristic value from both
characteristic evaluation component and profile of user behavior component are com-
pared to decide whether an ongoing behavior is following the user behavior.

Our worm detection system starts to work through three stages. First stage, the
formulation stage, we formulate the data characteristics which are distinct from
human and worm and describe these characteristics with equations (discussed in
Section 4). Second stage, the training stage, we learn a user’s history behavior and
record these characteristics with the equations. In this stage, we are actually to record
the characteristic of user’s habit. Third stage, the work stage, we reply on user’s
recorded characteristic which is a reference to monitor the user’s communication data.
In other words, after getting the user’s characteristic data in second stage, then we
enter the comparison stage. If behavior characteristics being monitored deviate from
our recorded data (user’s characteristic), then we conclude that a worm has infected
user’s machine. Our method mainly detects whether a host is infected or not. Here, we
are to focus on how to detect E-mail worm via our comparison theory.

4 Characteristic Formulation

We consider a typical user who uses e-mail for work. He/she receives or sends e-mails
to others everyday. It may seem nothing special here, but it reveal an important charac-
teristic: when e-mail was send out, recipient is already in user’s address book or recipi-
ent comes from an e-mail in in-box. We define that all address in the user’s address
book and those from an e-mail of in-box are in ‘Former Address’ class. Thus, all other
recipients that appear in user’s e-mail communication belong to ‘New Address’ class.
Usually, they send email to ‘Former Address’ most of the time and ‘New Address’
sometimes, but ‘Former Address’ make up the majority of e-mails [13]. To the con-
trary the e-mail worm would try to spread as vast as possible by mass-mailing, usually
including an e-mail address harvest technique [2]. After the load of worm code, it will
search all directories in the machine to absorb all possible address for spreading so we
can deduce that proportion of ‘New Address’ will increase, when worm begins to
spread. To describe this characteristic, we define function AddrRatio().

AddrRatio()=Number of New Address/Number of Former Address . (1)

We also consider user’s own mailbox account (sender address). When users use
Outlook, they can choose which e-mail account to send their mail (if users have more
than one e-mail account). For typical users, they have several different e-mail
accounts for business and private. While a worm is transporting malicious e-mail to
e-mail server, it is not easy for the worm to get what the user’s own address is. The
worms have to create or randomly choose an email address in user’s computer as a
fake ‘sender’ [2]. We treat ‘sender’ that appeared in the user behavior learning stage
(second stage) as ‘Former Sender’. Thus, all other ‘sender’s that appear in user’s

352 T. Jiang et al.

communication in comparison stage belong to ‘New Sender’ class. To describe this
characteristic, we define function SenderRatio().

SenderRatio()=Number of New Sender/Number of Former Sender . (2)

When users download or send e-mail via user’s server at company or a website
such as Hotmail, normally, they set up a server for receiving and a server for sending
for each corresponding account in user’s client. When users are sending a e-mail,
user’s e-mail client will connect with the mail server according to user’s configuration
and user’s mail are buffered in the server and sent to destination by the server. This
process always comprises an authentication part so usually a worm can not take ad-
vantage of user’s sending service server but has to use its own server list or connect
directly to the recipient's server [2]. We deduce that there would be more
MTA(Message Transfer Agent) servers connected when a worm is active [7]. To
describe this characteristic, we define function Server().

Server()=Number of Server / Time . (3)

One of the common characteristics of viral e-mail is that these mails contain at-
tachment with same size and same content. Actually, this attachment is the body of
worm [2]. Of course human’s behavior can also cause mail communication with this
characteristic. Considering users do not do this all the time, we still use this character-
istic as one of the worm’s behavior characteristics. To describe this characteristic, we
define function AttachSizeVar(k) which means the variation of size of attachment.

AttachSizeVar(k)= (Attach SizeK-(KAttach Size/k))2 . (4)

When trying to connect with a message transfer server, the client will execute a
request of mail exchange record [7]. Since most of e-mail worm send e-mail by di-
rectly connecting with recipient’s server [2], we treat the variation of the quantity of
MX(Mail eXchange) request as another characteristic of worm’s behavior. To de-
scribe this characteristic, we define function MXReq ().

MXReq()=Number of MX Request/ Time . (5)

A typical user sends a certain number of mails during a day. Worm also do the
same job during a day while the quantity would be considerably different. We could
imagine that it is easy for a worm to send out hundreds of mails in a minute [2]. Ob-
viously, this is not a human behavior. To describe this characteristic, we define func-
tion Mail().

Mail()=Number of Mail/ Time . (6)

By putting further research on both human behavior and worm behavior, we can
create more characteristics implying worms’ action in the future work.

5 Simulation

In the simulation, we trace and record the communication data of active worm and a
user, then make comparisons. We select NetSky.C and MyDoom.M because they are
two of most active e-mail worms in the recent months [1, 3, 4].

 E-mail Worm Detection Using the Analysis of Behavior 353

A client is supposed to be an infected computer on which we run worm code and
the network monitor for recording data [6]. This client also includes some other appli-
cation and internet cache, which contains useful address for worm. An address book
with 50 contacts and in-box filled with 40 mails from “Former Address” are estab-
lished in the Outlook. We ask the user to use this client freely for a week, gathering
normal e-mail communication for comparison. All measures here are to best simulate
a typical user’s computer.

MyDoom. M NetSky. C

Fig. 2. The number of Former Address and New Address

Fig.2 show that the value of RatioAddr() is much larger than 1 since the number of
“New Address” actually overwhelm the number of “Former Address”. In the contrast,
the user’s value of RatioAddr() is less than 0.2.

MyDoom. M NetSky. C

Fig. 3. The number of Former Sender and New Sender

Fig.3 shows that the value of RatioSender() is almost infinite because the number
of ‘Former Sender’ is nearly zero and the number of ‘New Sender’ is relatively big. In
contrast, the user’s value of RatioSender() is zero since the user always uses the same
two e-mail accounts of his own. Further, note that the huge number of “New Sender”
is apparent viral behavior.

354 T. Jiang et al.

Fig. 4. The number of MTA server

Fig.4 means how many IP address of MTA servers appeared in a period (30 seconds)
[7]. The value of Server() is much diverse from the user to worms. The main reason is
that worms in the simulation establish a direct connection to recipient’s server. In con-
trast, the user is connecting with only one MTA server in a short period [7].

Fig. 5. The size(KB) of email attachment Fig. 6. The number of Mail Exchange
request

Fig.5 shows that the value of AttachSizeVar() of worms is zero as they send them-
selves by e-mail and each e-mail carries a file of same size [3, 4] because Attach-
SizeVar() calculates the value of variation of attachment size. Contrarily, the size of
the user’s attachment shows great variation.

Before establishing a connection to recipients’ server, worms send a large number
of MX requests to get IP address of MTA server [7]. As for the user, the mail client
sends a single MX request by the user’s server configuration when client tries to send
user’s e-mail. Thus, at the Fig.6, the value of MXReq() is very large for worms but
reasonably small for the user.

As we have seen in Fig.7, the value of Mail() is very distinguishable from worms
to the user [11]. The user’s e-mail is at a very low speed, compared to the high speed
of worm which is at the average level of 5~10 e-mails per 30 seconds.

 E-mail Worm Detection Using the Analysis of Behavior 355

Fig. 7. The Number of E-mail

6 Conclusions

In this paper, we propose an unknown worm detection system based on comparison of
worm behavior and user’s behavior. The core of proposed system is that we should
create characteristic formulations indicating characteristics which distinguish human
being’s behavior from worm’s behavior. Our contribution is that our mechanism
takes into account the difference between human behavior and worm behavior. We
also advise some characteristics for e-mail worm detection. As we have seen in simu-
lation, the proposed system works effectively since our carefully chosen characteris-
tics changed significantly between user’s behavior and worm’s behavior. Such un-
known worm detection system on the basis of analysis of behavior is effective when
the objective of comparison is the data strongly relating to user’s will and habit, such
as e-mail, instant message, and short message.

References

1. Kaspersky Lab, Virus Top Twenty for (October, September, August) 2004, Http://www.
viruslist.com/ en/analysis?pubid (154331948,153837339,153837687)

2. Kaspersky Lab, Network Worms, http://www.viruslist.com/en/viruses/encyclopedia?
Chapter=152540408

3. Kaspersky Lab, Mydoom.m, http://www.viruslist.com/en/viruses/encyclopedia?virusid=57
410

4. Kaspersky Lab, Netsky.C, http://www.viruslist.com/en/viruses/encyclopedia?Virusid=
22746

5. Darrell M. Kienzle and Matthew C. Elder," Recent Worms: A Survey and Trends," Pro-
ceedings of the WORM 03, 2003

6. Microsoft Corp, About Network Monitor 2.0, http://msdn.microsoft.com/library/ de-
fault.asp? url=/library/en-us/netmon/netmon/about_network_monitor_2_0.asp

7. W.Richard Stevens, "TCP/IP Illustrated Volume 1 the Protocols," Addison-Wesley Press,
2001

8. InSeon Yoo and Ulrich Ultes-Nitsche,"How to Predict Email Viruss Under Uncertainty,"
Proceedings of the 23rd IEEE International Performance, Computing and Communications
Conference, 2004

356 T. Jiang et al.

9. Matthew M. Williamson, "Throttling Viruses: Restricting propagation to defeat malicious
mobile code, " Proceedings of the 18th Annual Computer Security Applications Confer-
ence, 2002

10. Malcolm Corney, Olivier de Vel, and Alison Anderson1 George Mohay, "Gender-
Preferential Text Mining of E-mail Discourse," Proceedings of Computer Security Appli-
cations Conference (ACSAC'02), 2002

11. Matthew M. Williamson, "Design, Implementation and Test of an Email Virus Throttle,"
Proceedings of the 19th Annual Computer Security Applications Conference, 2003

12. Matthew G. Schultz, Eleazar Eskin, Erez Zadok, Manasi Bhattacharyya, and Salvatore J.
Stolfo, "Malicious Email Filter - A UNIX Mail Filter that Detects Malicious Windows Ex-
ecutables,'' Proceedings of USENIX Annual Technical Conference, 2001

13. Tao Jiang, Wonil Kim and Manpyo Hong, "Unknown Worm Detection via Behavior Com-
parison," Proceedings of the Workshop on Information Security Application, 2005

Verifiably Encrypted Signature Scheme Without
Random Oracles

M. Choudary Gorantla and Ashutosh Saxena

Institute for Development and Research in Banking Technology,
Road No. 1, Castle Hills, Masab Tank, Hyderabad - 500057,

Andhra Pradesh, India
gmchoudary@gmail.com, asaxena@idrbt.ac.in

Abstract. Verifiably encrypted signature is a useful mechanism for
fair exchange especially, for online contract signing. In this paper, we
propose a verifiably encrypted signature scheme using bilinear pairings.
The scheme is secure against existential forgery under chosen message
attack and extraction, without random oracles.

Keywords: Fair Exchange, Verifiably Encrypted Signature, Bilin-
ear Pairings, Random Oracles.

1 Introduction

Electronic commerce is conducting business communications over networks and
through computers. It usually involves two distrusted parties exchanging items
with each other, for instance a payment via an electronic check for a digital
movie over the Internet. When commercial transactions are conducted in such
distributed environments, it is difficult to assess the counter-party’s trustworthi-
ness. Fair exchange is the problem of exchanging data in a way that guarantees
that either all participants obtain what they want, or none do [1].

Contract signing is a particular form of fair exchange, in which the parties
exchange commitments to a contract; typically, containing the terms of the deal.
In the case of online contracts, a commitment is often identified with the party’s
digital signature on the contract. The main properties a contract signing proto-
col should guarantee are fairness and timeliness [2], [3]. A protocol between Al-
ice and Bob is fair for Alice if, in any situation where Bob has obtained Alice’s
commitment, Alice can obtain Bob’s commitment regardless of Bob’s actions.
Optimistic fair exchange protocols [4] that employ a “time-out” mechanism, ei-
ther leaves one player “hanging” for an unacceptably long time (if the time-out
is too long), or exposes the other player to an unacceptable risk of being cheated
(if the time-out is too short). Not only this is a great inconvenience, but also
leads to a real loss in the case of time-sensitive data like forex and stock quotes.

A Verifiably Encrypted Signature (VES) enables optimistic fair exchange [5],
[6] over the Internet, especially online contracts. It relies on a trusted third party
called Adjudicator, in an optimistic way, that the adjudication is only needed

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 357–363, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

358 M.C. Gorantla and A. Saxena

in cases where one participant attempts to cheat the other or simply crashes.
Another key feature of VES is that a participant can always force a fair and
timely termination, without the cooperation of the other participants. It uses
no “time-out” mechanism and neither party can be left hanging or cheated so
long as the adjudicator is available.

A VES enables the verifier to test that a given ciphertext is the encryption of
a signature on a given message. Alice creates a VES on a message by using her
private key and an Adjudicator’s public key. The verifier, Bob is convinced that
the encrypted signature is indeed of Alice, which he verifies using the public
keys of Alice and the Adjudicator. Even though Bob does not have the capabil-
ity of decrypting the VES, the verification is performed without deducing any
information about Alice’s signature. At a later stage on agreed terms, Bob can
either obtain the original signature from Alice or approach the adjudicator with
the VES, in case of dispute. The adjudicator extracts and gives Alice’s signature
to Bob, if the given VES is valid.

VES schemes using bilinear pairings were proposed by Boneh et al. [6] and
Zhang et al. [7] with security proofs in random oracle model [8]. Roughly speak-
ing, a random oracle is a hash function H : X → Y chosen uniformly at random
from the set of all functions {h : X → Y } (assuming Y as infinite set). It is ob-
served that the security proofs in the random oracle model do not always imply
the security of the actual scheme in the “real world” and “behaving like a ran-
dom oracle” is not a property that can be realized in general [9]. Moreover, to
this day nobody was able to formalize precisely the requirements on the cryp-
tographic hash functions in the schemes [8], [10], [11], which are using random
oracle model.

Boneh and Boyen [12] proposed a short signature scheme which is secure
against existential forgery under chosen message attack without random oracles.
Based on this short signature, we propose a new verifiably encrypted signature
scheme using bilinear pairings. To the best of our knowledge, our scheme is the
first verifiably encrypted signature scheme secure against existential forgery un-
der chosen message attack and extraction, without random oracles.

The organization of the paper is as follows: Section 2 briefly describes the
necessary background concepts. Section 3 presents the proposed verifiably en-
crypted signature scheme. Section 4 analyzes the scheme. Finally, we conclude
our work in Section 5.

2 Background Concepts

In this section, we first briefly describe bilinear pairings and some related math-
ematical problems, which form the basis of security for our scheme. Later, we
review the base signature scheme [12].

2.1 Bilinear Pairing

We use cryptographic bilinear pairing, which is a modified Weil pairing [13] to
construct our scheme. The pairing is defined as e : G1 ×G1 → G2 where G1 is

Verifiably Encrypted Signature Scheme Without Random Oracles 359

an additive cyclic group of prime order p, G2 is a multiplicative cyclic group of
the same order and P is an arbitrary generator of G1. A cryptographic bilinear
pairing has the following properties:

Bilinear: For any R, S ∈ G1, e(aR, bS) = e(R, S)ab ∀ a, b ∈ Z∗
p . This can be

restated as, for any R, S, T ∈ G1, e(R+S, T) = e(R, T)e(S, T) and e(R, S+T) =
e(R, S)e(R, T).

Non-degenerate: There exists R, S ∈ G1 such that e(R, S) �= IG2 , where IG2

denotes the identity element of the group G2.

Computable: There exists an efficient algorithm to compute e(R, S) ∀R, S ∈ G1.

The group G1 is a subgroup of the additive group of points of an elliptic curve
E/Fp and the group G2 is a subgroup of the multiplicative group of a finite field
F ∗

p2 .

2.2 Discrete Logarithm Problem

The Discrete Logarithm Problem (DLP) in G1 is defined as: Given 〈P, Q〉 for
some Q ∈ G∗

1, compute a such that Q = aP for some a ∈ Z∗
p .

The DLP in G1 is assumed to be computationally hard and can be efficiently
reduced to DLP in G2 [14].

2.3 The Strong Diffie-Hellman Assumption

The q-Strong Diffie-Hellman Problem (q-SDH) problem in (G1, G2) is defined
as: Given a (q+1)-tuple (P, aP, a2P, ..., aqP) as input, compute a pair (c, 1/(a+
c)P), where c ∈ Z∗

p . An algorithm A has an advantage ε in solving q-SDH in
G1 if

Pr
[
A(P, aP, ..., aqP) = (c,

1
a + c

P)
]
≥ ε

q-SDH Assumption. For any probabilistic, polynomial time algorithm the prob-
ability of solving q-SDH problem is negligible [6].

2.4 Short Signature Without Random Oracles

The short signature scheme without random oracles proposed in [12] is described
as below.

Let (G1, G2) be bilinear groups where |G1| = |G2| = p for some large prime p
and let the message to be signed m, is an element of Z∗

p . Note that the message
domain can be extended to all {0, 1}∗ using a collision resistent hash function
H : {0, 1}∗ −→ Z∗

p . The signature scheme is described as below.

Key Generation: Pick a generator P ∈ G1 and x, y ∈ Z∗
p , randomly. Compute

u = xP, v = yP ∈ G1 and z = e(P, P) ∈ G2. The private key is (x, y) and public
key is (P, u, v, z).

Sign: Given a private key (x, y) ∈ Z∗
p and a message m ∈ Z∗

p , pick a random
r ∈ Z∗

p and compute σ = 1
(x+m+yr)P ∈ G1. Here, 1

(x+m+yr) is computed modulo

360 M.C. Gorantla and A. Saxena

p. In the unlikely event that x + m + yr = 0, we try again with a different r.
The signature is (σ, r).

Verify: Given a public key (P, u, v, z), a message m ∈ Z∗
p and a signature (σ, r),

accept the signature as valid if the below equation holds and reject otherwise.

e(σ, u + mP + rv) = z

In [12], the authors proved that the scheme is secure against existential forgery
under chosen message attack without random oracles, assuming the hardness of
q-SDH problem.

3 Proposed VES Scheme

A VES scheme consists of three entities:

Signer: Creates the VES using his private key and adjudicator’s public key
Verifier: Verifies the VES using the public keys of signer and adjudicator and

obtains the original signature either from signer or from adjudicator at a
later stage

Adjudicator: Trusted entity who can extract the original signature of the
signer in the case of disputes.

Now, we present our VES scheme, which is based on the short signature scheme
in Section 2.4. Our scheme has seven phases namely, KeyGen, Sign, Verify, Ad-
jKeyGen, VES-Creation, VES-Verification and Adjudication. The KeyGen, Sign
and Verify phases correspond to Key Generation, Sign and Verify of the base
scheme respectively. AdjKeyGen generates key pair of an adjudicator using the
Key Generation of the base scheme. Given the private key of the signer and
the public key of adjudicator, a VES is generated in the VES-Creation phase.
The verification of the VES is performed in the VES-Verification phase using
the public keys of the signer and adjudicator. In the Adjudication phase, an ad-
judicator extracts the original signature on the message from the VES using his
key pair and signer’s public key.

Let the user’s private key be (x, y) ∈ Z∗
p and public key be (P, u, v, z) ∈ G1.

Similarly, let the adjudicator’s private key be (xAd, yAd) ∈ Z∗
p and public key

be (PAd, uAd, vAd, zAd) ∈ G1.

VES-Creation: The signer generates a VES on a message m ∈ Z∗
p using his

private key (x, y) and adjudicator’s public key (PAd, uAd, vAd, zAd) as follows:

1. Selects a random r ∈ Z∗
p

2. Computes σV ES = 1
x+m+yr (uAd + rvAd)

The VES on the message m, 〈σV ES , r〉 is sent to the verifier.

VES-Verification: The verifier checks the validity of the VES 〈σV ES , r〉 on a
message m using the signer’s public key (P, u, v, z), and adjudicator’s public key
(PAd, uAd, vAd, zAd). He accepts it, if and only if the following equation holds:

Verifiably Encrypted Signature Scheme Without Random Oracles 361

e(σV ES , u + mP + rv) = e(uAd + rvAd, P).

At a later stage on agreed terms, the verifier requests the signer for the original
signature. The signer executes the Sign phase and gives the original signature
〈σ, r〉 to the verifier. The verifier can verify 〈σ, r〉 by executing the Verify phase.
If the signer is reluctant to cooperate with the verifier, the verifier approaches
the adjudicator with the VES 〈σV ES , r〉 for adjudication service.

Adjudication: When disputes arise between two participating entities, the adju-
dicator first ensures that the VES 〈σV ES , r〉 on a message m is valid, by execut-
ing the VES-Verification phase. Then he extracts the original signature using
his private key (xAd, yAd) as below:

σ =
1

xAd + ryAd
(σV ES)

The adjudicator gives the extracted original signature 〈σ, r〉 to the verifier. The
verifier can check its validity by executing the Verify phase.

4 Analysis

In this section, we first justify the validity of the scheme and subsequently an-
alyze its security.

4.1 Validity

The correctness of the VES verification equation is justified as below:

e(σV ES , u + mP + rv)
= e

(
1

x+m+yr (uAd + rvAd), xP + mP + ryP
)

= e
(

1
x+m+yr (uAd + rvAd), (x + m + yr)P

)
= e(uAd + rvAd, P)

The above equality implies VES-Verification(m,VES-Creation) is true. The
verification of the signature extracted from the given VES 〈σV ES , r〉, in the ad-
judication phase holds good as shown below.

e
(
u + mP + rv, 1

xAd+ryAd
σV ES

)
= e

(
u + mP + rv, 1

(xAd+ryAd)(x+m+yr) (xAd + ryAd)P
)

= e
(
(x + m + ry)P, 1

(x+m+yr)P
)

= e(P, P)

The above equality means Verify(m, Adjudication(VES-Creation(m))) is true
i.e. the verification of the signature extracted from the given VES in the adju-
dication phase holds good. Hence, our VES scheme is valid.

4.2 Security Analysis

We show that the scheme is secure against existential forgery and extraction
without random oracles.

362 M.C. Gorantla and A. Saxena

Assertion 1. If the base signature scheme is secure against existential forgery,
our VES scheme is also secure against existential forgery.

Proof. To prove the above, we show that if our VES scheme is existentially forge-
able, then the base signature scheme is also forgeable. That is if there exists a
probabilistic polynomial time adversary A existentially forging our VES scheme
with a non-negligible probability, then using A, we can construct a new proba-
bilistic polynomial time adversary A′ such that A′ can forge the base signature
scheme with non-negligible probability.

We adopt the security model given by Boneh et al. in [6]. The adversary A′

sets up a VES scheme using the base scheme as follows: A′ generates the key
pair 〈(x0, y0), (P0, u0, v0, z0)〉 which serves as that of the adjudicator. Suppose
there exists a probabilistic polynomial time adversary A for our VES scheme.
Then, A′ starts the attack by running A on the VES. If A succeeds in generating
a forged VES 〈σ′

V ES , r〉 on a message m′ then A generates a forged signature
〈σ′, r〉 of the base signature scheme on the message m′ as σ′ = 1

x0+ry0
σ′

V ES .
But, as the base signature scheme [12] is secure against existential forgery

under chosen message attack (without random oracle) assuming q-SDH problem
is hard, our verifiably encrypted signature scheme is unforgeable.

Assertion 2. If the base signature scheme is secure against existential forgery
and the DLP in G1 is hard, our VES scheme is secure against extraction.

Proof. We say that a VES on a message m is secure against extraction if, an
adversary A cannot compute the original signature 〈σ, r〉 on the message from
the given 〈σV ES , r〉. The adversary A can get the signature 〈σ, r〉 on the message
m either by forging it directly (under the public key (P, u, v, z)) or by extracting
it from the VES 〈σV ES , r〉, such that it satisfies the verification process.

Note that the base scheme [12] is proven secure against existential forgery under
q-SDH assumption without random oracles. Hence, a direct forging of the sig-
nature is computationally hard. Now, we show that extracting the original sig-
nature 〈σ, r〉 (that satisfies the verification condition), from the VES 〈σV ES , r〉
is equivalent to solving DLP. We have the VES satisfying the below equation:

e(σV ES , u + mP + rv) = e(uAd + rvAd, P) = e(P, P)xAd+ryAd

Due to Bilinearity, from the above equation, we have

e

(
1

xAd + ryAd
σV ES , u + mP + rv

)
= e(P, P)

Further, due to Non-Degeneracy, from the verification condition of the original
signature and from the above equation we have σ = 1

xAd+ryAd
σV ES . To com-

pute the original signature 〈σ, r〉, the adversary A must know the component
xAd + ryAd, which is discrete logarithm of (uAd +rvAd) to the base P in G1. As
given in section 2.2, calculating xAd + ryAd is computationally infeasible. Hence,
our VES scheme is secure against extraction.

Verifiably Encrypted Signature Scheme Without Random Oracles 363

5 Conclusions

The fair exchange problem especially online contract signing can be efficiently
handled by verifiably encrypted signatures. In contrast to the schemes in [6], [7]
which are secure in random oracle model, we proposed a verifiably encrypted sig-
nature scheme which is secure without random oracles. We analyzed the scheme
for its validity and showed that it is secure against existential forgery and ex-
traction.

References

1. Asokan, N., Shoup, V., Waidner, M.: Optimistic Fair Exchange of Digital Sig-
natures (extended abstract). In: Advances in Cryptology-Eurocrypt’98. Volume
1403 of LNCS. (1998) 591–606

2. Norman, G., Shmatikov, V.: Analysis of Probabilistic Contract Signing. In: For-
mal Aspects of Security-FASeC’02. Volume 2629 of LNCS., Springer (2003) 81–96

3. Ray, I., Ray, I.: Fair exchange in E-commerce. SIGecom Exch. 3 (2002) 9–17
4. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: A Fair Protocol for Sign-

ing Contracts (extended abstract). In: Proceedings of ICALP’85. Volume 194 of
LNCS., Springer (1985) 43–52

5. Ateniese, G.: Efficient verifiable encryption (and fair exchange) of digital signa-
tures. In: ACM conference on Computer and Communications Security-CCS’99,
ACM Press (1999) 138–146

6. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably En-
crypted Signatures from Bilinear Maps. In: Advances in Cryptology-Eurocrypt’03.
Volume 2656 of LNCS., Springer (2003) 416–432

7. Zhang, F., Safavi-Naini, R., Susilo, W.: Efficient Verifiably Encrypted Signature
and Partially Blind Signature from Bilinear Pairings. In: Progress in Cryptology-
Indocrypt’03. Volume 2904 of LNCS., Springer (2003) 191–204

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: ACM conference on Computer and Communications
Security-CCS’93, ACM Press (1993) 62–73

9. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: STOC’98, ACM Press (1998) 209–218

10. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign
with RSA and Rabin. In: Advances in Cryptology-Eurocrypt’96. Volume 3027 of
LNCS., Springer-Verlag (1996) 399–416

11. Pointcheval, D., Stern, J.: Security Proofs for Signature Schemes. In: Advances
in Cryptology-Eurocrypt’96. Volume 1070 of LNCS., Springer (1996) 387–398

12. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Advances
in Cryptology-Eurocrypt’04. Volume 3027 of LNCS., Springer (2004) 56–73

13. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing.
In: Advances in Cryptology-Crypto’01. Volume 2139 of LNCS., Springer-Verlag
(2001) 213–229

14. Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Transactions on Information Theory 39 (1993)
1639–1646

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 364 – 376, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Improved Intrusion Detection Technique for Mobile
Adhoc Networks

S. Prasanna1 and V. Vetriselvi2

1 Member Technical Staff, Sun Microsystems India Pvt Ltd,
Bangalore, India

Prasanna.Seshadri@sun.com
2 Lecturer, School of Computer Science,

College of Engineering, Anna University,
Chennai, India

vetri@cs.annauniv.edu

Abstract. In this paper, we propose a Distributed Intrusion Detection System to
protect Mobile Adhoc Networks from intruder-induced attacks. The highly dy-
namic, decentralized nature of these networks and a lack of infrastructure
means that these networks are exposed to various kinds of security threats like
spoofing, DOS attacks etc. We propose a new procedure to circumvent the in-
truder node and a technique to detect the intruder node in a co-operative manner
based on the history of the failed paths due to intrusion. The experimental setup
and the obtained results are presented discussing the various performance and
security issues in the proposed protocol.

1 Introduction

A mobile ad hoc network is a group of wireless mobile nodes capable of communi-
cating without the use of network infrastructure or any centralized administration
[1]. These kinds of networks are typically deployed in emergency situations like
disaster recovery, battlefield systems used by military, etc. The absence of a proper
infrastructure and the decentralized nature of these networks mean that the nodes
are unattended and exposed to various kinds of security threats like spoofing, DOS
attacks, etc. Moreover the intruder is also a part of the network unlike in wired
networks where the intruder may be an insider within the network or from the ex-
ternal network. The highly dynamic nature of these networks means that the topol-
ogy changes with time making traditional security mechanisms for wired networks,
obsolete.

The kind of intruder-induced attacks can be classified into two types as discussed
in [2]. 1. Attacks on the flow of data traffic and 2. Attacks on the flow of routing
traffic. In the former kind of attack, the intruder corrupts, drops, delays and replays
data packets passing by, leaving all the routing control packets unharmed. In the latter
kind of attack the intruder attacks the routing control packets. Attack on data traffic
can be further classified into two types namely the flow disruption attack and resource
depletion attack. Flow disruption attack is one in which the intruder corrupts, drops,

 An Improved Intrusion Detection Technique for Mobile Adhoc Networks 365

delays and replays data packets passing through it. A resource depletion attack occurs
when an intruder injects spurious packets into the network there by denying the
flow of legitimate traffic. In the attack on data traffic, since the intruder exchanges all
routing control information with its neighbors like link status, forwarding route re-
quests, etc but harms only data packets, existing routing algorithms won’t detect path
failure due to such intrusions [3]. They are designed only to handle path failures due
to node movements and node crashes. This work presents an improved solution to
overcome the former kind of attack, namely the attack on data traffic.

2 Related Work

There are two approaches to protect a mobile Adhoc network from intruder-induced
attacks. One approach is to circumvent or avoid the intruder by employing multi path
routing [4]. The obvious disadvantage with this approach is that the redundant path
consumes more bandwidth and not all current routing algorithms support multipath
routing. Another approach to overcome flow disruption attack and also to identify the
malicious node is to detect suspicious activities by snooping or overhearing
neighbor’s transmission. The disadvantage of this approach is that the nodes should
keep track of every packet snooped to make sure that it was not modified during the
transit, which is an additional overhead and also node movements and node crashes
will have a worst effect on the system in the sense that node movements and node
crashes affect the flow of traffic and hence leads to false alarms, resulting in innocent
nodes being detected as intruders.

Ramanujan et al [3] proposes a novel approach to overcome the attack on data traf-
fic induced by a malicious intruder node using three techniques which operate on the
network layer namely distributed wireless firewalls, overlay routing and path failure
detection. It deals about the attack on data traffic while all the routing control packets
are left unharmed. The limitation in [3] is that the mechanism used to find an intruder
free path upon detecting a path failure due to intrusion (Overlay routing) does not
guarantee an intruder free path (at the best) and also only the intrusive path is detected
but not the intruder node. We present a more improved and robust technique to detect
an alternate path, which is intruder free (at the best), and also a technique to detect the
intruder node in a co-operative manner based on the history of paths failed due to
intrusion.

3 Distributed Wireless Firewalls

We briefly summarize the working of the distributed wireless firewall as proposed in
[3] with an example topology as shown below. We assume that all the links are bi-
directional.

The firewall table of all the nodes would contain the source address, destination
address and a lifetime for that entry as shown below. Initially there will be no entry in
the firewall table.

366 S. Prasanna and V. Vetriselvi

Fig. 1. Sample Wireless Adhoc Network Topology with bi-directional links

Table 1. Firewall table maintained by a node

Source
Address

Destination
Address

Lifetime

123.4.5.6 134.5.6.6 40 sec
124.4.5.6 135.6.7.8 50 sec

In the above topology if node 1 establishes a route to node 6 via the intruder node
(I), say 1 - 2 - 12 - I - 14 - 7 - 6, the sender sends a FLOW_REQUEST packet to the
receiver before transmitting the data packets. If the receiver authenticates the sender,
it sends a FLOW_REPLY packet to the sender, which takes the reverse of the route
between 1 and 6. All intermediate nodes in the route between 1 to 6 snoops the
FLOW_REQUEST and FLOW_REPLY packets and the firewall entries of all inter-
mediate nodes in the path between 1 and 6 (including 1 and 6) will be configured i.e.
they will add the address of 1 as source and address of 6 as destination with a finite
lifetime for that entry, which means that the nodes will transfer all packets from 1 to 6
and reject all other packets (assuming that there is only one flow in the network i.e.
from 1 to 6). Now if the intruder injects spurious packets to one of the nodes say 5,
then that packet will be rejected within the neighborhood of the intruder node since it
is not a valid flow.

It has to be noted that till the end of the session, the sender and the receiver will
have to refresh the firewall entries by sending some refresh and reply packets since
the firewall entries are maintained in a soft state. This dynamic nature of the firewall
is useful because even if the intruder node moves, the firewalls in the neighborhood
region of the intruder will prevent the intruder from sending spurious packets and the
current firewalls will time out. But if the intruder attacks the data traffic from 1 to 6
by corrupting, replaying, dropping and delaying data packets, the current firewalls
will still allow the packets to pass through, because the flow between 1 and 6 is valid.
In such a case the receiver node will use some IPSEC techniques to detect these ac-
tivities. For example, the receiver can verify the checksum of the packet to detect
packet corruption, sequence numbers to detect packet losses and replayed packets,
message authentication code to verify the integrity of the packets, etc. Finally when
the attack threshold exceeds a predefined value, the receiver assumes that the current
path had failed due to intrusion.

 An Improved Intrusion Detection Technique for Mobile Adhoc Networks 367

Once the receiver has detected a path failure due to intrusion, it will stop replying
the refresh packet sent by the sender at periodic intervals of time. Subsequently the
sender will invoke a procedure to find a new path to the destination to circumvent the
intruder (assuming that the current path failed due to intrusion on not getting a re-
sponse after some tries). Meanwhile the current firewalls will timeout and the fire-
walls in the new path will be configured. [3] uses a concept of buddy nodes to select
an alternate path (a buddy node is a list of random neighbors, a node can have). In the
above case, the buddy node for 1 may be 5 and the alternate path may be 1 - 2 - 3 - 4 -
5 and 5 - 6 (i.e. 1 - 2 - 3 - 4 - 5 - 6) which is intruder free. The disadvantage of this
approach is that two routes have to be found and there is no guarantee this mechanism
will cicumvent the intruder node (say a path 1 - 10 - 11 - I - 13 - 5 and 5 - 6) in which
case the procedure has to be repeated again. Moreover only the intruder path is found
and not the intruder node.

4 Proposed Technique

Our work is inspired based on the concept of distributed wireless firewall and IPSEC
techniques for detecting the intruder path as discussed in [3]. However our approach
differs from that of [3] in the following ways. We propose a new approach to find an
intruder free path and also to detect the intruder node based on the history of the sus-
pects detected from the failed paths due to intrusion, by different nodes. If a node is
able to detect a single suspect from the history of the failed paths due to intrusion, then
that node is the intruder and the details of the intruder is broadcast to all nodes in the
network so that all nodes remove the intruder from their neighbor list and the intruder
will be denied the network resources. But if the number of suspects detected is a group
of nodes, then the nodes exchange information about their suspects with other nodes so
as to eliminate innocent nodes from their suspect list and pass their updated suspect list
to all other nodes and so on. Finally if any one node manages to find a single suspect in
common from the information exchanged, it is detected as the intruder. This kind of
technique to detect the intruder is more robust in the sense that the intruder detected is
based on the information (about suspects) from all other nodes and will be agreed by
all nodes; also the technique to detect the intruder node is based on elimination so that
there is no chance of an innocent node being detected as intruder.

In our approach we have two modes of operation namely 1) Normal mode and 2)
Intruder mode. In the normal mode, all routing algorithms operate as usual forwarding
route requests, finding a route, transmitting data packets, etc. Once a path failure due
to intrusion is detected by the receiver using some IPSEC techniques, the intruder
mode of operation comes into picture, where the algorithms we developed to circum-
vent the intruder path, to detect the intruder node based on the history of the failed
paths due to intrusion comes into action.

In our approach, the task of cooperatively finding an alternate path, which is
intruder free, depends both on the sender and the receiver. Once the receiver detects
an intruder induced path failure, the sender and the receiver nodes co-operatively
determine an alternate path and ensures (at the best) that the alternate path selected
is intruder free. In general the techniques we discuss to circumvent the intruder path
and to detect the intruder node can work above any routing algorithm as an extension.

368 S. Prasanna and V. Vetriselvi

i.e. all existing routing algorithms work as usual in the normal mode with all tech-
niques implemented to work in the intruder mode acting as an extension, monitoring
the flow. Once an intruder induced path failure is detected, the node switches to the
intruder mode where the techniques used to circumvent the intruder path and to detect
the intruder node takes full control. In short, there is no need to modify the existing
routing algorithms to incorporate these techniques but implement them as an exten-
sion to these routing algorithms so that they monitor the flow in normal mode and
takes full control once an intruder induced path failure is detected.

4.1 Detailed Working of the Proposed Technique

In the proposed technique, as noted earlier, once the receiver detects a path failure due
to intrusion, both the sender and the receiver determine the alternate path co-
operatively. The alternate path is designed to be intruder free. For finding the alternate
path, we define two additional routing control packets, which are as follows.

1. ALTERNATE_ROUTE_REQUEST packet, which will contain a list of the ad-
dress of all the nodes in the previous path, which has failed due to intrusion (ex-
cluding the sender and the receiver). We call this list as the prohibited list; also all
prohibited lists will be recorded in a log, which we call the intruder log.

2. ROUTE_FORWARD packet whose functionality will be explained below.

We define the terms prohibited list, intruder log and suspect list for easier under-
standing of the technique as explained below. All the participating nodes maintain
these three lists.

Prohibited list. A prohibited list is a list of nodes in the current path, which has
failed due to intrusion. Once a path to a particular destination is found it is stored and
once that path fails due to intrusion, the list of nodes involved in that path (excluding
the source and the destination) becomes the current prohibited list.

For example if the source node is 1 and the destination node is 6 as in the above
topology, and a path from 1 to 6 is 1 – 2 – 12 – I – 13 – 5 – 6 (an intruder path), then
when a path failure due to intrusion is detected the prohibited list will be Prohibited
list = 2 – 12 – I – 13 – 5.

Intruder log. The Intruder log is a list of prohibited lists. Once a prohibited list is
determined from a path failure due to intrusion, it is appended to the intruder log. For
example as determined above in the path 1 – 2 – 12 – I – 13 – 5 – 6, which is an in-
truder path.

Prohibited list = 2 – 12 – I – 13 – 5 and Intruder log = 2 – 12 – I – 13 – 5

If there is a flow from 1 to another destination 6 say via the path, 1 – 10 – 11 – I –
14 – 7 – 6 which is also an intruder path it will be detected and the current prohibited
list will be Prohibited list = 10 – 11 – I – 14 – 7 which will be appended to the in-
truder log. Now the intruder log will be

Intruder log
 2 – 12 – I – 13 – 5
 10 – 11 – I – 14 – 7

 An Improved Intrusion Detection Technique for Mobile Adhoc Networks 369

Suspect list. A Suspect list is a list of suspected intruder nodes determined from the
intruder log. It is determined from the number of nodes common in all individual lists
of the intruder log. For example, the above Intruder log contains node I in common.
Therefore node I is detected as the intruder. If more than one node is common in all
lists or occurs in maximum number of times from all lists, then they are called as
suspects (but not the intruders). These suspect nodes are exchanged between all the
nodes in the network to determine the exact intruder node (by eliminating innocent
nodes) as will be explained below.

We now explain the proposed scheme with the sample Adhoc Network topology
shown above. We assume that each of the two packets discussed above has a Route
record associated with it containing a unique request_id and the list of nodes in the
current route i.e. the list of nodes traversed in the current route.

The proposed scheme can be best explained by considering the sample Adhoc net-
work topology as in figure 2a below. Here we assume that node 1 is the source and
node 6 is the destination. Assuming that the route from 1 to 6 is 1 - 2 - 12 - I - 14 - 7 -
6, node 1 sends the FLOW_REQUEST packet to 6 and after authenticating the sender,
node 6 sends a FLOW_REPLY packet to the sender. The FLOW_REQUEST and
FLOW_REPLY packets will be snooped by all the intermediate nodes 2, 12, I, 14, 7
and they all add a firewall entry (including 1 and 6) similar to the one shown above.

The path from 1 to 6, i.e. 1 - 2 - 12 - I - 14 - 7 - 6 is not an intruder free path. The
intruder will corrupt, drop, replay and delay all the data packets, leaving all routing

Fig. 2. (2a) Path from 1 to 6 via the Intruder node I. (2b, 2c, 2d) Three possible alternate routes
from 1 to 6 via the ROUTE_REDISCOVERY procedure.

370 S. Prasanna and V. Vetriselvi

control packets unharmed. In this case, the receiver will use IPSEC techniques to
detect these activities as discussed above. Finally when the attack threshold exceeds a
predefined value, the receiver assumes that the current path had failed due to intrusion
and hence it will stop responding to the refresh packets from the sender. The sender
then switches to the intruder mode where the algorithms implemented to detect the
intruder comes into action. Meanwhile the firewall entries in the current path will
time out.

Now both the sender and the receiver will append the path 2 - 12 - I - 14 - 7 in
their intruder log and the current prohibited list is 2 - 12 - I - 14 - 7 (excluding the
source and destination). It has to be noted that both the sender and the receiver will keep
track of the current route between them and it becomes the prohibited list once a path
failure due to intrusion is detected. The sender will invoke ROUTE_REDISCOVERY
procedure (We assume some encryption techniques are available to make sure that the
suspect lists are exchanged securely.)

Now node 1 will check whether any of its neighbors are in the prohibited list. Node
2 is in the prohibited list so node 1 will send an ALTERNATE_ROUTE_REQUEST
packet to all its neighbors except node 2 (in this case to node 10). Also node 1 will
append its entry in the route list (list of nodes traversed) of the current route record.

Node 10 receives the ALTERNATE_ROUTE_REQUEST packet and checks
whether any of its neighbors are in the prohibited list. Now node 10’s neighbors 11
and 9 (except 1) are not in the prohibited list. Therefore node 10 will forward an
ALTERNATE_ROUTE_REQUEST packet to 11 and 9 (appending its entry in the
route list). Now two interesting case arises.

Case 1. Node 9 gets the ALTERNATE_ROUTE_REQUEST from 10 and forwards it
to 8, but node 8 has no neighbors, which are not there in the prohibited list (excluding
the source from which this request came from i.e. node 9). In this case it forwards a
ROUTE_FORWARD packet to all its neighbors, which are in the prohibited list (to
node 7 in this case). Now node 7 receives the ROUTE_FORWARD packet and for-
wards it to all its neighbors and tries to find a route to 6 1. We assume that one such
route is 1 - 10 - 9 - 8 - 7 – 6 (Fig 2b). Now node 6 keeps track of this route waiting for
more possible routes.

Case 2. Node 11 gets the ALTERNATE_ROUTE_REQUEST from 10 finds that it
has no neighbors other than 10, which are not in the prohibited list. In this case it
forwards a ROUTE_FORWARD packet to all its neighbors, which are in the prohib-

1 Note: If a node receives a ROUTE_ FORWARD packet it forwards it to all its neighbors to

find a path to the destination. The procedure employed to find the route to the destination is
similar to that used in routing algorithms like AODV [5] and DSR [6] in which all nodes
process a request once. But the significance of the ROUTE_FORWARD packet is that irre-
spective of whether a route to a destination exists in a node’s routing table or not, it has to
append its address to the list of nodes traversed in the route record and forward the
ROUTE_FORWARD packet to all its neighbors so that all possible alternate paths reach the
destination. All the nodes will process the ROUTE_FORWARD packet only once and dupli-
cates will be discarded based on the unique identifier in the route record. This procedure is
very useful to detect the intruder free path from many options and also to detect the intruder
node in case of multiple path failures as will be discussed.

 An Improved Intrusion Detection Technique for Mobile Adhoc Networks 371

ited list (to node I in this case). Now node I receive the ROUTE_FORWARD packet
and forward it to all its neighbors to find a route to 6 (assuming that it participates
correctly in the routing protocol). We assume that two such routes are 1 - 10 - 11 - I -
13 - 5 - 6 (Fig 2c) and 1 - 10 - 11 - I - 13 – 6 (Fig 2d). It should be noted that route 1 -
10 - 11 - I - 14 - 7 - 6 is not possible because node 7 has already received the
ROUTE_FORWARD packet from 8 (assuming that node 7 received the
ROUTE_FORWARD packet from 8 before 14) in the previous case and hence it
ignores the duplicate request. By a similar analogy we assume that there are no other
possible routes.

Therefore the receiver node 6 receives three ROUTE_FORWARD packets
(ROUTE_FORWARD and ALTERNATE_ROUTE_REQUEST packets are treated
as same by the receiver) from node. (The receiver waits for a finite amount of time
making sure that all possible alternate routes are got. Once the timer expires further
routes will be discarded). The three routes are

Route 1: 1 - 10 - 9 - 8 - 7 – 6,
Route 2: 1 - 10 - 11 - I - 13 - 5 - 6
Route 3: 1 - 10 - 11 - I - 13 – 6

The receiver compares three routes with each prohibited list entry in the intruder
log. Now the intruder log contains only one prohibited list, namely 2 - 12 - I - 14 - 7.
The first route (excluding the source and the destination) is compared with the prohib-
ited list. i.e. 10 - 9 - 8 - 7 with 2 - 12 - I - 14 - 7. Now only one node (node 7) matches
since it is in both the entries. Coming to the second route, 10 - 11 - I - 13 - 5 and 2 -
12 - I - 14 - 7, in this case also there is only one match, namely node I. The third route
10 - 11 - I - 13 also has one match with 2 - 12 - I - 14 - 7.

Now all the three routes have one node, which matches an entry in the prohibited
list, but Route 2 (1 - 10 - 11 - I - 13 - 5 - 6) has 6 hops whereas the other two routes
only have 5 hops. Therefore Route 2 is not favored. Now both routes, Route 1 and
Route 2 have one node, which matches an entry in the prohibited list and also have
the same number of hops (5). In this case the receiver selects a random route among
them and replies via that route to the sender. Now two special cases arise

Route 1. The receiver selects the route 1 - 10 - 9 - 8 - 7 - 6 and replies it to the
sender via the reverse path. The sender will get this route and since this route is in-
truder free and the sender will transmit all packets to the destination. Thus an intruder
free path is got. In this case all the nodes, which are there in this intruder free path,
are deleted from the suspect list maintained by the sender and the receiver.

Route 3. The receiver selects the route 1 - 10 - 11 - I - 13 - 6. As obvious, this route
is not free from the intruder. Once again, this route will fail due to intrusion and the
receiver will detect this path failure due to intrusion. Now the current prohibited list
for both the sender and the receiver will be 10 - 11 - I - 13 (excluding source and
destination). Both the sender and the receiver will append it to their intruder log.
Therefore the intruder log of node 1 and 6 contains the following routes.

Intruder log of 1 Intruder log of 6

2 - 12 - I - 14 - 7 2 - 12 - I - 14 - 7
10 - 11 - I - 13 10 - 11 - I - 13

Current prohibited list is 10 - 11 - I - 13

372 S. Prasanna and V. Vetriselvi

Now since there is more than one prohibited list in the intruder log, the sender and
the receiver will try to detect the exact intruder node by finding the common entry in
the prohibited lists recorded so far. As obvious, the intruder node I figures in both the
prohibited lists and hence the sender and the receiver have detected the intruder node
authoritatively. The sender and the receiver can invoke an alarm and transmit the
intruder node details to all other nodes in the network so that all the nodes can remove
the intruder node’s address from their neighbor list and the intruder node will be de-
nied the network resources. The system now returns to the normal mode.

It is also possible that more than one node might also figure in the entire prohibited
list or occurs in the maximum number of times in common (in different topologies).
In that case, the exact intruder node cannot be determined. But the lists of nodes,
which are common in all the prohibited lists in the intruder log, are called as suspects.
All the nodes exchange information about the suspects to other nodes in the network
periodically and nodes compare their suspects with suspect lists received from other
nodes to find a common entry in the suspect lists. This can also be used to eliminate
innocent nodes if any from the suspect list (i.e. nodes which are not in common).
Finally if any one node manages to find a single suspect (or common suspects which
can’t be eliminated) from the information exchanged, it is detected as the intruder(s).

5 Experiments

For experiments, we have developed an Ad hoc network simulator in python and
tested our IDS on different topologies. Experiments were performed to

1. Detect the intrusive behavior on a given path (using IPSEC principles, for
example, end to end authentication of packets).

2. Study how effectively the proposed technique detects an alternate path, which is
intruder free.

3. Detection of the intruder node based on the history of previous path failures due
to intrusion.

The success of the proposed Intrusion Detection System is determined by its ability
to send a predefined number of data packets to the destination circumventing the
intruder. The performance of the IDS is measured in terms of

1. The quality of the intruder free path selected (in terms of the number of hops)
2. The total time taken to send all data packets to the destination circumventing the

intruder node (this is equal to the sum of the time taken to detect a path failure due
to intrusion and the time taken to send all packets to the destination intact in the in-
truder free path selected)

3. The probability of a false path being selected as an intruder free path (which should
be ideally zero or negligible)

4. Effect of Mobility on the proposed system
5. Impact of the proposed scheme on Network performance.

The experimental setup and the obtained results were summarized below.

 An Improved Intrusion Detection Technique for Mobile Adhoc Networks 373

5.1 Experimental Setup

1. Number of nodes: 8 to 30
2. Firewall entry refresh time: 13 seconds (every 13 seconds, the sender should send a

ROUTE_REFRESH packet to the destination for which the receiver should send a
ROUTE_REFRESH_REPLY packet which will be snooped by all the intermediate
nodes in the path to refresh the firewall entry).

3. Total number of data packets sent to the destination: 200 packets with one second
delay between every packet sent.

4. Routing algorithm: Any Mobile ad hoc Network routing algorithm (DSR, AODV,
etc).

5. Attack threshold: 20 (i.e. if more than 20 packets are dropped, corrupted or replayed),
the destination node decides to abort the current transmission (by not responding to
the ROUTE_REFRESH packet sent by the source at frequent intervals)

Making certain nodes to disrupt the flow of data traffic and also to inject spurious
packets into the network simulated intruders. The attacks simulated were spurious
packet injection into the network, replay attack, dropping, delaying and corrupting
data packets corrupting data packets (modifying the headers, checksum, etc).The
obtained results were summarized below.

5.1.1 Quality of the Intruder Free Path Selected
Since the intruder free path selected is based on the route with the least number of
matches in the prohibited list with the least number of hops, the alternate path se-
lected doesn’t impose any additional overhead on the number of hops. In general, the
number of hops in the intruder free path is designed to be the shortest possible path
from the source to the destination, which is intruder free. This is the exact reason

Fig. 3. Quality of the Intruder free path in terms of number of hops

374 S. Prasanna and V. Vetriselvi

behind the use of the ROUTE_FORWARD packet so that all possible alternate path
reaches the destination and the destination selects the path with the least number of
hops and least number of matches in the current prohibited list and replies to the
sender via this path.

As shown in the graph, the number of hops in the intruder free path is less than or
equal to the number of hops in the intruder path. Since in finding the intruder free
path, the least number of matches in the current prohibited list is taken into account,
therefore a path in which there is less or no match with the current prohibited list
takes priority. And from such paths selecting a path with the less number of hops
generally has a very high probability of having the less number of hops than that con-
tained in the intruder path.

5.1.2 Performance of the IDS
This is crucial to the functioning of the proposed system. To ensure that the perform-
ance of the proposed system is acceptable, it has to be ensured that the alternate path
has less number of hops than the intruder path and also the chances of a false path
being detected is nearly zero. As noted from the results, in almost all cases, the alter-
nate path selected is intruder free, failing which the performance of the system gets
affected drastically (The two tall lines in the middle). At the very worst case, it has to
be ensured that an alternate path selected is intruder free at least after one failure.

Fig. 4. Performance of the IDS

5.1.3 Security Ratio
The security ratio of the proposed system depends on its ability to determine an in-
truder free path effectively. As discussed above the probability of a false route being
selected as intruder free path selected should ideally be zero. From the simulation

 An Improved Intrusion Detection Technique for Mobile Adhoc Networks 375

results as noted above, it has been found that 84% of the alternate path found to cir-
cumvent the intruder is intruder free. The reason for an alternate path being a false
path is because when an alternate path is found, the node with the least number of
hops and least number of matches in the prohibited list is taken into consideration
although priority is given to the least number of matches in the prohibited list. But if
there are two paths with the same number of hops and the same number of matches
with the current prohibited list entry, any one path is selected in random. It has to be
noted that a false route being selected as an alternate path aids in determining the
intruder quickly. As explained in the example above if there is a false route selected
as intruder free route, it will only increase the number of paths failed due to intrusion
and therefore the number of suspects will be narrowed down (since there is already a
path failed) resulting in faster detection of the intruder.

Intruder log
2 - 12 - I - 14 - 7 (First prohibited list)
10 - 11 - I - 13 (Current prohibited list which is added)

As obvious from the above two entries in the intruder log, the node I is the only
node, which figures, in both the prohibited lists. Therefore it is detected as the in-
truder. Therefore at the worst case if the alternate path selected is a false path (in-
truder path), it will only aid in determining the intruder node faster.

5.1.4 Effect of Mobility on the Proposed System
The effect of mobility on the proposed scheme only aids in determining the intruder
node quickly. This is obvious from the fact that if the intruder node moves and dis-
rupts different flows, it will figure in the suspect lists of different nodes, which will
only help in detecting the intruder node quickly.

5.1.5 Impact of the Proposed Scheme on Network Performance
The two main overheads introduced in the proposed scheme are maintaining and
refreshing the firewall entries frequently and exchanging suspect lists among the
nodes to detect the intruder. As obvious any security scheme involves a performance
penalty but given the limited power constraints of Mobile ad hoc Networks, it should
be at a minimum. To ensure that the overheads involved are minimum and acceptable,
the following steps can be taken

1. The firewall entry refresh time can be increased
2. Suspect lists can be exchanged at a slower rate (at longer periods of time). This

will also ensure that the suspects maintained by a node will be narrowed down in
case the same node experiences multiple path failures due to intrusion (for different
destinations) and hence the chances of the same node detecting the intruder will be
very high without even exchanging the suspect list or if at all the suspect list is ex-
changed, it will aid in detecting the intruder at a faster rate since the suspects are
narrowed down.

Another important advantage of the proposed system is that it is somehow resilient to
attack on routing traffic also (especially in the intruder mode). Since the intruder
participates correctly in the routing protocol, the neighboring nodes will not suspect
the intruder, since the intruder corrupts, replays, drops and delays only the data pack-

376 S. Prasanna and V. Vetriselvi

ets. This means that the intruder will also forward the ROUTE_FORWARD packet.
But on the other hand even if the intruder drops the ROUTE_FORWARD packet or
replays the ROUTE_FORWARD packet in the intruder mode of operation, it will not
affect the proposed protocol. If the intruder drops the ROUTE_FORWARD packet,
then the alternate path traveling via the intruder will not reach the destination, even if
the intruder replays the ROUTE_FORWARD packet, since a node will accept a
ROUTE_FORWARD packet only once, duplicates will be discarded and it will be
filtered out within the nearest neighbor of the intruder node, thus preventing the attack
traffic from seeping through the network.

6 Conclusion

In this paper, we have presented a new approach to overcome intruder-induced attack
on data traffic. The intruder node is also identified in a co-operative manner based on
the suspects detected by different nodes from the history of the previously failed paths
due to intrusion. The above techniques can work above all routing algorithms i.e. in
the normal mode the existing routing algorithms will function as usual with all tech-
niques to detect an intruder induced path failure acting as extension, monitoring the
flow. But once an intrusive path is detected, the system switches to the intruder mode
where the techniques implemented to circumvent the intruder takes full control and
finally when an intruder free path is detected, the system again switches to the normal
mode In future, these techniques can easily extended to prevent attacks on routing
traffic also, which is a serious security threat in these kinds of networks.

References

1. RFC 2501 - Mobile Ad hoc Networking (MANET): Routing Protocol Performance Issues
and Evaluation Considerations

2. R. Ramanujan, A. Ahamad, J. Bonney, R.Hagelstrom, and K. Thurber, “Techniques For
Intrusion-Resistant Ad Hoc Routing Algorithms (TIARA),” Proc. MILCOM’2000, October
2000.

3. R. Ramanujan, S. Kudige, S. Takkella, T. Nguyen, F.Adelstein, “Intrusion resistant ad hoc
wireless networks,” Proc. MILCOM’2002.

4. A.Nasipuri and S.R. Das, “On-Demand Multipath Routing for Mobile Ad Hoc Networks,”
Proceedings of the 8th International Conference on Computer Communications and Net-
works, October 1999.

5. Charles E. Perkins and E. M. Royer. “Ad hoc on demand distance vector routing,” In IEEE
WM-CSA’99, 1999.

6. David B. Johnson, David A. Maltz, Yih-Chun Hu, “The Dynamic source routing protocol
for mobile ad hoc networks,” Internet draft, April 2003

User Revocation in Secure Adhoc Networks�

Bezawada Bruhadeshwar and Sandeep S. Kulkarni

Department of Computer Science and Engineering, Michigan State University,
East Lansing MI 48824 USA

Tel: +1-517-355-2387, Fax: 1-517-432-1061
{bezawada, sandeep}@cse.msu.edu

Abstract. We focus on the problem of user revocation in secure adhoc
networks. The current approach to achieve security in adhoc networks is
to use a secret instantiation protocol in which, each user is given a sub-
set of secrets from a common secret pool. To communicate securely, a
pair of users use the secrets that are common to both of them. However,
when users are compromised, some of these secrets are also compromised.
Hence, to revoke the compromised users, the secrets known to these users
need to be updated. Many group key management solutions exist for re-
vocation of users from a group. However, due to the limitations in adhoc
networks, i.e., lack of efficient broadcast mechanisms and lossy links, re-
vocation of users is a challenging problem. In this paper, we propose
a revocation algorithm that combines the secret instantiation protocols
with group key management protocols. Depending on the combination
of protocols used, our revocation algorithm provides deterministic or
probabilistic guarantees for revocation. We illustrate our revocation algo-
rithm by combining the square grid protocol and the logical key hierarchy
protocol.

Keywords: Secure Adhoc Networks, User Revocation, Secret Instan-
tiation Protocols, Group Key Management Protocols.

1 Introduction

Information security is necessary for users in an adhoc network. The current ap-
proach to achieve adhoc network security, including confidentiality and authen-
tication, is to load each user with a random [1] (respectively, deterministic [2,3])
subset of secrets from a common secret pool at initial deployment. Using these
shared secrets, the users establish the necessary session secrets at run-time. How-
ever, in this approach, if some users are compromised, it is necessary to revoke
these users to protect the security of the remaining users. Due to the limitations,
i.e., lack of efficient broadcast mechanisms and lossy links, revocation of users is
difficult in adhoc networks. With this motivation, in this paper, we address the
problem of user revocation in secure adhoc networks.
� This work is partially sponsored by NSF CAREER 0092724, ONR grant N00014-

01-1-0744, DARPA contract F33615-01-C-1901, and a grant from Michigan State
University.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 377–388, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

378 B. Bruhadeshwar and S.S. Kulkarni

Revocation of users from a group has been addressed by group key manage-
ment protocols [4,5,6,7]. In these protocols, the users of the group share a group
key and use it to encrypt the data. When membership of the group changes, a
group controller distributes a new group key to revoke (respectively, add) the
corresponding users. However, the group key management protocols assume an
efficient broadcast primitive and rely on the group controller for distributing the
new group key. Hence, these protocols, in their native form, are not suitable for
adhoc networks.

An alternate approach for distributing the group key is to initially send the
group key to a subset of users [8]. Now, this subset of users distribute the group
key securely to the other users in the group. However, for such group key distri-
bution, the users in the adhoc network need to be able to communicate securely
among themselves. This problem of establishing secure channels among users in
adhoc networks is addressed by secret instantiation protocols [2, 1, 9, 3].

In this paper, for user revocation, we propose an algorithm that combines the
secret instantiation protocols [1,3,2,9] and the group key management protocols
[4,5,6,7]. Depending upon the protocols used for secret instantiation and group
key management, we get different properties for revocation. Our contributions
are as follows:

– We describe a revocation algorithm for adhoc networks by combining secret
instantiation protocols and the group key management protocols. Our algo-
rithm is generic in nature and can be used to revoke users from any adhoc
network that uses secret instantiation protocols.

– We illustrate our algorithm by combining the square grid protocol (secret
instantiation protocol) [3] and the logical key hierarchy protocol (group key
management protocol) [6]. For this combination of protocols, we show that
it is possible to achieve deterministic security for user revocation.

– We consider group key distribution in two scenarios of user communication
capabilities. In the first scenario, there is an underlying support for routing
messages in the network. In the second scenario, a user can only communicate
with users in its neighborhood. Using simulation results, we show that, it is
possible to achieve complete group key distribution in both these scenarios.

Organization of the paper. In Section 2, we describe the problem of revo-
cation in adhoc networks. In Section 3, we describe our revocation algorithm.
In Section 4, we describe an instance of our revocation algorithm by combining
the square grid protocol and the logical key hierarchy protocol. In Section 5,
we evaluate group key distribution in two scenarios: with routing support and
without routing support. In Section 6, we present related work and conclude in
Section 7.

2 Problem of Revocation

Secret instantiation protocols [1, 2, 3, 9] are used to achieve initial security in
adhoc networks. In such a network, if users are compromised then it is necessary

User Revocation in Secure Adhoc Networks 379

to revoke them. Therefore, the secrets known to the revoked users need to be
updated. Furthermore, this update needs to be done in such a way that, all the
uncompromised users sharing a secret before the revocation, possess the same
updated shared secret after the revocation. And, the compromised users do not
know the updated secret. There are two approaches for updating the shared se-
crets in a consistent manner. In the first approach, the group controller transmits
these secrets securely to the users. However, this approach is undesirable as it
requires the transmission of a large number of messages. In the second approach,
the users receive a group key, k′

g, securely from the group controller and use the
following technique to update the shared secrets: k′

x = f(k′
g, kx), where kx is

the old shared secret, k′
x is the new shared secret and, f is a one-way function.

Using this technique, only those current users who knew the old shared secret,
kx, will be able to get the new shared secret, k′

x. Since the same group key is
distributed to all the users, this technique guarantees consistent update of the
shared secrets. This technique was also used in [5, 8, 7]. In our work, we adopt
the second approach and focus on group key distribution to revoke users from
secure adhoc networks.

We note that, group key distribution is relatively easy when users are added
to the group. In the group key management protocols, the group controller uses
the old group key, which not known to the new users, to send the new group key.
The users use the one-way function approach we described above, to compute
the new shared secrets. The new user receives the new group key and the shared
secrets from the group controller through a secure unicast channel. We note that,
the same approach can be used for adding users in adhoc networks and hence,
we only focus on revocation of users.

In this paper, we describe an algorithm for revocation in secure adhoc net-
works. The attractive feature of our algorithm is that the group controller is
only briefly involved in establishing the group key and the bulk of the group
key distribution is done by the users themselves. In Section 3, we describe our
revocation algorithm. In Section 4, we illustrate an instance of our revocation
algorithm.

3 Combining Secret Instantiation with Group Key
Management

The goal of the secret instantiation protocol is to provide an initial collection of se-
crets to users such that the users can utilize them to communicate securely. These
protocols can be probabilistic [1] or deterministic [2, 3]. Furthermore, these pro-
tocols may require communicating nodes to depend on intermediate users [1] or
they may assume that intermediate users are not trusted [2,3]. (By trust in inter-
mediate users, we mean that they can (or are required to) decrypt and re-encrypt
messages they forward. In all the algorithms [2, 1, 3], the intermediate users are
trusted to route the messages. However, in [2, 3], they cannot decrypt them.)

In the group key management protocol, a group of users shares a group key —
known to all the users, along with some other secrets —shared by different sub-

380 B. Bruhadeshwar and S.S. Kulkarni

sets of users. When one or more users are revoked from the group, the group key
should be changed in such a way that only the remaining users in the group can
access the new group key. The distribution of this new group key is facilitated
by the other secrets that the remaining users possess. Additionally, these pro-
tocols change any other secrets that the revoked users had in such a way that
the changed secrets are not available to the revoked users. Examples of these
protocols include [4, 5, 6, 7].

In our approach, we combine the secret instantiation protocol and the group
key management protocol as follows: initially, each user is associated with secrets
from both protocols. Now, the users utilize the secrets from the secret instan-
tiation protocol to establish secure communication. When users are revoked, in
the first step, the group controller uses the group key management protocol to
send the new group key. However, instead of sending the new group key to all
users, the group controller sends it selectively to a subset of users. Especially,
in adhoc networks it is desirable to minimize the number of messages sent by
the group controller as broadcast is an unreliable operation in these networks.
Subsequently, in the second step, other users can obtain the group key from this
subset of users using the secrets from the secret instantiation protocol. Since
the secret instantiation protocol enables two users to establish a common secret
for communication, it can be used to provide authentication and confidentiality.
Finally, the compromised secrets (i.e., secrets from the secret instantiation pro-
tocol and the group key management protocol that are known to the revoked
users) are changed locally (cf. Section 2) so that the revoked users cannot access
them. Note that the second step of the group key distribution can now occur in
parallel.

We only consider those group key management protocols that ensure that only
the remaining users get the new group key and any other secrets they shared with
revoked users (e.g., [4, 5, 6, 7]). Now, depending upon the protocol used for se-
cret instantiation, the resulting protocol will provide probabilistic/deterministic
security where intermediate nodes are trusted/untrusted. Specifically, if we use
the deterministic protocol from [2, 3], where intermediate users are not trusted,
then the resulting revocation algorithm will guarantee that after revoking users
(upto a certain limit) the remaining users can communicate with deterministic
security. Likewise, if we use the probabilistic protocol from [1], where interme-
diate users are trusted, then the resulting algorithm will guarantee that, after
revoking users, the remaining users can communicate with probabilistic security.

4 Instance of Revocation Algorithm

In this paper, we illustrate an instance of our revocation algorithm in which we
use the square grid protocol from [3] for secret instantiation and the logical key
hierarchy [6] protocol for group key management. We show that, our algorithm
retains the property of deterministic security. We proceed as follows. In Section
4.1, we describe the square grid protocol [3]. In Section 4.2, we describe the
logical key hierarchy protocol [6]. In Section 4.3, we describe the combination of
these two protocols.

User Revocation in Secure Adhoc Networks 381

4.1 The Square Grid Protocol

In the square grid protocol [3], n users are arranged in a logical square grid of
size
√

n x
√

n. Each location, 〈i, j〉, 0 ≤ i, j <
√

n, in the grid is associated with
a user u〈i,j〉 and a grid secret k〈i,j〉. Each user knows all the grid secrets that are
along its row and column. For example, in Figure 1, the grid secret associated
with 〈1, 1〉 is known to users at locations 〈j, 1〉, 〈1, j〉, 0 ≤ j ≤ 3. Additionally,
each user maintains a direct secret with users in its row and column. This direct
secret is not known to any other user. For example, user u〈1,2〉 shares a direct
secret with user, u〈1,3〉, which is located in the same row (cf. Figure 1).

0, 0 0, 1 0, 2 0, 3

1, 3

2, 32, 1 2, 2

1, 0 1, 2

3, 3

2, 0

3, 0 3, 1

1, 1

3, 2

Fig. 1. Square grid protocol: A node marked 〈j, k〉 is associated with user u〈j,k〉 and
grid secret k〈j,k〉

Now, consider the case where user A wants to set up a session key with user
B. Let the locations of A and B be 〈j1, k1〉 and 〈j2, k2〉 respectively. In this case,
A selects the session key and encrypts it using the following secret selection
protocol.

Secret selection protocol for session key establishment
for users at 〈j1, k1〉 and 〈j2, k2〉
// If users are neither in same row nor in same column
If (j1 �=j2 ∧ k1 �=k2)
Use the grid secrets k〈j1,k2〉 and k〈j2,k1〉

Else
// If users are in the same row or column
Use the direct secret between u〈j1,k1〉 and u〈j2,k2〉

Along with the encrypted session key, A also sends its own grid location (in
plain text) to B. If multiple secrets are selected by A then a combination of
those secrets (using hash functions like MD5) is used to encrypt the session key.

Theorem 1. The above secret selection protocol ensures that the collection of
secrets used by two communicating users is not known to any other user in the
system. Hence, the above protocol can be used for establishing the session key.
(cf. [3] for proof.)

4.2 Logical Key Hierarchy

In the logical key hierarchy [6] protocol, the secrets are arranged as the nodes of
a rooted tree and the users are associated with the leaf nodes of this tree. Each

382 B. Bruhadeshwar and S.S. Kulkarni

KG

U0,0 U0,1 U0,2 U0,3 U1,1 U1,2 U1,3 U2,0 U2,1 U2,2 U2,3 U3,0 U3,2 U3,3

K[1,0]-[1,3] K[2,0]-[2,3] K[3,0]-[3,3]K[0,0]-[0,3]

U1,0 3,1U

Fig. 2. Logical Key Hierarchy

user receives the secrets that are on the path from itself to the root node. As
an illustration, in Figure 2, we show the logical key hierarchy for the system of
16 users from the square grid of Figure 1. Thus, in this arrangement, user U〈0,0〉
receives the secrets K[0,0]−[0,3] and KG.

4.3 Combining of Square Grid with Logical Key Hierarchy

To combine the algorithms in Sections 4.1 and 4.2, we arrange the users in the
square grid and the logical key hierarchy protocols1. The users receive secrets
from both these protocols. As an illustration, we consider the square grid ar-
rangement in Figure 1, which consists of 16 users. Each user receives O(

√
n)

secrets from the square grid protocol.
Next, we instantiate a logical key hierarchy of degree 2 in two steps. In the

first step, we treat an entire row of users, from the square grid protocol, as a
leaf node in the logical key hierarchy i.e., a leaf node is a row of users from
the square grid. As an illustration, in Figure 3(a), we show the first step of this
instantiation in which each of leaf node is associated with an entire row of users
from the square grid protocol (cf. Figure 1). For example, in this arrangement,
the row users U〈0,0〉−U〈0,3〉 are given the secrets, K[0,0]−[0,3], K[0,0]−[1,3] and KG.

K[3,0]-[3,3]

U[3,0]-[3,3]

KG

K[0,0]-[1,3]
K[2,0]-[3,3]

U[0,0]-[0,3]

[0,0]-[0,3]K K[1,0]-[1,3]

U[1,0]-[1,3]

K[2,0]-[2,3]

U[2,0]-[2,3]

K[0,0]-[0,1]
K[0,2]-[0,3]

U[0,0] U[0,1] U[0,2] U[0,3]

K[0,0] K[0,3]K[0,2]K[0,1]

K[0,0]-[0,3]

(a) (b)

Fig. 3. Instantiation of Logical Key Hierarchy in Two Stages. Note that, the root node,
K[0,0]−[0,3], of the hierarchy in (b) is the same as the key K[0,0]−[0,3] in (a).

In the second step, we instantiate the logical key hierarchy for each row of
the users, i.e., each leaf node is a single user from a row in the square grid

1 Note that, the user organization in the grid and key hierarchy is logical. This orga-
nization does not affect the physical deployment of users.

User Revocation in Secure Adhoc Networks 383

protocol and all the leaf nodes are from the same row. As an illustration, in
Figure 3(b), we show the second step of instantiation for the users U〈0,0〉 −
U〈0,3〉, who are in the first row of the square grid protocol in Figure 1. For
example, in this instantiation, user U〈0,0〉 is given the secrets, K[0,0], K[0,0]−[0,1]
and K[0,0]−[0,3]. The number of secrets a user receives in the logical key hierarchy
is log n. Hence, the total number of secrets that the user needs to store in our
revocation algorithm is still O(

√
n).

5 Evaluation

We consider two scenarios of revocation. In the first scenario (cf. Section 5.1),
there is an underlying support for routing e.g., from [10, 11], and hence, a user
can send messages to any other user. In the second scenario (cf. Section 5.2), we
consider the case where the users can only send messages to their neighbors. In
the former case, the group controller can use the routing support to transmit the
group key to the initial set of users. In the latter case, to transmit the group key,
the group controller can use the multicast tree (e.g., built using a protocol such
as described in [12]), if such a tree is available. Otherwise, the group controller
broadcasts the encrypted group key. Although all the users may receive this
message, only the subset of users who know the appropriate shared secret, with
which the group key is encrypted, can obtain the group key.

5.1 Group Key Distribution with Routing Support

We consider two cases of revocation for the scenario when users are able to
communicate with any other user in the network with the help of underlying
routing layer. In the first case, the revoked users are located in r <

√
n rows

and in the second case, the revoked users are located in r =
√

n rows. Also, we
consider a special case of revocation when the square grid is only partially full,
i.e., some locations in the grid are not assigned to any user.

Case 1. Since the number of rows containing revoked users is <
√

n, there will be
at least one row in the square grid which does not contain any revoked users. To
distribute the group key, we observe that, if users along a row in the square grid
know the group key, they can send the group key to other users in their columns
using the direct secrets. Since the direct secrets are unique for any given pair
of users, this technique guarantees deterministic security. The group controller
selects a row(s) of users not containing revoked users and uses the shared secret
of this row(s) to transmit the group key. Specifically, the group controller uses
the shared secrets from the logical key hierarchy shown in Figure 3(a).

As an illustration, we consider revocation of the users, U〈0,0〉, U〈1,1〉, and
U〈2,2〉, from the square grid shown in Figure 1. Now, to transmit the group key,
the group controller selects a row of users, in this example U〈3,0〉-U〈3,3〉, which
does not contain any revoked users and uses the corresponding shared secret,
K[3,0]−[3,3] (cf. Figure 3(a)). Once these users receive the group key, they use
the direct secrets along their respective columns in the square grid to send it to

384 B. Bruhadeshwar and S.S. Kulkarni

other non-revoked users. For example, to send the group key, user U〈3,0〉 uses the
direct secret between itself and user U〈2,0〉. Similarly, users U〈3,1〉-U〈3,3〉, send it
to users in their columns.

To reduce the work done by each user for sending the group key, we use a
divide and conquer approach. When a user Ui receives the group key from the
group controller, it partitions the users in its column into two parts and sends
the group key, along with the partition information, to a user Uj . Now, Ui is
responsible for sending the group key to the first part. And, Uj is responsible
for sending the group key to the second part. Continuing divide and conquer
in this manner, it suffices for a user to send at most log n messages. Note that,
in this approach, some users may receive multiple copies of the group key, but
the number of messages sent by each user is bounded by log n. Furthermore, the
group controller includes an authentication message (cf. Section 5.3) which is
used by the users in the network to verify the authenticity of the group key they
receive from other users.

Theorem 2. The above revocation process guarantees deterministic security if
the revoked users are located in at most r <

√
n rows.

Case 2. When every row contains at least one revoked user, the group controller
cannot use any shared secrets associated with the rows (cf. Figure 3(a)). For this
case, the group controller sends the new group key to the users in a selected row
using a shared secret from the logical key hierarchy of that row (cf. Figure 3(b)).
Towards this, the group controller locates a shared secret that is known to a
maximum number of non-revoked users from the same row. The group controller
uses this secret to send the group key to these users. As an illustration, we
consider the revocation of users, U〈0,0〉, U〈1,1〉, U〈2,2〉 and U〈3,3〉, from the network.

In this example, the group controller selects the shared secret K[0,2]−[0,3] from
the logical key hierarchy associated with the row of users U〈0,0〉 − U〈0,3〉. The
group controller sends the group key to U〈0,2〉 and U〈0,3〉 using this shared secret.
Now, these users use the direct secrets along their row and columns to send
the group key to the other non-revoked users. In the worst case scenario of
revocation, where users from a single row are not able to cover the entire group,
the group controller sends the group key to users in different rows.

To evaluate the effectiveness of our group key distribution, we have conducted
experiments on the revocation of 50, 100 and 880 users from a group of size 1024
users arranged in a 32x32 grid. The results are as shown in Figure 4(a). We note
that, when the number of revoked users is less than 85% of the group size, the
group controller only needs to send the group key to a single non-revoked user to
achieve 100% group key distribution. In the extreme case of revocation, say for
880 users, the group controller needs to send the group key to a small number
of users from different rows, to achieve complete group key distribution.

Special Case. We consider a special case of revocation in the grids that are
only partially filled with users, i.e., some grid locations are empty. This case
occurs when a higher grid size, greater than the initial set of users, is chosen for
accommodating new users who may join the network at a later stage. We have

User Revocation in Secure Adhoc Networks 385

0

20

40

60

80

100

1 1.5 2 2.5 3 3.5 4 4.5 5

%
 o

f
U

s
e

r
s
 R

e
c
e

iv
in

g
 t
h

e
 G

r
o

u
p

 K
e

y

Number of Senders

Grid Size=32x32

Revoked Users=50
Revoked Users=100
Revoked Users=880

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

%
 o

f
U

s
e

r
s
 R

e
c
e

iv
in

g
 t
h

e
 G

r
o

u
p

 K
e

y

Number of Initial Senders

Grid Size=32x32 Actual Users=512 (50%)

Revoked Users=20
Revoked Users=50

Revoked Users=100
0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

%
 o

f
U

s
e

r
s
 R

e
c
e

iv
in

g
 t
h

e
 G

r
o

u
p

 K
e

y

Number of Initial Senders

Grid Size=32x32 Actual Users=256 (25%)

Revoked Users=20
Revoked Users=50

Revoked Users=100

(a) (b) (c)

Fig. 4. Group Key Recovery with Routing Support for Grids 100, 50 and 25% full

considered the grids that are 25 and 50% filled and, simulated the revocation of
20, 50 and 100 users. We show the results of our experiments in Figures 4(b)-(c).
We note that, even for such grids, the group key recovery is 100%.

5.2 Local Group Key Distribution

In this section, we consider group key distribution when a user is limited to send-
ing messages to only users in its neighborhood. We use the term neighborhood
to denote users within a certain hop distance, typically, 1− 3 hops from a user.
A user can learn about these nodes by querying its immediate neighbors for a
list of their neighbors. Thus, the number of nodes in the neighborhood depends
upon the network density and the number of hops.

Now, depending on the information available with the group controller, we
consider two cases. In the first case, the group controller has no knowledge about
the neighborhood relations of the users, i.e., the group controller does not know
which users are in the neighborhood of a user. In the second case, the group
controller knows which users are in the neighborhood of a user.

Case 1. To send the group key, initially, the group controller randomly selects
a set of non-revoked users. The number of these selected users is based on the
average neighborhood size of the users. Once the selected users receive the group
key, they transmit the group key to users in their neighborhood with whom they
share direct or grid secrets from the secret instantiation protocol.

To illustrate our technique, we have considered revocation of 20, 50, and 100
users from a group of 1024 users arranged in a 32x32 square grid. We note
that, to revoke 20 users, the group controller can use the technique we described
in Section 5.1 as the revoked users are along < 32 rows. However, complete
group key distribution may not be guaranteed due to the limited communication
capabilities of the users. We show the results of our experiments for different
neighborhood sizes in Figures 5(a)-(c). When the neighborhood of users is around
5− 10 users, for a sparse network, the number of users recovering the group key

386 B. Bruhadeshwar and S.S. Kulkarni

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

%
 o

f
U

s
e

r
s
 R

e
c
e

iv
in

g
 t
h

e
 G

r
o

u
p

 K
e

y

Number of Initial Senders

Grid Size=32x32 Revoked Users=20

5
10
25
35

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

%
 o

f
U

s
e

r
s
 R

e
c
e

iv
in

g
 t
h

e
 G

r
o

u
p

 K
e

y

Number of Initial Senders

Grid Size=32x32 Revoked Users=50

5
10
25
35

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

%
 o

f
U

s
e

r
s
 R

e
c
e

iv
in

g
 t
h

e
 G

r
o

u
p

 K
e

y

Number of Initial Senders

Grid Size=32x32 Revoked Users=100

5
10
25
35

(a) (b) (c)
Fig. 5. Group Key Recovery with Only Local Transmissions

is only around 3−60%. When the neighborhood size is around 25−35 users, the
group key recovery is 100%, depending on the number of revoked users and the
number of initial senders contacted (cf. Figure 5(a)-(c)). Thus, to obtain 100%
distribution of group key, the neighborhood size should be 25 − 35 users. This
can be achieved by contacting neighbors within a certain hop distance until the
number of nodes in this neighborhood increases to the desired value. Also, note
that a user only contacts a subset of the users in this neighborhood; it only has
to contact nodes with whom it can communicate securely in spite of possible
collusion among the revoked users.

Case 2. When the group controller has information about the neighborhood of
users, to send the group key, the group controller chooses the initial set of users
in such a way that the users they can reach is non-overlapping. Towards this,
first, the group controller selects a non-revoked user and computes all the users
who are covered by this user and, its neighbors. Now, to select the next sender,
the group controller selects a non-revoked user who is not in the set covered by
the previous sender and its neighborhood. Further, the group controller repeats
this process until the entire group is covered and then, transmits the group key
to the set of the selected users.

As in Case 1, we have considered the revocation of 20, 50, and 100 users from
the same network topology consisting of 1024 users arranged in the 32x32 grid.
From the results in Figure 6, we observe that, for a neighborhood size of 25
users, the group controller achieves 100% group key recovery by contacting only
a small set of initial senders.

5.3 Authentication

Note that, based on the properties of the square grid and the logical key hier-
archy protocols, our revocation algorithm ensures confidentiality. We have not
addressed the issue of authentication in specific detail as there are several ap-
proaches [13,8] to achieve authentication. Depending on the application require-
ments, the group controller selects the appropriate authentication protocol.

User Revocation in Secure Adhoc Networks 387

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

%
 o

f
U

s
e

r
s
 R

e
c
e

iv
in

g
 t
h

e
 G

r
o

u
p

 K
e

y

Number of Initial Senders

Grid Size=32x32 Revoked Users=20

5
10
25

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

%
 o

f
U

s
e

r
s
 R

e
c
e

iv
in

g
 t
h

e
 G

r
o

u
p

 K
e

y

Number of Initial Senders

Grid Size=32x32 Revoked Users=50

5
10
25

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

%
 o

f
U

s
e

r
s
 R

e
c
e

iv
in

g
 t
h

e
 G

r
o

u
p

 K
e

y

Number of Initial Senders

Grid Size=32x32 Revoked Users=100

5
10
25

(a) (b) (c)

Fig. 6. Group Key Recovery in Local Transmissions with Neighborhood Information

6 Related Work

Approaches for distributing group keys in secure groups are described in [4,5,6,7].
These approaches, however, cannot be applied directly to adhoc networks as
they are intended for a wired network model. Furthermore, these approaches
are stateful, in that, they require the users to receive specific key updates in
order to recover the group key. However, such a requirement cannot be easily
satisfied in adhoc networks where the network links are unreliable and there
are no guarantees of message delivery. To the best of our knowledge, the only
work that considered revocation in adhoc networks is the GKMPAN protocol
described in [8].

In GKMPAN, group key distribution is done by using the shared keys from the
random key distribution protocol described in [1]. As the random key distribution
protocol provides probabilistic guarantees of security, the group key distribution
in GKMPAN is probabilistic in nature. In the random key distribution protocol
[1], the users are given a random set of keys from a common key pool. The users
establish session keys with their neighbors using the shared keys they have in
common. These session keys are used to communicate securely between a pair
of users. However, the shared keys used to establish the session keys may not
be unique to a pair of users. Hence, in GKMPAN, the security of the group
key distribution among the users is probabilistic. In contrast, in our revocation
algorithm, we have shown that it is possible to provide deterministic guarantees.

7 Conclusion

In this paper, we described a revocation algorithm that combined the secret
instantiation [1, 2, 3, 9] and group key management protocols [4, 5, 6, 7]. In our
algorithm, the security of the revocation depends on the combination of the
protocols used.

388 B. Bruhadeshwar and S.S. Kulkarni

We illustrated an instance of our revocation algorithm by combining the
square grid protocol [3] and the logical key hierarchy [6] protocol. Furthermore,
we considered two scenarios of group key distribution. In the first scenario, rout-
ing support exists in the network and the user can send messages to any other
user in the network. In the second scenario, no routing support exists and a
user can transmit to only users in its neighborhood. Using simulation results, we
showed that, it is possible to achieve complete group key distribution in both
scenarios. Currently, we are evaluating the group key distribution in other in-
stances where different secret instantiation protocols [1, 9] and different group
key management protocols [5, 7] are used.

References

1. Laurent Eschenauer and Virgil D. Gligor. A key-management scheme for dis-
tributed sensor networks. In ACM CCS, pages 41–47, 2002.

2. Li Gong and David J. Wheeler. A matrix key-distribution scheme. Journal of
Cryptology, 2(1):51–59, 1990.

3. Sandeep S. Kulkarni, Mohamed G. Gouda, and Anish Arora. Security instantiation
in ad-hoc networks. Special Issue of Elsevier Journal of Computer Communications
on Dependable Wireless Sensor Networks, 2005.

4. Debby M. Wallner, Eric J. Harder, and Ryan C. Agee. Key management for
multicast: Issues and architectures. RFC 2627.

5. Isabella Chang, Robert Engel, Dilip Kandlur, Dimitrios Pendarakis, and Deban-
jan Saha. Key management for secure internet multicast using boolean function
minimization techniques. In Proceedings IEEE Infocomm, pages 689–698, 1999.

6. Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Secure group communi-
cations using key graphs. IEEE/ACM Transactions on Networking, 2000.

7. Sandeep S. Kulkarni and Bezawada Bruhadeshwar. Rekeying and storage cost for
multiple user revocation. In 12th Annual Network and Distributed System Security
Symposium, pages 45–54, San Diego, California, February 2005.

8. Sencun Zhu, Sanjeev Setia, Shouhuai Xu, and Sushil Jajodia. Gkmpan: An efficient
group rekeying scheme for secure multicast in ad-hoc networks. In MobiQuitous,
pages 42–51. IEEE Computer Society, 2004.

9. Donggang Liu and Peng Ning. Establishing pairwise keys in distributed sensor
networks. In Proceedings of the 10th ACM CCS , Washington, DC, USA, 2003.

10. David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc wireless
networks. Mobile Computing, 5:153–181, 1996.

11. G. Chakrabarti and S. Kulkarni. Load balancing and resource reservation in ad-hoc
networks. Ad-Hoc Networks, 2004. To Appear.

12. Elizabeth M. Belding-Royer and Charles E. Perkins. Multicast operation of the
ad-hoc on-demand distance vector routing protocol. In MOBICOM, 1999.

13. Adrian Perrig, Ran Canetti, J. D. Tygar, and Dawn Xiaodong Song. Efficient
authentication and signing of multicast streams over lossy channels. In IEEE
Symposium on Security and Privacy, pages 56–73, 2000.

A Hybrid Method to Intrusion Detection Systems
Using HMM

C.V. Raman and Atul Negi

University of Hyderabad, Gachibowli, Hyderabad, India
chvenkataraman@gmail.com
atulcs@uohyd.ernet.in

Abstract. IDS use different sources of observation data and a variety of tech-
niques to differentiate between benign and malicious behaviors. In the current
work, Hidden Markov Models (HMM) are used in a manner analogous to their
use in text categorization. The proposed approach performs host-based intrusion
detection by using HMM along with STIDE methodology (enumeration of sub-
sequences) in a hybrid fashion. The proposed method differs from STIDE in that
only one profile is created for the normal behavior of all applications using short
sequences of system calls issued by the normal runs of the programs. Subsequent
to this, HMM with simple states along with STIDE is used to categorize an un-
known program’s sequence of system calls to be either normal or an intrusion.
The results on 1998 DARPA data show that the hybrid method results in low
false positive rate with high detection rate.

1 Introduction

Anomaly Intrusion Detection methods make use of profiling normal behavior of pro-
grams which are found to be stable and consistent during program’s normal activities
[1]. Forrest et al [1] have found that short sequences of system call traces produced by
the execution of the programs are a good discriminator between the normal and abnor-
mal operating characteristics of programs. There are various ways in which these short
sequences of system call traces could be used to construct a “normal” profile and test
for deviations.

Short sequences of system call traces follow temporal ordering, so Markovian meth-
ods like the Hidden Markov Model (HMM) can be used to model the normal behavior.
An IDS based on HMM for modelling and evaluating invisible events based on system
calls was designed by Warrender et al [2] and later on developed by Qiao et al [3], Hui
et al [4], Cho et al [5]and Hoang et al [6].

Sequence of system calls can also be modelled using the text processing metaphor,
treating each system call as a ‘word ’and the whole sequence as a ‘document ’and then
applying text categorization techniques to differentiate between the normal and abnor-
mal behaviors. This method allows one to bypass the need to build separate databases
and learn individual program profiles. For example, Vemuri et al [8] and Pradeep et al
[9] have used the k-Nearest Neighbor method as the text categorization technique on
the DARPA Data set and established its effectiveness.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 389–396, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

390 C.V. Raman and A. Negi

In the current work, we propose a hybrid approach to Host-based Anomaly Intrusion
Detection based upon STIDE and HMM concepts, using short sequences of system calls
of the process as the characterizing feature between the benign and malicious behaviors.
The main disadvantage with HMM is the high training time and need for large amount
of computational resources. We use the HMM with simple states [12], which requires
reduced training time and resources. In Section 2, we describe the proposed hybrid
method of using HMM along with STIDE. Section 3 presents the experimental setup
and Results. We conclude our work in section 4.

2 Description of Methodology

2.1 STIDE and HMM in IDS

STIDE. Forrest et al [10] in 1998 proposed a method called Sequence Time Delay Em-
bedding (STIDE) in which the profile of normal behavior of system calls is built. STIDE
gives very good results with low False Positive Rates and high Detection Rates, but the
problem is in knowing and fixing the suitable window length (fixed at 6 empirically for
their data set). t-STIDE, is an extension to the STIDE method [2] where the rare se-
quences are considered anomalous. This may increase the false positive rates. Authors
in this paper compared STIDE, t-STIDE, HMM and RIPPER methods and concluded
that HMM is giving best accuracy on average among the compared methods, but has a
higher computational cost.

Maxion et al [11] compared Markov Models with STIDE methodology and proved
that STIDE has blind regions i.e. it can not detect some attacks even in their presence.
They state that the Minimum Foreign Sequence present in one of the intrusion trace of
UNM datasets is six and hence the window of length ‘6’gave good results for STIDE.
They have also shown that Markov Models get rid of the problem of suitable window
size.

HMM. As the short sequence of system calls follow a temporal ordering, the Hidden
Markov Models (HMM) are best suited to build the normal behavior of programs. War-
render et al [2] used HMM in anomaly intrusion detection by modelling the number of
states of HMM to be roughly corresponding to the number of unique system calls used
by their programs. They tested each system call, by finding unusual state transitions
and/or symbol outputs depending upon predefined thresholds. Our work is different
from other works like those of Qiao et al [3], Hui et al [4], Hoang et al [6] who have
also used HMM for anomaly detection with the number of unique system calls as the
number of states. They test a new sequence for anomaly based on its probability of oc-
currence from the trained HMM and then check with threshold limits. They all take the
number of states of HMM as the number of unique system calls following Warrender
et al [2]. Cho et al [5] work is also on the similar principle, but uses 5-15 states with se-
quence lengths ranging from 20-30. In our opinion none of these methods represent the
semantics of HMM faithfully and have not utilized the capability of HMM completely.

2.2 Improved Semantics for HMM in IDS

In our opinion the true way to model HMM behavior is by making the states as hid-
den and producing only the visible observation symbols outside. We can achieve this

A Hybrid Method to Intrusion Detection Systems Using HMM 391

functionality of HMM as making the system calls as observation symbols. So one must
decide on the number of states of HMM before applying HMM to IDS.

The best way to fix the number of states of HMM is to make them equal to the length
of the sliding window used to prepare normal sub sequences. This follows the semantics
of HMM more faithfully by keeping the states as hidden and making the system calls
as observation symbols. This approach follows the semantics used in speech processing
etc., application areas.

So, the important thing to know is how to fix the best window length and conse-
quently the number of states of HMM. As the minimum sliding window length is ‘2’, we
use a 2-state HMM for intrusion detection and use system calls as observation symbols.
The trained HMM as we have described above classifies the subsequences for normal
and abnormal behavior very well [12], but with some exceptions because of the doubly
embedded stochastic process. This is due to a situation as described in the following.

Let a, b represent system calls, consider the subsequence of length ’2’ as 〈a, b〉where
individually a, b have appeared many times in the normal trace. However, the subse-
quence 〈a, b〉 has not occurred even once in the normal training data base. That is they
have never co-occurred. In such a case, the normal trained HMM gives a very high like-
lihood probability. To take care of such situations we propose the Hybrid Algorithm as
described below.

2.3 Proposed Hybrid Algorithm

Here we apply the positive features of STIDE and HMM to improve intrusion detection.
While HMM learns the normal behavior of short subsequences, the text categorization
approach gives us the freedom from having to maintain separately the normal profiles
of each individual applications.

The current implementation uses HMM with two states as described in the previous
section. The proposed algorithm tests the new execution sub sequences for anomalies
and exits either on finding an intrusion or on completion. The algorithm is as follows :

1. Initialize anomaly count = 0
2. Initialize the A and B matrices of HMM, λ with the unique normal sub sequences.
3. Train the HMM, λ with all the sub sequences of normal data.
4. Propose the k least likelihood probabilities of normal sequences from

HMM, λ as the suitable candidates of probability thresholds.
5. Fix the Probability threshold, Pth from one of the proposed thresholds

to check for anomaly.
6. Fix the Count threshold, Countth value to test for intrusion.
7. Fix the Rare threshold, Rareth value to test for rare sequences.
8. For each sub sequence, ss prepared from test sequence
9. do
10. IF ss is not present in the normal sub sequences
11. Then
12. Increment anomaly count by 1
13. Else
14. Find the frequency Freq of ss.

392 C.V. Raman and A. Negi

15. If Freq < Rareth

16. Then
17. Find the probability P of the sub sequence ss from the HMM, λ
18. If P < Pth

19. Then
20. Increment anomaly count by 1
21. End if
22. End if
23. End if
24. If anomaly count > Countth
25. Then
26. Abort the process as Intrusion.
27. End if.
28. End for.

Step 4. above gives us k possible probability threshold limits. One of them is chosen
as a probability threshold limit for intrusions. This method is a novel means for selection
of the best possible candidates for a threshold, [12] unlike the previous methods which
do not suggest any values for the probability thresholds.

Three sensitive parameters are required for proper operation of the above method.
First is rare threshold (Rareth), used for rare sub sequences (tests for anomalies with
HMM). The second is a probability threshold (Pth), to differentiate normal and abnor-
mal behavior with HMM. Third is a count threshold (Countth), to differentiate anoma-
lies from intrusions.

The algorithm takes the sub sequences of the new execution trace and checks for
its presence in the normal sub sequences database just like as tested in STIDE method.
If the test sub sequence is not found then anomaly count is incremented else its fre-
quency of occurrence in the normal database is computed and checked for rare sub
sequence with rare threshold (Rareth) as followed in t-STIDE method. If the test sub
sequence is a rare sub sequence then it is checked for anomaly using HMM. The like-
lihood probability of the test sub sequence is found using the normally trained HMM,
and tested with prefixed probability threshold Pth, to find anomaly. If anomaly is found,
then anomlay count is incremented. If the anomaly count exceeds the Count threshold
Countth at any point of execution, then the execution sequence is labelled as intrusion
and the process is aborted. The variation in count-threshold (Countth) values helps in
detecting true intrusions instead of considering anomalies as intrusions which otherwise
increases the false positive rate (FPR).

3 Experimental Setup and Results

In this section we present the details of results on 1998 DARPA data set, and the
achieved false positive rate and detection rate.

Data sets. To evaluate the proposed hybrid method, 1998 DARPA data set is used. We
compare the proposed method with those of Vemuri et al [8] and Pradeep et al [9]. We
use the data set used in their schemes: (from www.ll.mit.edu/IST/ideval/data/).

A Hybrid Method to Intrusion Detection Systems Using HMM 393

This has 605 unique processes as training data set and uses 5285 normal processes
for testing. It has 55 intrusive sessions as test data to find the efficiency of the methods.
The complete description of 55 attacks is available on [8, 9].

From the 55 attacks they have used, we remove three and consider only 52 attacks.
The removed attacks are 2.2 it ipsweep (port sweep), test.1.5 processtable (Denial
of Service) as both these attacks provide the same sequence of system calls as that of
normal one and are network based attacks, detected easily by an NIDS. The attack 4.4
it 080514warezclient test is a duplicate attack, same as 4.4 it 080514warezclient and
is used to test the performance of Misuse Detection methodology and hence is removed
from the testing data.

The normal data base used for our algorithm is as follows: (1) The number of sub
sequences of length ‘2’: 169494. (2) The unique number of sub sequences of length ‘2’:
320. (3) The number of system calls : 50.

3.1 Results

We have considered twenty list of possible threshold limits. The following table de-
scribes the affect of FPR and DR with variation of count threshold (Countth), proba-
bility threshold (Pth) and rare threshold (Rareth).

The following Table-1 describes the threshold values at which the attacks are de-
tected as intrusions with Rare threshold (Rareth) value at 0.00005. Here we provided
results for some thresholds until we get 100% DR and 0% FPR. The table indicates
clearly that the count threshold Countth also plays a major role in DR and FPR. This
is supporting the fact that “all the anomalous events may not be intrusions”. The 15th
probability threshold (Pindex = 15) has given better results than all with FPR of
2.91% at 100% Detection Rate.

Table 1. Results of DARPA Data sets with hybrid-HMM with Rareth=0.00005

Pindex Pth Countth Detection of Attacks DR FPR
1 -5.442993 1 49 94 0.4

2 44 85 0.11
3 38 73 0.076
4 34 65 0.038
5 26 50 0.019
6 25 48 0.019
7 18 35 0

..
15 -4.756277 1 52 100 4.6

2 52 100 2.91
3 51 98 0.076
4 50 96 0.038
5 50 96 0.019
6 47 90 0.019
7 45 86 0

394 C.V. Raman and A. Negi

We have done the same experimentation with Rareth value at 0.0005 (Table 2). The
best result is found at 8th probability threshold (Pindex = 8) with the count threshold
value being 3 (Counth = 3).

Table 2. Results of DARPA Data sets with hybrid-HMM with Rareth=0.0005

Pindex Pth Countth Detection of Attacks DR FPR
1 -5.442993 1 49 94 0.4
..
8 -5.090818 1 52 100 7.1

2 52 100 2.6
3 52 100 0.68
4 51 98 0.17
5 49 94 0.13
6 44 85 0.13
7 35 67 0.09
8 33 63 0.09
9 24 46 0

Receiver Operating Characteristics Curve (ROC). The ROC curve is a plot of in-
trusion Detection Rate (DR) against the False Positives Rate (FPR). False Positive Rate
is defined as percentage of false positives that means, the number of normal processes
detected as abnormal divided by the total number of normal processes. In intrusion de-
tection, the Receiver Operating Characteristics (ROC) curve is usually used to measure
the performance of the method. For testing purposes, we have considered all the avail-
able normal data as test data. ROC curve gives an idea of the trade off between FPR and
DR achieved by a classifier. An ideal ROC curve would coincide with the DR axis. The
ROC curve for the current proposed algorithm is as follows:

Fig. 1. ROC curve of the hybrid-HMM algorithm Thin line : Result with Rareth = 0.00005 &
Thick line: Result with Rareth = 0.0005

A Hybrid Method to Intrusion Detection Systems Using HMM 395

In the ROC curve (Figure 1), note that with rare threshold value at 0.00005 (Rareth =
0.00005), the FPR is zero upto a DR value of 86%. At a DR of 100% the FPR is 2.91%.
Whereas when the rare threshold value is increased to 0.0005 (Rareth = 0.0005), 100%
DR is achieved at a lower FPR of 0.68% but the FPR is zero up to a DR of 46%
only.

We have compared the performance of proposed method with k-NN using S3 metric
by Pradeep et al [9] which has used k-NN method with Sequence and Set Preserving
Metric as it is giving best performance among the k-NN methods to DARPA Data set.
The following Table-3 describes the FPR and DR of both methods. From the table it is
evident that the proposed method has achieved 46% DR at 0% FPR which is far better
than the k-NN method with SSS metric which has achieved only 27% DR at 0% FPR.
The current proposed method is also outperforming in achieving 100% DR at 0.68%
FPR, while k-NN method achieves 100% DR at 0.83% FPR. So the proposed hybrid
method using HMM and STIDE is seen to be better than the existing methods for this
data set.

Table 3. Comparison between k-NN and hybrid-HMM

k-NN with SSS hybrid-HMM
FPR DR FPR DR

0 27 0 46
0.0189 36 0.09 63
0.0946 76 0.09 67
0.189 89 0.13 85
0.245 93 0.13 94
0.4162 93 0.17 98
0.491 95 0.68 100
0.756 95
0.8325 95
0.8325 100

k-NN : k-Nearest Neighbor
SSS : Sequence and Set Similarity metric

4 Concluding Remarks

In this paper, we have proposed a hybrid algorithm using both the positive features of
HMM, STIDE and applying them in text categorization scenario to Intrusion Detection
field. The proposed method works independent of the length of the intrusion trace and
also of the length of the window size. We have considered a window size of ‘2’as it is
the minimum possible window size.

The proposed approach detects Network based attacks only at high false positive
rates as the processes in those attack scenarios behave similar to the normal behavior.
So it is advised to use NIDS to detect Network based attacks. The current method
is also unable to detect TOCTTOU (Time Of Check To Time Of Use) attacks and
mimicry attacks as they also behave similar to normal processes in system call invo-
cations.

396 C.V. Raman and A. Negi

References

1. Hofmeyr, S.A. Forrest, S. and Somayaji, A. Intrusion detection using sequences of system
calls. In Journal of Computer Security, Vol. 6, pages 151–180, 1998.

2. Forrest, S., Warrender,C., and Pearlmutter, B. Detecting intrusions using system calls : Al-
ternative data models. In IEEE Symposium on Security and Privacy, pages 133–145, 1999.

3. Bin, Y., Qiao, Y., Xin, X.W., and Ge, S. Anomaly intrusion detection method based on HMM.
In IEEE Electronic letters Online No : 20020467, volume 38, pages 663–664, 2002.

4. Hui-Ye Ma Bo Gao and Yu-Hang Yang. HMMs based on anomaly intrusion detection
method. In Proceedings of First International Conference on Machine Learning and Cy-
bernetics, Volume 1, pages 381–385, 2002.

5. Sung Bae Cho and Hyuk Jang Park. Efficient anomaly detection by modelling privilege flows
using HMM. In Computers & Security, Vol. 22, pages 45–55, 2003.

6. Hu, J., Hoang, X.D., and Bertok, P. A multi layer model for anomaly intrusion detection
using program sequences of system calls. In IEEE International Conference on Networks,
2003.

7. Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recog-
nition. In Proceedings of the IEEE, Vol. 77, pages 257-286, 1989.

8. Liao, Yihua, and Vemuri, V. Rao, Use of k-nearest neighbor classifier for intrusion detection.
In Networks and Security, Vol. 21, pages 438–448, 2002.

9. Radha Krishna, P., Raju, S. Bapi, Arijit Laha, Pradeep Kumar, M. Venkateswara Rao. In-
trusion detection system using sequence and set preserving metric. In IEEE International
Conference on Intelligence and Security Informatics, ISI, pages 498–504, 2005.

10. Hofmeyr, Steven A., Forrest, S, and Somayaji, A. Intrusion detection using sequences of
system calls. In Journal of Computer Security, Vol. 6, pages 151–180, 1998.

11. Tan, K.M.C., and Maxion, R A. Why 6? defining the operational limits of STIDE, an anomaly
based intrusion detector. In Proceeding of the 2002 IEEE Symposium on Security and Pri-
vacy, pages 188, 2002.

12. Raman, C.V., Project work “Intrusion Detection using HMM with improved seman-
tics”submitted to University of Hyderabad, Hyderabad, June, 2005.

Enhanced Network Traffic Anomaly Detector

Suresh Reddy and Sukumar Nandi

Department of Computer Science and Engineering,
Indian Institute of Technology, Guwahati 780139, India

Abstract. Network intrusion detection systems often rely on matching
patterns that are learned from known attacks. While this method is re-
liable and rarely produces false alarms, it has the disadvantage that it
cannot detect novel attacks. An alternative approach is to learn a model
of normal traffic and report deviations, but these anomaly models are
typically restricted to modeling IP addresses and ports. We describe an
anomaly detection system which models all the fields of network, trans-
port layer and payload of a packet at the byte level, by giving more weight
to the most anomalous attributes. We investigated all the attributes and
assigned weights to the attributes based on their anomalous behavior.
We detect 144 of 185 attacks in the DARPA off-line intrusion detection
evaluation data set [1] at 10 false alarms per day (total 100 false alarms),
after training on one week of attack-free traffic. We investigate the per-
formance of the system when attack free training data is not available.

1 Introduction

One important facet of computer security is intrusion detection - simply knowing
whether a system has been compromised or an attack has been attempted. IDS’s
are classified as Network IDS or host based IDS depending on the source of data
it monitors. IDS’s can also be classified as signature based or anomaly based,
depending on the detection strategy it uses. A signature detector examines traffic
for known attacks using rules written by security experts, where as an anomaly
detector examines traffic for deviation from the normal traffic.

In this paper, we focus on network anomaly detection. Most network anomaly
systems such as ADAM [2], NIDES [3], and SPADE [4] monitor only the at-
tributes like IP addresses, ports, and TCP state. This catches user misbehavior,
but miss attacks on public servers or the TCP/IP stack that might otherwise
be detected because of anomalies in other parts of the protocol. PHAD [5], NE-
TAD [6] monitors all fields of the packet header without any preconceptions
about which fields might be useful. Our system also monitors all fields of net-
work, transport, and starting bytes of application layer, but gives more weight to
the most anomalous attributes, which increases the detection rate for the same
false alarm rate. We evaluate our system on the DARPA IDS evaluation data
set [1] to investigate its performance.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 397–403, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

398 S. Reddy and S. Nandi

2 Related Work

Early work in anomaly detection was host based. Forrest et.al [7] demonstrated
that the system call sequences for processing attack packets deviate significantly
from the normal pattern of system calls. Forrest detected these attacks by train-
ing an n-gram model (n=3 to 6) as the system ran normally.

Network intrusion detection is typically rule based. Systems like SNORT [9]
and BRO [10] use hand written rules to detect signatures of known attacks. When
a new type of attack is detected, new rules must be added to these systems.
Anomaly detection systems such as SPADE [4], ADAM [2], and NIDES [3] learn
a statistical model of normal network traffic, and flag deviations from this model.
Models are usually based on the distribution of most anomalous attributes like
addresses and ports per transaction. These systems use frequency-based models,
in which the probability of an event is estimated by its average frequency during
training.

The recent anomaly detection systems like PHAD [5], ALAD [11], LEARD
[12], NETAD [6] monitor all fields of the packet header unlike SPADE, and
ADAM (monitor only IP addresses and ports). These systems use time-based
models, in which the probability of an event depends on the time since its last
occurrence, in contrast to SPADE, and ADAM (use frequency-based models).
NETAD also considers the frequency of events along with time-based model.

3 Proposed NIDS System

The proposed system detects anomalies in network packets at byte level. Similar
to NETAD [6], it operates at two stages. In the first stage it filters out the
uninteresting traffic, which is likely to generate false alarms. As most attacks
are initiated against a target server, it is sufficient to examine only the first few
packets of incoming server requests. Hence it filters out all non IP packets, the
entire out going traffic, traffic related to the TCP connections initiated from
internal network to outside the network, packets to high numbered ports, and
packets not in the near start of TCP connection.

In the second stage our system models the most common protocols (IP, TCP,
telnet, FTP, SMTP, HTTP) at the packet byte level, like NETAD , to flag events
(byte values) that have not been observed for a long time. It models 48 attributes,
consisting of the first 48 bytes of the packet starting with the IP header. If the
packet is less than 48 bytes long, then the extra attributes are set to 0. However
it defers from NETAD as follows:

1. anomaly score is modified to consider the frequency of novel events
2. weighted attribute model is used to evaluate the anomaly score of a packet.

3.1 Anomaly Score

Time based modeling of attributes was first used in PHAD. It assigns the score
t ∗ n/r to anomalous attributes, where t is the time since the attribute was last

Enhanced Network Traffic Anomaly Detector 399

anomalous (in training or testing), n is the number of training instances, and r is
the number of allowed values (up to 256). NETAD made three improvements to
the above anomaly score. First, n is set back to zero when an anomaly occurred
during training. Second improvement is to decrease the weight of rules when r
is near the maximum of 256. Third is that it considers the frequency of normal
(not anomalous) events. Thus the NETAD anomaly score for an attribute is
t ∗na(1− r/256)/r+ ti/(fi + r/256), where na is the number of training packets
from the last anomaly to the end of the training period, ti is the time (packet
count in the modeled subset) since the value i (0-255) was last observed (in
either training or testing), and fi is the frequency in training, the number of
times i was observed among training packets.

Though NETAD considers the frequency of normal events it ignores the fre-
quency of anomalous events. If a value does not occur at least once during train-
ing period, it is treated as anomalous value. NETAD assigns maximum score,
through first component t ∗ na(1 − r/256)/r, to all further occurrences of that
value during testing period, ignoring its frequency. Our system considers the
frequency of the anomalous values during testing period. We add another fac-
tor to the NETAD anomaly score, Ti/(Fi + r/256), where Ti is the time(packet
count) since the value i(0 − 256) was last observed during testing, and Fi is
the frequency in testing, the number of times i was observed among the packets
occurred till that time from the beginning of testing period. This model assigns
highest score for values that occur rarely (small Fi) and lowest score for values
that occur frequently (large Fi). Thus it reduces the anomaly score for normal
values that have not occurred at least once during training period, but occur
frequently during testing period. Hence the possibility of generating false alarms
is reduced. Thus the anomaly score S of an attribute is given by equation (1).

S = t ∗ na(1− r/256)/r + ti/(fi + r/256) + Ti/(Fi + r/256). (1)

3.2 Weighted Attribute Model

Traditional anomaly systems like ADAM, (NIDES,) and SPADE monitor only
the most anomalous attributes of the packet like IP addresses, ports, and TCP/IP
flags. This misses the attacks that might otherwise be detected because of anoma-
lies in other fields of the packet. PHAD and NETAD monitor all the fields of the
packet at data link (PHAD only), network, transport, and part of application layer
(NETAD only).

A criticism of PHAD and NETAD is that they do not have any preconceptions
about which fields might be useful, and hence they give equal weight to all the
attributes. This causes more false alarms to be generated because of uninteresting
fields. To correct this we introduced weighted attribute model, in which we
assign weights to the attributes based on their anomalous behavior. So that
most anomalous attributes, like source IP address and TCP flags, get more
weight and uninteresting attributes get less weight. We assign zero weight to the
TTL field (simulation artifact). This reduces the false alarms score and increases
the correct alarms score, so that more number of detections are possible at a

400 S. Reddy and S. Nandi

given false alarm rate. Thus the anomaly score for a packet is given by equation
(2), where Wj is the weight and Sj is the score of jth attribute.

ΣWj ∗ Sj . (2)

4 Experimental Results

Our system examines only the inside network traffic logs of [1] because the inside
data contains the evidence of attacks both from inside and outside the network,
although we miss outside attacks against the router. Although there are 201
labeled attacks, the inside traffic is missing for one day (week 4, day 2) containing
12 attacks, leaving 189. There is also one unlabeled attack (apache2) and there
are five external attacks (one queso and four snmpget) against the router which
are not visible from inside the local network. This leaves 185 (189 + 1 − 5)
detectable attacks, of which 68 were poorly detected in 1999.

We trained our system on week 3 (7 days of attack free traffic) of the inside
tcpdump files, then tested the system on weeks 4 and 5 of the inside tcpdump
files. We used the same evaluation criteria for our system as was used in the
original evaluation. If there is more than one alarm identifying the same target
within a 60 second period, then only the highest scoring alarm is evaluated and
the others are discarded.

We zeroed out the TTL (time to live) field value, which we believe to be the
simulation artifact. Although small TTL values might be used to elude an IDS
by expiring the packet between the IDS and the target [13], this was not the
case because the observed values were large, usually 126 or 253. Such artifacts
are unfortunate, but probably inevitable, given the difficulty of simulating the
Internet [14].

Table 1 shows that applying weighted attribute model to NETAD attributes,
increases the detection rate for a given false alarm rate. The detection rate is
not effective at 20 false alarms because majority of them are generated by the
attributes with more weight. But the detection rate is very effective at 50-500
false alarms. This is because later the false alarms are generated by uninteresting
attributes, whose weight is less in our model.

Table 1. Attacks detected at 20 to 5000 false alarms using weighted attribute model

Model 20 50 100 500 5000
NETAD: Σ(tna/r + ti/(fi + r/256)) 66 97 132 148 152

Weighted attribute: ΣWj ∗ (tna/r + ti/(fi + r/256)) 57 109 143 152 154

Table 2 shows the effects of change to the anomaly score function. It shows
that the improvement, modeling frequency of anomalous events (Ti/(Fi+r/256)),
to the anomaly score function of NETAD described in section 3.1, reduces the
score of false alarms so that the detection rate is improved for a given false alarm

Enhanced Network Traffic Anomaly Detector 401

Table 2. Attacks detected at 20-5000 false alarms using various scoring functions

Scoring Function 20 50 100 500 5000
ΣWj ∗ tna/r 56 89 118 148 152

ΣWj ∗ tna(1 − r/256)/r 60 92 120 149 152
ΣWj ∗ ti/(fi + 1) 33 52 81 130 158

ΣWj ∗ ti/(fi + r/256) 78 115 127 142 156
ΣWj ∗ ti/(Fi + 1) 82 91 96 124 154

ΣWj ∗ ti/(Fi + r/256) 91 108 110 121 150

rate. It is clear from the table that the detection rate is improved at 20-100 false
alarms, though it’s unchanged beyond 500 false alarms.

To study the performance of our system in real network settings, we evaluated
our system for two cases. In first case we assumed that the rate of attacks is low
(compared to the volume of normal traffic) and ran our system in the training
mode for all the three weeks. Second case is the more realistic case where attacks
might occur at any point of time. For this we ran our system in the training mode
during the attack period (weeks 4-5) with out using attack free data (week 3).

Table 3 shows the results for both the cases described above. If we run the
system in training mode during attack period (weeks 4-5), then the anomalies
present in the traffic will be added to the model and further instances of the
same or similar attacks might be missed. There are 58 types of attacks present
in the DARPA data set. If all the instances of these attacks have the identical
signatures, then we should not expect to detect more than one instance of each.
But our system can detect 110 instances (at 100 false alarms) when it is left
in training mode for all three weeks, and 94 instances for the second and more
realistic case, which indicates that there are subtle differences between instances
of the same type.

Table 3. Number of attacks detected at 20 to 5000 false alarms when our system is
left in training mode

Week 3 Week 4-5 20 50 100 500 5000

Normal Train Test 59 115 144 152 154
Case 1 Train Train 63 99 110 120 154
Case 2 Not used Train 44 72 94 121 153

Table 4 lists the number of detections (at 100 false alarms) for each category of
attack described by Kendall [15]. Our system performs well on probe, DOS, and
R2L attacks. Like most other network intrusion detection systems, it performs
poorly on U2R attacks. Detecting such attacks requires the IDS to interpret user
commands, which might be entered locally or hidden by using a secure shell. Our
system detects most of these attacks by anomalous source address. The category
poorly detected includes the 74 (68 detectable) instances of attack types for which
none of the original 18 evaluated systems in 1999 were able to detect more than

402 S. Reddy and S. Nandi

half of the instances. Our system detects these at the same rate as other attacks,
indicating that there is not a lot of overlap between the attacks detected by our
system and by other techniques (signature, host based, etc.). This suggests that
integrating our system with existing systems improves the overall detection rate.

Table 4. Attacks detected by category

Attack Category Detected at 100 False Alarms
Probe 32/36 (89%)

Denial of Service (DOS) 50/63 (79%)
Remote to Local (R2L) 43/49 (88%)

User to Root (U2R) 18/33 (55%)
Data 1/4 (25%)
Total 144/185 (78%)

Poorly Detected in 1999 46/68 (68%)

Five of 58 attack types are not detected. Httptunnel is a back door which
disguises its communication with the attacker as web client requests. Our sys-
tem misses this because it does not monitor outgoing traffic or incoming client
responses. Selfping and ntfsdos generate no traffic directly, but could theo-
retically be detected because they reboot the target, interrupting TCP connec-
tions. Snmpget is an external router attack, not visible on the inside sniffer.
Loadmodule is U2R, thus hard to detect.

5 Conclusion

We described a network anomaly detection system that is unique in using
weighted attributes to improve the detection rate for a given false alarm rate.
We investigated all the attributes and assigned weights to the attributes so that
most anomalous attributes got more weight and uninteresting attributes got less
weight. This reduces the anomaly score of false alarms generated by uninter-
esting fields and improves the score of true positives. Hence the detection rate
increases for a given false alarm rate.

Our system performs well on the DARPA IDS evaluation data set, detecting
78%of the total attacks. It detects those attacks that were poorly detected in
the original evaluation at the rate 70%. None of the original systems detected
more than half of the poorly detected attacks. This indicates, integrating our
system with the systems participated in the original evaluation might improve
the detection rate considerably.

We must note that DARPA’s data is synthetic and therefore great care was
taken to make the background traffic realistic. Furthermore, we have assumed
that attack free traffic is available for training. This would not be true in a real
environment. We have evaluated the system in training mode on the attack data
(weeks 4,5) without using attack free data to train the system and found that
there is a 35% decrease in the detection rate.

Enhanced Network Traffic Anomaly Detector 403

References

1. Lippmann, R., et al., ”The 1999 DARPA Off-Line Intrusion Detection Evaluation”,
Computer Networks 34(4) 579-595, 2000.

2. Barbar, D., N. Wu, S. Jajodia, ”Detecting Novel Network Intrusions using Bayes
Estimators”, First SIAM International Conference on Data Mining, 2001.

3. Anderson, D. et. al., ”Detecting unusual program behavior using the statistical
component of the Next-generation Intrusion Detection Expert System (NIDES)”,
Computer Science Laboratory SRI-CSL 95-06 May 1995.

4. SPADE, Silicon Defense, http://www.silicondefense.com/software/spice/.
5. Mahoney, M., P. K. Chan, ”PHAD: Packet Header Anomaly Detection for Identi-

fying Hostile Network Traffic”, Florida Tech. technical report 2001-04.
6. M. Mahoney, ”Network Traffic Anomaly Detection Based on Packet Bytes”, Proc.

ACM-SAC, 346-350, 2003.
7. Forrest, S., S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, ”A Sense of Self for

Unix Processes”, Proc. of IEEE Symposium on Computer Security and Privacy,
1996.

8. L Zhuowei, A Das and S Nandi, ”Utilizing Statistical Characteristics of N-grams
for Intrusion Detection”, International Conference on Cyberworlds, Singapore, De-
cember 2003.

9. Roesch, Martin, ”Snort - Lightweight Intrusion Detection for Networks”, Proc.
USENIX Lisa ’99, Seattle: Nov. 7-12, 1999.

10. Paxson, Vern, ”Bro: A System for Detecting Network Intruders in Real-Time”,
Lawrence Berkeley National Laboratory Proc, 7’th USENIX Security Symposium,
Jan. 26-29, 1998.

11. Mahoney, M., P. K. Chan, ”Learning Models of Network Traffic for Detecting Novel
Attacks”, Florida Tech. technical report 2002-08.

12. Mahoney, M., P. K. Chan, ”Learning Nonstationary Models of Normal Network
Traffic for Detecting Novel Attacks ”, Edmonton, Alberta: Proc. SIGKDD, 2002,
376-385.

13. Ptacek, Thomas H., and Timothy N. Newsham, ”Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detection”, January, 1998,
ttp://www.robertgraham.com/mirror/Ptacek-Newsham-Evasion-98.html.

14. Floyd, S. and V. Paxson, ”Difficulties in Simulating the Internet.” IEEE/ACM
Transactions on Networking Vol. 9, no. 4, pp. 392-403, Aug. 2001.

15. Kendall, Kristopher, ”A Database of Computer Attacks for the Evaluation of In-
trusion Detection Systems”, Masters Thesis, MIT, 1999.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 404 – 409, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Statistically Secure Extension of Anti-collusion
Code Fingerprinting

Jae-Min Seol and Seong-Whan Kim

Department of Computer Science, University of Seoul, Jeon-Nong-Dong, Seoul, Korea
seoleda@hotmail.com, swkim7@uos.ac.kr

Abstract. Fingerprinting schemes use digital watermarks to determine
originators of unauthorized/pirated copies. Multiple users may collude and
collectively escape identification by creating an average or median of their
individually watermarked copies. We present a collusion-resilient code, which
improves anti-collusion fingerprinting (AND-ACC) scheme using statistically
secure matrix. Our approach improves the robustness for non-linear attacks, and
can be scalable for large number of users. We experiment our approach using
HVS based watermarking scheme, for standard test images, and the results
show better collusion detection performance over average and median collusion
attacks.

1 Introduction

A digital watermark or watermark is an invisible mark inserted in digital media, and
fingerprinting uses digital watermark to determine originators of unauthorized/pirated
copies. Multiple users may collude and collectively escape identification by creating
an average or median of their individually watermarked copies. An early work on
designing collusion-resistant binary fingerprint codes for generic data was based on
marking assumption, which states that undetectable marks cannot be arbitrarily
changed without rendering the object useless. However, multimedia data have very
different characteristics from generic data, and we can use embed different marks or
fingerprints in overall images, which biased strict marking assumption. Recently, an
improvement was to merge the low level code (primitive code) with the direct
sequence spread spectrum embedding for multimedia and extend the marking
assumption to allow for random jamming [1]. W. Trappe et al. presented the design of
collusion-resistant fingerprints using code modulation. They proposed a (k-1)
collusion-resistant fingerprints scheme, and the (k-1) resilient AND-ACC (anti-
collusion codes) is derived from (v, k, 1) balanced incomplete block designs (BIBD)
[2]. The resulting (k-1) resilient AND-ACC code vectors are v-dimensional, and can
represent n = (v2 -v) / (k2 -k) users with these v basis vectors. However, the AND-
ACC cannot identify large number of fingerprinting users.

We present a collusion-resilient code, which improves anti-collusion fingerprinting
(AND-ACC) scheme using statistically secure matrix. We also present a scalable
fingerprinting design scheme, which extends the collusion-resilient code for large
number of user support. Instead of simply replicating codes, we designed a systematic

 Statistically Secure Extension of Anti-collusion Code Fingerprinting 405

approach to increase the number of fingerprint users. We evaluated our fingerprints
on standard test images, and shows good collusion detection performance over
average and median collusion attacks.

2 Related Works

An early work on designing collusion-resistant binary fingerprint codes was presented
by Boneh and Shaw in 1995 [1], which primarily considered the problem of
fingerprinting generic data that satisfy an underlying principle referred to as the
marking assumption. Figure 1 illustrates a fingerprinting example for Log 5 value in
logarithm table. As shown in Figure 1, a fingerprint consists of a collection of marks,
each of which is modeled as a position in a digital value (denoted as boxes) and can
take a finite number of states. A mark is considered detectable when a coalition of
users does not have the same mark in that position. The marking assumption states
that undetectable marks cannot be arbitrarily changed without rendering the object
useless; however, it is considered possible for the colluding set to change a detectable
mark to any state (collusion framework).

Correct value 0.6987000433601880478626110527551

Value for User A 0.6987000433601880478627110427541

Value for User B 0.6987000433601880478627110327531

Value for User C 0.6987000433601880478625110427531

Fig. 1. Fingerprint for log 5 in logarithm table

Min Wu presented the design of collusion-resistant fingerprints using code
modulation [2]. The fingerprint signal wj for the j th user is constructed using a linear
combination of a total of v orthogonal basis signals {ui} as (1)

1

v

j ij
i

w c ⋅
=

= iu (1)

Here the coefficients {cij}, representing the fingerprint codes, are constructed by code
vectors with {±1}. Anti-collusion codes can be used with code modulation to
construct a family of fingerprints with the ability to identify colluders. An anti-
collusion code (ACC) is a family of code vectors for which the bits shared between
code vectors uniquely identifies groups of colluding users. ACC codes have the
property that the composition of any subset of K or fewer code vectors is unique. This
property allows for the identification of up to K colluders. A K-resilient AND ACC is
such a code where the composition is an element-wise AND operation. It has been
shown that binary-valued AND-ACC can be constructed using balanced incomplete
block designs (BIBD) [2]. The definition of (v, k,) BIBD code is a set of k-element

406 J.-M. Seol and S.-W. Kim

subsets (blocks) of a v-element set χ , such that each pair of elements of χ occur

together in exactly blocks. The (v, k,) BIBD has a total of n = (v2 -v)/(k2 -k)
blocks, and we can represent (v, k,) BIBD code using an v x n incidence matrix,
where M(i, j) is set to 1 when the i th element belongs to the j th block, and set to 0
otherwise. The corresponding (k − 1)-resilient AND-ACC code vectors are assigned
as the bit complements (finally represented using -1 and 1 for the 0 and 1,
respectively) of the columns of the incidence matrix of a (v, k, 1) BIBD. The resulting
(k-1) resilient AND-ACC code vectors are v-dimensional, and can represent n =
(v2 -v) / (k2 -k) users with these v basis vectors.

3 Design of Anti-collusion Code Using Statistically Secure Matrix

We embed the fingerprint codes over R selected regions as shown in Figure 2.
Fingerprinting regions (blocks) are chosen based on the HVS (Human Visual System)
characteristics and we used NVF (Noise Visibility Function) model [3]. Each user’s

fingerprint jw , is embedded in the host image blocks using (2).as shown in Figure 2.

Fig. 2. Fingerprinting scheme: embedding and extraction of fingerprint jw for user j

Each user’s fingerprint lf , is embedded in the host image blocks using the

equation: ii wxy ⋅+= α .as shown in Figure 2. We design the statistically secure

matrix which is modified version of C-matrix using random variable as (2) and (3).

The coefficient of statistically secure matrix (ijs) is sum of ijc which is element of C

matrix from Anti-collusion Code and ijm r (mij is coefficient from incident matrix

form constructed from BIBD, and r is a random variable and it has a Gaussian
distribution) The greater random variables increase, the more robustness increase
against a median attack, but the detector will decode falsely. To achieve both

 Statistically Secure Extension of Anti-collusion Code Fingerprinting 407

robustness against median attack and detection performance, we use repetition and
permutation techniques like Boneh and Shaw’s scheme.

1

2

(1)

1
 where

1 (,)

v

j j ij
i

y x aw x NVF s

NVF
i jσ

⋅
=

= + = + −

=
+

iu

 (2)

1

2, , ~ (0,)

v

j ij
i

ij ij ij r

w s

where s c m r r N σ

⋅
=

=

= + ⋅

iu

(3)

Figure 3 shows an example of S-matrix construction from (7, 3, 1)-BIBD. The
element of S matrix whose value is -1 is changed using random variable r (i.i.d.).

1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 1 1 0 0

1 1 1 1 1 1 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 0 0 0 0 1 1

1 1 1 1 1 1 1 0 0 1 1 0 0 1
1 1 1 1 1 1 1 0 1 0 0 1 0 1
1 1 1 1 1 1 1 0 0 1 0 1 1 0

r r r r r r r
r r r r r r r
r r r r r r r
r r r r r r r
r r r r r r r
r r r r r r

− − −
− − −

− − −
= +− − −

− − −
− − −

− − −

S

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

r
r r r r r r r

r r r
r r r

r r r
r r r

r r r r
r r r

r r r

− + − + − +
− + − + − +

− + − + − +
= − + − + − +

− + − + − + − +
− + − + − +

− + − + − +

Fig. 3. The construction of statistically secure matrix using (7, 3, 1)-BIBD

We embed the same jw repetitively for the R selected blocks, for fingerprint

robustness, and we can interpret that we embed ((1), (2), , ())j j j jW w w w R= L

for R selected blocks. All the ()jw i are the same, however, the resulting watermark

should be different, depending on theα , which considers the local HVS masking
characteristics. We used non-blind scheme for fingerprint detection. To detect
collusion, we used the collusion detection vector T, which can be computed using the
same equation as Min Wu’s [2]. Averaging individual marks, we can decrease

variance of r (2~ (0, /)rr N Rσ), but attacker does not know permutation sequence,

therefore the attacker cannot distinguish each jw .

+

408 J.-M. Seol and S.-W. Kim

4 Experimental Results

We tested our collusion-resistance code using statistically secure matrix for various
collusion attacks (average, median, min, max, min-max, modified negative,
randomized negatives) for the test images. Average and median collusions are widely
used collusion attack [4], because it is efficient to attack fingerprints, and also it
makes better image quality after collusion (usually it increases 2-3 dB). S matrix is

-20 -15 -10 -5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WNR (dB)

P
d
 :

 f
ra

ct
io

n
o

f
ca

p
tu

re
d

S-matrix/ave

ACC/ave

S-matrix/med

ACC/med

-20 -15 -10 -5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WNR (dB)

P
fp

 :
 f

ra
ct

io
n

 o
f

fa
ls

e
ac

cu
sa

ti
o

n

S-matrix/ave
ACC/ave
S-matrix/med
ACC/med

Fig. 4. The performance compared with ACC using 64 dimensions basis

 Statistically Secure Extension of Anti-collusion Code Fingerprinting 409

constructed from (16, 4, 1)-BIBD, and we used the Hadamard matrix for code matrix
S, because it is orthogonal, secure, and widely used in MPEG-4 Part 10 AVC
(Advanced Visual Coding: H.264) video compression. The repetition factor is 4,
setting threshold to 0.6. Figure 4 shows the simulation results, where we randomly
select 3 users (acting as colluders) from 20 users, and combine their signals using
average and median attack (the dimension of basis signal set to be 64). The fraction of
captured means that at least one colluder is captured. Mathematically, it says

,D D R≠ ∅ ⊆ (D: Detected colluders, R: Real colluders). The fraction of false

accusation means that innocent users are captured (D R⊄). Figure 4 shows that the
collusion-resilient code based on statistically secure matrix is more robust against
median attacks, and shows comparable performance for average attack. The

watermark-to-noise ratio (WNR) is defined as 1020 log i

i

w
WNR

d
= .

5 Conclusions

In this paper, we present the modified anti-collusion code which improves anti-
collusion fingerprinting (AND-ACC) scheme using statistically secure matrix To
improve the detection performance, we repeated the fingerprints r multiple times. We
evaluated our fingerprints on standard test images, and shows good collusion
detection performance over average and median collusion attacks.

References

1. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inform.
Theory, vol. 44, Sept. (1998) 1897–1905

2. Wu, M., Trappe, W., Wang, Z. J., Liu, K. J. R.: Collusion-Resistant fingerprinting for
multimedia IEEE signal processing magazine, Mar. (2004) 15-26

3. Voloshynovskiy, S., Herrige, A., Baumgaertner, N., Pun, T.: A stochastic approach to
content adaptive digital image watermarking. Lecture Notes in Computer Science: 3rd Int.
Workshop on Information Hiding, vol. 1768, Sept. (1999) 211-236

4. Zhao, H., Wu, M., Wang, Z. J., Liu, K. J, R.: Nonlinear collusion attacks on independent
fingerprints for multimedia. Multimedia and Expo, 2003. ICME '03. Proceedings. 2003 Int.
Conf. vol. 1, Jul (2003) 6-9

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 410 – 419, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Improvement of Auto-Correlation Based Video
Watermarking Scheme Using Perceptual

Masking for Motion

Hyun-Seong Sung and Seong-Whan Kim

Department of Computer Science, University of Seoul,
Jeon-Nong-Dong, Seoul, Korea

{wigman, swkim7}@uos.ac.kr

Abstract. Video watermarking hides information (e.g. ownership, recipient in-
formation, etc) into video contents. Video watermarking research is classified into
(1) extension of still image watermarking, (2) use of the temporal domain fea-
tures, and (3) use of video compression formats. In this paper, we propose a wa-
termarking scheme to resist geometric attack (rotation, scaling, translation, and
mixed) for H.264 (MPEG-4 Part 10 Advanced Video Coding) compressed video
contents. We analyzed our perceptual model for video watermark in maximal ca-
pacity aspects, and experimented with the standard image and video sequences.
Simulation results show that our video watermarking scheme is robust against
H.264 video compression (average PSNR = 31 dB) and geometric attacks (rota-
tion with 0-90 degree, scaling with 75-200%, and 50%~75% cropping).

1 Introduction

A digital watermark or watermark in short, is an invisible mark inserted in digital me-
dia such as digital images, audio and video so that it can later be detected and used as
evidence of copyright infringement. However, insertion of such invisible mark should
not alter the perceived quality of the digital media (it is the transparency requirement)
while being extremely robust to attack (it is a robust requirement) and being impossible
to insert another watermarks for rightful ownership (it is a maximal capacity require-
ment). Watermark attacks are classified into (1) intentional attacks, and (2) uninten-
tional attacks. Basic requirements for video watermarking are geometric attack robust-
ness (intentional attacks) and H.264 video compression (unintentional attacks). There
are four major researches for geometric attack robustness, (1) invariant transform, (2)
template based, (3) feature point based, and (4) auto-correlation based [1]. Invariant
transform approach is to embed the watermark in an invariant domain, like Fourier-
Mellin transform [2], whereby geometric transform is still a linear operation. Template
approach is to identify the transformation by retrieving artificially embedded refer-
ences [3]. Feature point based approach is an embedding and detection scheme, where
the mark is bound with a content descriptor defined by salient points [1]. Finally, Auto-
correlation approach is to insert the mark periodically during the embedding process,
and use auto-correlation during the detection process [4, 5]. We designed an auto-
correlation based watermark detection scheme for geometric attack robustness, and
present a video watermarking scheme, which is robust on geometric attack (scaling,
cropping, rotation, and mixed) and H.264 video compression.

 An Improvement of Auto-Correlation Based Video Watermarking Scheme 411

2 Payload Embedded Watermarking on H.264 INTRA Frames

H.264 is a widely used video compression standard, in which it uses different coding
techniques for INTRA (reference) and INTER (motion predicted) frames. We de-
signed two watermarking schemes for INTRA and INTER frames, respectively. We
embed the auto-correlated watermark in H.264 reference (INTRA) frames, because
INTRA frames are used for reference frames of motion predicted (INTER) frames,
and they are usually less compressed than INTER frames. Assuming we know which
frame is the INTRA frame, Figure 1 shows the auto-correlation based watermark
embedding scheme for INTRA coded frames. Watermark embedding for H.264
INTRA frames can be summarized in the following equation (1). I’ is watermarked
frame (I + W), and the watermark is composed of wp (payload watermark) and ws
(synchronization watermark), which is multiplied by (weighting factor derived from
perceptual masking model). As shown in Figure 1, we embedded the 64*64 block-
wise watermarks repeatedly over whole image, thereby we can restore watermark
even from 128x128 cropped image blocks.

Embedding)(' sp wwNINWII ++=+= λλ (1)

Fig. 1. Watermark embedding for H.264 INTRA frames

We improved auto-correlation based watermark embedding scheme as [6] using a
different JND (just noticeable difference) model, which is based on the entropy. For
each 64x64 blocks, we adjusted the watermark strength as image complexity using a
mixed perceptual model of NVF (noise visibility function) and entropy masking [7, 8,
9, 10]. We used the following equations for our watermark embedding, and we ex-
perimentally set the multiplication factor of entropy model as 3.0. Also the A and B
values are set to 5.0 and 1.0.

412 H.-S. Sung and S.-W. Kim

Watermark
strength

),max(EN λλλ = (2)

NVF model

Nλ

BNVFANVFN **)1(+−=λ , where

21

1

σ+
=NVF

Entropy
Masking

model Eλ
EE *0.3=λ , where

∈

⋅=
)()(

1
log)(

XNx xp
xpE

To detect watermark, we used auto-correlation function to estimate the geometric
transform, and used Wiener filter to estimate the watermark in blind manner. We
based on the auto-correlation based watermark detection approach as [6], and we used
a different payload coding techniques to improve the payload detection. We used the
smaller auto-correlation block size 64x64 than 128x128. In our experience, decreas-
ing auto-correlation block size makes multiple auto-correlated blocks to be folded,
and it increases the watermark robustness. Watermark detection and payload extrac-
tion for H.264 INTRA frames can be summarized in the following equations.

Detection
'wws ⋅ =)''(EIws −⋅ , where E’ = Wiener(I’)

=)(δλλ +++⋅ sps NwNwIw
(3)

Payload
extraction

)(' δλλ +++⋅=⋅ sppp NwNwIwww . (4)

Fig. 2. Watermark detection for INTRA frames

 An Improvement of Auto-Correlation Based Video Watermarking Scheme 413

3 Robust Watermarking on H.264 INTER Frame

INTER frames are usually more compressed than INTRA frames, and used INTER
frames to show watermark detection purpose only. Figure 3 shows the INTER frame
watermark embedding scheme. We used Hadamard transform to embed watermark,
and we designed a perceptual model for the transform domain. INTER frames are more
compressed than INTRA frames, and it is highly dependent on the transform used.

Fig. 3. Watermark embedding for INTER frames

In our watermark scheme, we chose 4x4 Hadamard transform because it is robust
against the H.264 compression, and shows good performance to preserve security
information. We assume the same geometric transform as the INTRA frame, and we
do not consider geometric robustness in INTER frame watermarks. Watermark em-
bedding for H.264 INTER frames can be summarized in the following equation (5). In
INTER frame watermarking, we embedded watermark in 4x4 Hadamard transform
domain, and we denote the Hadamard transform as H.

Embedding
)(

))(('
1

1

s

s

wHI

wIHHI

λ
λ

−

−

+≈

+=
 (5)

Although INTER frames cannot show good performance to carry payload, INTER
frames are motion predicted and we designed a perceptual model of motion entropy
using the H.264 generated motion vectors. Motion entropy is a HVS derived features
and we can embed much stronger watermark as follows.

Luminance
Sensitivity

α

=
0,0

,0,0
,,, X

X
FL b

vubvu

(6)

Contrast
Masking])(||,max[,, 1

,,,,,,,,
vuvu

bvubvubvubvu LXLC ββ −=

Entropy
Masking

])(||,max[,,,,,,,,
γ

bvubvubvubvu ECCV ⋅=
, where

∈

⋅=
)(

,,

,,
)(

1
log)(

bvuXNx
bvu xp

xpE

414 H.-S. Sung and S.-W. Kim

Motion
Entropy

]||,max[,,,,,,
bM

bvubvubvu MVVW η⋅=
, where

))((

1
log))((

bCp
bCpM b ⋅=

As shown in Figure 4, we estimate the watermark using Wiener filter, and per-
formed Hadamard transform to compute correlation between ws and detected water-
mark w’ on Hadamard transform domain.

Fig. 4. Watermark detection for INTER frames

Watermark detection and payload extraction for H.264 INTER frames can be
summarized in the following equation (7). To optimize the detection threshold, we
used the same threshold selection strategy as [11], and set 3.97 for k.

Detection

Tww s >= '
64

1
2

ρ , where

)''(' EIHw −= and E’ = Wiener (I’)

1*2 TkT = , ()= 2

21 '
64

1
wT .

(7)

4 Simulation Results

We experimented with the standard test image sequence from VQEG (Video Quality
Expert Group) as shown in Figure 5 [12]. To experiment the geometric attack, we
used Stirmark 4.0 [13] geometric attack packages for various geometric attacks (rota-
tion with 0-90 degrees, scaling with 75-200%, cropping with 50-75%, and mixed).
We experimented with five cases: (case 1) rotation with 1, 2, and 5 degree clockwise;
(case 2) case 1 rotation and scaling to fit original image size; (case 3) cropping with

 An Improvement of Auto-Correlation Based Video Watermarking Scheme 415

Fig. 5. VQEG test sequences

50% and 75%; (case 4) scaling with 50%, 75%, 150%, and 200%; and (case 5) me-
dian, Gaussian, and sharpening filter attacks.

Table 1 showed robustness result for the various geometric attack on INTRA
frames, and shows successful payload detection results in most geometric attack
cases, and shows some misses under combined attack of rotation and scaling.

Table 1. Payload detection after geometric attack (only for INTRA frames)

 Case 1: Rotation Case 2: Rotation + Scaling Case 3: Cropping

 1 2 5 1 2 5 50 75

I1 100% 100% 67% 50% 34% 50% 100% 100%

I2 100% 100% 100% 67% 83% 67% 100% 100%

I3 100% 100% 67% 50% 50% 67% 100% 100%

I4 100% 100% 50% 100% 100% 100% 100% 100%

I5 100% 100% 83% 100% 100% 83% 100% 100%

I6 100% 100% 100% 67% 100% 50% 100% 100%

I7 100% 100% 100% 50% 83% 50% 100% 100%

I8 100% 100% 83% 67% 83% 50% 100% 100%

J1 100% 100% 67% 67% 67% 100% 100% 100%

J2 100% 100% 100% 67% 100% 100% 100% 100%

J3 100% 100% 100% 50% 50% 67% 100% 100%

416 H.-S. Sung and S.-W. Kim

J4 100% 100% 83% 34% 67% 100% 100% 100%

J5 100% 100% 67% 34% 50% 83% 100% 83%

J6 100% 100% 100% 100% 83% 100% 100% 100%

J7 100% 100% 100% 100% 83% 83% 100% 100%

J8 100% 100% 67% 67% 83% 83% 100% 100%

J9 100% 100% 100% 100% 100% 100% 100% 100%

J10 100% 100% 83% 83% 67% 100% 100% 100%

 Case 4: Scaling Case 5: Median, Gaussian, Sharpening

 50 75 150 M G S

I1 100% 100% 100% 100% 100% 100%

I2 100% 100% 100% 100% 100% 100%

I3 100% 100% 100% 100% 100% 100%

I4 100% 100% 100% 100% 100% 100%

I5 100% 100% 100% 100% 100% 100%

I6 100% 100% 100% 100% 100% 100%

I7 100% 100% 100% 100% 100% 100%

I8 100% 100% 100% 100% 100% 100%

J1 100% 100% 100% 100% 100% 100%

J2 100% 100% 100% 100% 100% 100%

J3 100% 100% 100% 100% 100% 100%

J4 100% 100% 100% 100% 100% 100%

J5 100% 100% 100% 100% 100% 100%

J6 100% 100% 100% 100% 100% 100%

J7 100% 100% 100% 100% 100% 100%

J8 100% 100% 100% 100% 100% 100%

J9 100% 100% 100% 100% 100% 100%

J10 100% 100% 100% 100% 100% 100%

 (a) (b)

 (c) (d)
Fig. 6. Original and watermarked frames from: (a-b) Mobile&Calendar (PSNR=32.03) and
(c-d) Football (PSNR=31.80) sequences

 An Improvement of Auto-Correlation Based Video Watermarking Scheme 417

Fig. 7. Robustness for H.264 compression: (a) QP=28 and (b) QP=34 (Football sequence)

After INTRA frame watermark embedding, the watermarked images show good
subjective quality. Figure 6 shows the original and watermarked frames for
Mobile&Calendar and Football test sequences, and the average PSNR for two test
sequence’s INTRA frames are 32.03 and 31.80, respectively.

We used H.264 INTRA frames for geometric attack estimation, and H.264 INTER
frames for watermark detection. INTER frames are highly compressed, and we used
motion entropy masking model for Hadamard transform coefficients to make stronger
watermark. Figure 7 shows the experimental watermark detection result for Football

418 H.-S. Sung and S.-W. Kim

test sequence, and shows robustness over H.264 video compression with QP=28 and
QP=34 (average PSNR = 34.0 dB). Figure 8 shows the experimental watermark de-
tection result for Mobile&Calendar test sequence, and shows the average detection
value 1.0 which is higher than Football test sequence, because Football test sequence
has more INTRA coded blocks in H.264 video compression.

Fig. 8. Robustness for H.264 compression: (a) QP=28 and (b) QP=34 (Mobile&Calendar sequence)

 An Improvement of Auto-Correlation Based Video Watermarking Scheme 419

5 Conclusions

In this paper, we presented a robust video watermarking scheme, which uses auto-
correlation based scheme for geometric attack recovery, and uses human visual sys-
tem characteristics for H.264 compression. Our video watermarking scheme is robust
against H.264 video compression (average PSNR = 31 dB) and geometric attacks
(rotation with 0-90 degree, scaling with 75-200%, and 50%~75% cropping).

References

1. Bas, P., Chassery, JM, Macq, B.: Geometrically invariant watermarking using feature
points. IEEE Trans. Image Proc., vol. 11, no. 9 (2002) 1014–1028

2. O'Ruanaidh, J.J., Pun, T.: Rotation, scale and translation invariant digital image water-
marking. Proc. IEEE Int. Conf. Image Proc.(1997) 536 -539

3. Pereira, S., Pun, T.: Robust template matching for affine resistant image watermarks. IEEE
Trans. Image Proc., vol. 9, no. 6 (2000)

4. Kutter, M.: Watermarking resisting to translation, rotation, and scaling. Proc. of SPIE Int.
Conf. on Multimedia Systems and Applications, vol. 3528 (1998) 423-431.

5. P.-C. Su and C.-C. J. Kuo, "Synchronized detection of the block-based watermark with in-
visible grid embedding," Proc. SPIE Electronic imaging (Security and Watermarking of
Multimedia Contents III), 2001.

6. Su, P.-C., Kuo, C.-C. J.: Synchronized detection of the block-based watermark with in-
visible grid embedding. Proc. SPIE Electronic imaging (Security and Watermarking of
Multimedia Contents III) (2001)

7. Lee, C. H., Lee, H. K., Suh, Y. H.: Autocorrelation Function-based Watermarking with
Side Information. IS&T/SPIE, 15th Annual Symposium Electronic Imaging Science and
Technology: Security and Watermarking of Multimedia Contents, San Jose, USA. (Janu-
ary 2003) 20-24

8. Voloshynovskiy, S., Herrige, A., Baumgaertner, N., Pun, T.: A stochastic approach to con-
tent adaptive digital image watermarking. Lecture Notes in Computer Science: 3rd Int.
Workshop on Information Hiding, vol. 1768 (1999) 211-236

9. Watson, A. B., Borthwick, R., Taylor, M.: Image quality and entropy masking. Proc. SPIE
Conf. Human Vision, Visual Processing, and Digital Display VI (1997)

10. Podilchuk, C., Zeng, W.: Image adaptive watermarking using visual models. IEEE J. Se-
lected Areas in Communications, vol. 16, no. 4 (1998.)

11. Kim, S.W., Suthaharan, S., Lee, H.K., Rao, K.R.: An image watermarking scheme using
visual model and BN distribution. IEE Elect. Letter, vol. 35 (3) (1999)

12. Barni, M., Bartolini, F., Cappellini, V., Lippi, A., Piva, A.: A DWT based technique for
spatio frequency masking of digital signatures. Proc. IS&T/SPIE Conf. Security and wa-
termarking of multimedia contents, vol. 3657 (1999) 31-39

13. http://www.its.bldrdoc.gov/vqeg/
14. http://www.petitcolas.net/fabien/watermarking/stirmark/

Validation of Policy Integration Using Alloy

Manachai Toahchoodee and Indrakshi Ray

Department of Computer Science,
Colorado State University,

Fort Collins CO 80523-1873
{toahchoo, iray}@cs.colostate.edu

Abstract. Organizations typically have multiple security policies operating to-
gether in the same system. The integration of multiple policies might be needed
to achieve the desired security requirements. Validating this integrated policy is
a non-trivial process. This paper addresses the problem of composing, model-
ing and validating the security policies. We show how the various approaches
for composing security policies can be modeled and verified using Alloy, a
lightweight modeling system with automatic semantic analysis capability.

1 Introduction

Organizations typically enforce multiple policies to achieve security. For instance, each
department in a hospital will have its own policy about disclosing the information of a
patient. To get the information of a patient belonging to multiple departments, we need
to combine the existing policies and check whether the requesters have enough permis-
sion to receive the information they need. Manually analyzing whether the integrated
policy’s behavior complies with the given requirement for a large-scale application is
a tedious and error-prone process. Towards this end, we show how the process can be
automated to some extent.

Our approach consists of developing a model of the system whose policies we are
verifying. A model is an analyzable representation of a system. To be useful, it must be
simpler than the system itself, but faithful to it. In our approach, we use the Alloy lan-
guage [5, 6, 8, 10] to specify the model. The specification in Alloy can be automatically
verified using the Alloy Analyzer. We show how the policy composition approaches
proposed by Bonatti et al. [2] can be verified using Alloy.

The rest of this paper is organized as follows. Section 2 discusses some work on
policy composition. Section 3 contains summary of the principle and the features of
Alloy system. Section 4 describes algebra for composing access control policies and
its representation in Alloy language. Examples are provided in section 5. Section 6
concludes the paper and gives some future directions.

2 Related Work

Several researchers have worked on the problem of policy composition. Hosmer [3]
identified shortcomings in the unified security policy paradigm, such as inflexibility,

 This work was partially supported by AFOSR under Award No. FA9550-04-1-0102.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 420–431, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Validation of Policy Integration Using Alloy 421

difficulty in exchanging data between systems having different policies, and poor per-
formance. These shortcomings are eliminated in multipolicy paradigm proposed by the
author. Bidan and Issarny [1] proposed a solution for reasoning about the coexistence
of different security policies and how these policies can be combined. The authors also
address issues pertaining to the completeness and the soundness of the combined se-
curity policy. Jajodia et al. [7] authors introduce the Flexible Authorization Framework
(FAF) that allows users to specify policies in a flexible manner. The language allows the
specification of both positive and negative authorizations and incorporates notions of
authorization derivation, conflict resolution, and decision strategies. Such strategies can
exploit the hierarchical structures in which system components are organized as well
as any other relationship that the system security officer (SSO) may wish to exploit.
Bonatti et al. [2] proposed an algebra for representing and composing access control
policies. Complex policies are formulated as expressions of the algebra. Different com-
ponent policies can be integrated while retaining their independence. This framework
is flexible and keeps the composition process simple by organizing compound specifi-
cations into different levels of abstraction. Our work is based on this work. Siewe et al.
[9] have developed a compositional framework for the specification of access control
policies using specific language called ITL. Complex policies are created by compo-
sition using several operators. Multiple policies can be enforced through composition,
and their properties reasoned about. The effect of the combined policy can be under-
stood by using the simulator called Tempura. Zao et al. [10] and Schaad et al. [8] have
investigated how Alloy can be used for verifying Role-Based Access Control (RBAC)
policies. But none of these work address how to verify integrated policies.

3 Alloy Lightweight Modeling System

Alloy ([4], [5], [6], [10]), is a textual language developed at MIT by Daniel Jackson and
his team. Unlike a programming language, an Alloy model is declarative. This allows
very succinct and partial models to be constructed and analyzed. It is similar in spirit to
the formal specification languages Z, VDM, Larch, B, OBJ, etc, but, unlike all of these,
is amenable to fully automatic analysis in the style of a model checker.

Z was a major influence on Alloy. Unlike Z, Alloy is first order, which makes it
analyzable but is also less expressive. Alloys composition mechanisms are designed to
have the flexibility of Z’s schema calculus, but are based on different idioms: extension
by addition of fields, similar to inheritance in an object-oriented language, and reuse of
formulas by explicit parameterization, similar to functions in a functional programming
language. Alloy is a pure ASCII notation and does not require special typesetting tools.

The Alloy Analyzer’s analysis is fully automatic, and when an assertion is found to
be false, the Alloy Analyzer generates a counterexample. It’s a “refuter” rather than a
“prover”. When a theorem prover fails to prove a theorem, it can be hard to tell what’s
gone wrong: whether the theorem is invalid, or whether the proof strategy failed. If
the Alloy Analyzer finds no counterexample, the assertion may still be invalid. But
by picking a large enough scope, you can usually make this very unlikely. The tool
can generate instances of invariants, simulate the execution of operations (even those
defined implicitly), and check user-specified properties of a model.

422 M. Toahchoodee and I. Ray

4 An Algebra for Composing Access Control Policies and Its
Representation in Alloy

Bonatti et al. [2] propose an algebra for composing access control policies. In this sec-
tion, we show how these policy expressions can be represented in Alloy.

4.1 Definitions Used in Bonatti’s Work

We begin by giving some definitions used in Bonatti’s work.

Definition 1. [Authorization Term] Authorization terms are triples of the form
(s,o,a), where s is a constant in S or a variable over S, o is a constant in O or a variable
over O, and a is a constant in A or a variable over A where S, O, and A represent the
set of subjects, objects, and actions, respectively.

At a semantic level, a policy is defined as a set of ground (i.e., variable-free) triples.

Definition 2. [Policy] A policy is a set of ground authorization terms. The triples in a
policy P state the accesses permitted by P.

The algebra (among other operations) allows policies to be restricted (by posing con-
straints on their authorizations) and closed with respect to inference rules.

– An authorization constraint language Lacon and a semantic relation satisfy ⊆ (S×
O×A)×Lacon; the latter specifies for each ground authorization term (s,o,a) and
constraint c ∈ Lacon whether (s,o,a) satisfies c.

– A rule language Lrule and a semantic function closure: ℘(Lrule)×℘(S×O×A)→
℘(S×O×A); the latter specifies for each set of rules R and ground authorizations
P which authorizations are derived from P by R.

These languages have been chosen with the goal of keeping the presentation as simple
as possible, focusing attention on policy composition, rather than authorization proper-
ties and inference rules.

Compound policies can be obtained by combining policy identifiers through the al-
gebra operators. Let the metavariables P1 and P2 range over policy expressions.

Addition/Union (+). It merges two policies by returning their union. Formally, P1 +
P2 = P1 ∪P2. Intuitively it means that if access is permitted by either of the policies,
then the access will be allowed by the resulting composed policy.

Conjunction/Intersection (&). It merges two policies by returning their intersection.
Formally, P1&P2 = P1 ∩P2. This means the access will be permitted only if both the
component policies allow access.

Subtraction (−). It restricts a policy by eliminating all the accesses in a second policy.
The formal definition is P1−P2 = P1\ P2. The resulting policy permits access only if
the access is allowed by P1 and not by P2.

Closure (∗). It closes a policy under a set of inference (derivation) rules. Formally,
P ∗ R = closure(R,P). It basically signifies the set of policies that can be generated
from the policy P given the derivation rule R.

Validation of Policy Integration Using Alloy 423

Scoping restriction (∧). It restricts the application of a policy to a given set of subjects,
objects, and actions. Formally, P∧c = {(s,o,a)θ | (s,o,a)θ ∈ P,(s,o,a)θ satisfy cθ}
where c ∈ Lacon and θ is a ground substitution for variables s,o,a. Scoping is partic-
ularly useful to “limit” the statements that can be established by a policy and to enforce
authority confinement. Intuitively, all authorizations in the policy that do not satisfy the
scoping restriction are ignored, and therefore ineffective.

4.2 Representation of the Integrated Access Control Policy in Alloy

We apply the following rules in order to represent policies in Alloy:

Base Elements. Each base element in the access control policy (that is, the set of sub-
jects, objects and actions) is represented by using signature (see example 1 for details).

Authorization Term. The authorization term is expressed using a special signature that
comprises subject, object and action (see Example 1 for details).

Policy. Policy is described using a special signature which is composed of the set of
authorization terms (see example 1 for details).

Closure. We define closure as a fact in Alloy. This feature ensures that all elements in
our model must satisfy the predefined rules in the fact section. Fact content can be either
attached to or separated from the content of the signature. If we attach fact to the signature,
this means the fact is applied to the signature only (see example 2 and 7 for details).

Policy expressions. Other policy expressions, such as, scoping restriction, addition,
conjunction and subtraction, are represented using predicates. We can think of a pred-
icate as a function that will change the value of parameters (if any) according to the
expressions stated in the predicate’s context, and return true or false. Using predicates
allows us to verify our integrated access control policy in the following ways:

– Model consistency check: We can check from the predicate whether there exists an
input for our model or not by using run command in Alloy. If there is any input that
satisfies the model, Alloy will show it. Otherwise it will report an error.

– Model correctness check: The correctness of the policy composition can also be
validated by using test cases. The test cases are specified using the assert feature.
In the assert part, we define the result we expect from the policy composition and
use check command in Alloy to evaluate it. If the assertion does not hold, a coun-
terexample is produced. To define the expected result in the assert part, we define
the preconditions and the expected post conditions then concatenate them by the
imply operator (⇒).

5 Example Scenario

We illustrate our approach by using an example application. Consider a hospital com-
posed of three departments, namely, Radiology, Surgery, and Medicine. Each department
is responsible for granting access to data under their authority domains, where domains
are specified using scoping restrictions. In addition there are administrators who may or
may not be a member of a department. These relationships are shown in Figure 1.

424 M. Toahchoodee and I. Ray

Fig. 1. Hospital policy relationship diagram

Example 1. We represent the set Subject, Object, and Action as signatures in Alloy.
The authorization term is represented as a signature whose constituent elements are
members of the set of subject, object and action, respectively. This specification given
below shows how the authorization term and policies are represented in Alloy.

sig Subject {}
sig Radiology, Surgery, Medicine extends Subject {}
sig Administrator in Subject {}
sig Object
{

owner: Subject
}
sig File, Form extends Object {}
sig Action {}
sig ReadOnly, Write, Execute extends Action {}
sig AuthorizationTerm
{

subject: Subject,
object: Object,
action: Action

}
sig Policy
{

auth: set AuthorizationTerm
}

Example 2. Every authorization term in the hospital policy must satisfy a set of ground
rules. These ground rules will be used when computing the closure of some policy. The
ground rules are as follows.

– The elements of set Subject must come from the union of the elements from the set
Radiology, Surgery, Medicine and Administrator only.

– The elements of set Object must come from the union of the elements from the set
File and Form only.

– The elements of set Action must come from the union of the elements from the set
ReadOnly, Write and Execute only.

Validation of Policy Integration Using Alloy 425

– Every department has their own administrators.
– There must be at least one member for each department.

The specification given below shows how these can be represented as facts in Alloy.

fact PolicyGroundRules
{

// Specify the elements in the universe (Subject, Object, Action)
Subject = Radiology + Surgery + Medicine + Administrator
Object = File + Form
Action = ReadOnly + Write + Execute
// Every departments have administrators
Radiology & Administrator != none
Surgery & Administrator != none
Medicine & Administrator != none
// Each subset of subject must not empty
Radiology != none
Surgery != none
Medicine != none
Administrator != none

}

Example 3. To represent the scope restriction, we use Alloy’s predicate feature to rep-
resent the scope operation. We can check whether the combination of each condition in
the predicate can generate the output or not by using command run in the Alloy Ana-
lyzer. If there are any conflicts of conditions, the analyzer will send an error message.
If the analyzer can find valid input for the predicate, it will show the graph of the input
as in Figure 2.

After we have created the predicate, we can verify the correctness of our operation
(in this case, the scoping restriction) by using the assert feature in Alloy. Assert will try
to find the counterexample for our predicate and show us the counterexample graph if
any counterexample exists as in figure 3.

Fig. 2. Example of input for Scope

426 M. Toahchoodee and I. Ray

Fig. 3. Counterexample graph

In this example, we make the assumption that if we have two arbitrary sets of autho-
rization terms and we do the scoping restriction based on the first authorization term,
the result of the scoping must not equal to the authorization terms of the second set.
Then we test our predicate based on this assumption by command check. Obviously,
the analyzer could not find the counterexample. We can specify the number of testing
objects that we want Alloy to generate for us by adding the parameter for after com-
mand run, check. The Alloy code for the predicate Scope and the corresponding assert
command is shown below.

pred Scope (p: Policy, s: Subject, o: Object, a: Action)
{

p.auth.subject = s
p.auth.object = o
p.auth.action = a

}
run Scope
// After scoping, the remaining authorization terms must satisfy
// the scope condition
assert chkScope
{

all s, s’: Subject, o, o’: Object, a, a’: Action, p: Policy|
((s != s’) && (o != o’) && (a != a’) &&
Scope(p, s, o, a)) =>
((p.auth.subject -> p.auth.object -> p.auth.action) !=
(s’ -> o’ -> a’))

}
check chkScope

Example 4. To do the addition of two policies, we create the predicate called PolicyU-
nion. This predicate will accept three policies as input parameters, then it will union the
first two policies together and store the result in the third parameter.

Validation of Policy Integration Using Alloy 427

For instance, we would like to create the new access control policy from our existing
policy. This new policy allows the access from both Radiology department and Surgery
department. After the composition, we will verify our model to ensure that the result of
composition must be the combination of the set of authorization terms from Radiology
departments policy and the set of authorization terms from Surgery departments policy.
To satisfy these requirements, our model and the verification command in Alloy will be
as below.

pred PolicyUnion (p1, p2, p3: Policy)
{

p3.auth = p1.auth + p2.auth
}
run PolicyUnion
assert chkPolicyUnion
{

all p1, p2: Policy| some p3: Policy|
(Scope(p1, Radiology, Object, Action) &&
Scope(p2, Surgery, Object, Action)) &&
PolicyUnion(p1, p2, p3) =>
((Radiology in p3.auth.subject) &&
(Surgery in p3.auth.subject) && (p3.auth != none))

}
check chkPolicyUnion

Example 5. To do the conjunction of policies, we create the predicate called Policy-
Intersection. This predicate will accept three policies as input parameters, then it will
intersect the first two policies together and store the result in the third parameter.

For example, we would like to create a new access control policy which allows only
the administrators of the Radiology department to access the resource. The integrated
policy is created from the intersection between policy of the Radiology department and
the policy of the administrator. To verify the correctness of the model, we create the
test that the result policy’s authorization term is restricted to the Radiology department
and the staff must be the administrator. The Alloy code to support the requirement is as
follows.

pred PolicyConjunction (p1, p2, p3: Policy)
{
p3.auth = p1.auth & p2.auth
}
run PolicyConjunction
assert chkPolicyConj
{

all p1, p2: Policy| some p3: Policy|
(Scope(p1, Administrator, Object, Action) &&
Scope(p2, Radiology, Object, Action)) &&
PolicyConjunction(p1, p2, p3) =>

428 M. Toahchoodee and I. Ray

((p3.auth.subject in Radiology) &&
(p3.auth.subject in Administrator) &&
(p3.auth != none))

}
check chkPolicyConj

Example 6. To do the subtraction of policies, we create the predicate called Policy-
Subtraction. This predicate will accept three policies as input parameters, then it will
subtract policy p2 from p1 and store the result in the third parameter (policy p3).

To demonstrate the idea, suppose we want to create a new policy which allows only the
staff from Radiology department who is not the administrator to access the resource. To
achieve this goal, we subtract the members who are the administrator of the Radiology
department policy from the policy of the Radiology department itself. To verify the
correctness of the integrated policy, we check if the result from subtraction is the set
which members are from Radiology set but not from Administrator set. The Alloy code
for this example will be as below.

pred PolicySubtraction (p1, p2, p3: Policy)
{

p3.auth = p1.auth - p2.auth
}
run PolicySubtraction
assert chkPolicySubtraction
{

all p1, p2: Policy| some p3: Policy|
(Scope(p1, Radiology, Object, Action) &&
Scope(p2, Administrator, Object, Action)) &&
PolicySubtraction(p1, p2, p3) =>
((p3.auth.subject in Radiology) &&
(p3.auth.subject not in (Administrator)) &&
(p3.auth != none))

}
check chkPolicySubtraction

Example 7. In this example, we will show how to combine the different kinds of policy
expressions together. Each department is responsible for granting access to data under
their authority domains, where domains are specified by scoping restrictions. The state-
ments made by the departments are then unioned, meaning the hospital considers an
access as authorized if any of the department policies so states.

For privacy regulations, the hospital will not allow any access (even if authorized
by the departments) to lab tests data unless there is patient consent for that, stated by
policy Pconsents. In terms of the algebra, the hospital policy can be represented as

[(Prad + Psurg + Pmed)− (Prad + Psurg + Pmed)∧(object =
lab tests)]+ [Pconsents&(Prad + Psurg + Pmed)∧(object = lab tests)]

In this case, we can view Pconsents as a policy which is closed by a set of rules (the
permissions assigned by patient). In Alloy, we defined Pconsents as a special kind of

Validation of Policy Integration Using Alloy 429

signature which inherit from the Policy signature and closed by the attached fact. To
check the correctness of the model, we claim that there is no staff from the Medicine
department that can access lab tests data. The full Alloy model for the hospital policy
can be shown as below

sig Subject {}
sig Radiology, Surgery, Medicine extends Subject {}
sig Administrator in Subject {}
sig Object
{

owner: Subject
}
sig File, Form, LabTests extends Object {}
sig Action {}
sig ReadOnly, Write, Execute extends Action {}
sig AuthorizationTerm
{

subject: Subject,
object: Object,
action: Action

}
sig Policy
{

auth: set AuthorizationTerm
}
sig Consent extends Policy
{
}
{
// Allow only Radiology and Surgery Staff to access lab tests data

auth.subject = Radiology + Surgery
auth.object = LabTests

}
fact PolicyGroundRules
{

Subject = Radiology + Surgery + Medicine + Administrator
Object = File + Form
Action = ReadOnly + Write + Execute
Radiology & Administrator != none
Surgery & Administrator != none
Medicine & Administrator != none
Radiology != none
Surgery != none
Medicine != none
Administrator != none

}

430 M. Toahchoodee and I. Ray

pred Scope (p: Policy, s: Subject, o: Object, a: Action)
{

p.auth.subject = s
p.auth.object = o
p.auth.action = a

}
// Policy Union
pred PolicyUnion (p1, p2, p3: Policy)
{

p3.auth = p1.auth + p2.auth
}
pred HospitalPolicy (p1, p2, p3, p4: Policy)
{

p4 = (p1 - p2) + (p3 & p2)
}
run HospitalPolicy
assert chkHospitalPolicy
{

all Prad, Psurg, Pmed, Pradsurg, p1, p2: Policy,
Pconsent: Consent|
no p4: Policy|
(Scope(Prad, Radiology, Object, Action) &&
Scope(Psurg, Surgery, Object, Action) &&
Scope(Pmed, Medicine, Object, Action)) &&
PolicyUnion(Prad, Psurg, Pradsurg) &&
PolicyUnion(Pradsurg, Pmed, p1) &&
Scope(p2, p1.auth.subject, LabTests, p1.auth.action) &&
HospitalPolicy(p1, p2, Pconsent, p4) =>
((Medicine->LabTests->Action in
p4.auth.subject->p4.auth.object->p4.auth.action) &&
(p4.auth != none))

}
check chkHospitalPolicy

6 Conclusion and Future Work

In this paper we have shown how the different policy composition operations can be
represented in Alloy. Specifying the policies in Alloy allows for formal analysis most of
which can be performed automatically using the Alloy Analyzer. A lot of work remains
to be done. We assumed that policies can be defined using the set of authorization terms.
Towards this end, we need to find the method to automatically transform the component
policies to the set of authorization terms. Similar to the problem of software testing, we
need a methodology to generate the good test cases that can help us to detect the flaws,
if any, in our model.

Validation of Policy Integration Using Alloy 431

References

1. Christophe Bidan and Valerie Issarny. Dealing with multi-policy security in large open dis-
tributed systems. In ESORICS, pages 51–66, 1998.

2. Piero Bonatti, Sabrina De Capitani di Vimercati, and Pierangela Samarati. An algebra for
composing access control policies. ACM Transactions on Information and System Security
(TISSEC), 5(1):1–35, February 2002.

3. Hilary H. Hosmer. The multipolicy paradigm for trusted systems. In NSPW ’92-93: Pro-
ceedings on the 1992-1993 workshop on New security paradigms, pages 19–32, New York,
NY, USA, 1993. ACM Press.

4. Daniel Jackson. Automating first-order relational logic. In SIGSOFT ’00/FSE-8: Proceed-
ings of the 8th ACM SIGSOFT international symposium on Foundations of software engi-
neering, pages 130–139, New York, NY, USA, 2000. ACM Press.

5. Daniel Jackson. Micromodels of Software: Lightweight Modelling and Analysis with Alloy.
At http://sdg.lcs.mit.edu/alloy/referencemanual.pdf, 2002.

6. Daniel Jackson. Alloy 3.0 reference manual. At http://alloy.mit.edu/reference-manual.pdf,
2004.

7. Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahmanian. Flexible
support for multiple access control policies. ACM Trans. Database Syst., 26(2):214–260,
2001.

8. Andreas Schaad and Jonathan D. Moffett. A lightweight approach to specification and anal-
ysis of role-based access control extensions. In SACMAT ’02: Proceedings of the seventh
ACM symposium on Access control models and technologies, pages 13–22, New York, NY,
USA, 2002. ACM Press.

9. Franois Siewe, Antonio Cau, and Hussein Zedan. A compositional framework for access
control policies enforcement. In FMSE ’03: Proceedings of the 2003 ACM workshop on
Formal methods in security engineering, pages 32–42, New York, NY, USA, 2003. ACM
Press.

10. John Zao, Hoetech Wee, Jonathan Chu, and Daniel Jackson. RBAC Schema Verifica-
tion Using Lightweight Formal Model and Constraint Analysis. At http://alloy.mit.edu/
contributions/RBAC.pdf, 2002.

Linking Theories of Concurrency by Retraction

He Jifeng

International Institute of Software Technology United Nations University, Macau

Abstract. Theories of concurrency can be distinguished by the set of
processes that they model, and by their choice of pre-ordering relation
used to compare processes to prove their correctness. A link between
two theories is a function L, which maps the processes of the source
theory onto those of the target theory. Its image defines exactly the set
of processes of the target theory. The ordering relation of the target
theory is obtained by applying the link L to one or both operands of
the source theory ordering. We will use the normal transition rules of a
structured operational semantics to define a series of linking functions:
W for weak simulation, R for refusals, T for traces refinement, D for
divergences, etc. We then show that each function is a retraction, in the
sense that it is monotonic, decreasing and idempotent. Finally we show
their composition is a retraction.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, p. 432, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Software Engineering Track Chair’s Message

Gopal Gupta

University of Texas at Dallas, USA

Abstract. The Software Engineering track received 63 papers from
which 7 papers were selected after an intensive reviewing and selection
process. Many good papers could not be selected due to lack of space in
the program. The selected papers cover a diverse range of topics within
software engineering: from software reliability prediction to middle-ware
for component management to runtime validation and code generation.
The paper by Roychoudhury, Negi and Mitra analyzes programs loops
for estimating program execution time. They use constraint propagation
techniques to detect infeasible paths followed by timing analysis that
employ memoization techniques. The paper by Sengupta and Cleaveland
presents the operational semantics of timed message sequence charts to
help detect errors and inconsistencies in specifications. Tripathi and Mall
present a method for making predictions about reliability of software dur-
ing the software development process itself when the failure data from
the field cannot be available. The paper by Wang presents a logic pro-
gramming framework for integrating architecture description languages
(ADLs) which allows tools developed for one ADL to be used even though
the architectural specification is written in another ADL. In a similar
vain, the paper by Stevenson, Fu and Dong presents a framework for au-
tomated and validated realization of software architecture designs. The
paper by Bhattarcharjee and Shyamsundar presents a method for vali-
dated code generation for activity diagrams which are useful in model
driven design of software. Finally, the paper by Mousavi et al presents
techniques that exploit symmetry for tackling the state-space explosion
problem that arises in model checking.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, p. 433, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Integrating Architecture Description Languages:
A Semantics-Based Approach�

Qian Wang

Applied Logic, Programming-Languages and Systems (ALPS) Laboratory,
Department of Computer Science,
University of Texas at Dallas, USA

Abstract. Numerous architectural description languages(ADLs) have
been developed in the last decade. However, none of the ADLs and their
toolsets are expressive enough to cover all the requirements that may be
specified while developing a software system. An ADL based approach
will be more useful and powerful if ADLs can share architectural de-
scriptions and if their analysis tools can be integrated. In this paper,
we propose a semantics-based approach to integrating ADLs. A general,
abstract executable form is developed for representing architectural in-
formation. A uniform query language is also defined that can be used
to retrieve architectural information from this abstract form. There are
at least three benefits of our framework. First, software designer and
analysis tools can use a uniform query language to retrieve architectural
information from architectural descriptions written in different ADLs.
Second, interpreters and toolsets for ADLs can be developed extremely
quickly. Thus, as an ADL rapidly evolves, its implementation infrastruc-
ture can be developed at the same pace. Third, an architecture descrip-
tion written in one ADL can be readily translated into another ADL.

1 Introduction

For successfully developing any complex software system, one of the critical tasks
is to clearly describe the architecture of the software system. At the architectural
level of design [4, 5], a software system is typically described as a composition
of high-level, interacting components. The choice of an appropriate architecture
can lead to a software product that satisfies its requirements and that can be
easily modified as new requirements arise, while an inappropriate architecture
can lead to cost over-runs and possibly project failure.

Over the last ten years considerable research has been done in the field
of software architecture. As a result, numerous architectural description lan-
guages(ADLs) have been developed; these include Aesop, Wright, ACME, C2,
Rapide, etc. [11]. However, research on ADLs is still primarily an academic en-
deavor. One of main reason is that each ADL just provides a specific set of
capabilities for architectural design and analysis. None of the ADLs (and their

� The authors partially supported by grants from the National Science Foundation,
Department of Education, and the Environment Protection Agency.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 434–445, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Integrating Architecture Description Languages 435

affiliated toolset) are expressive enough to cover all the requirements that may be
specified while developing a software system. For example, Aesop has a graphical
editor [2, 11] that can be specialized with visualizations appropriate to different
style. Wright [1, 11] uses a variant of CSP to formalize the behavior of each
components and connectors and provides capabilities for statically checking the
consistency and completeness of the design. Rapide [9, 11] describes an architec-
ture as a composition of components. Component behavior is specified in terms
of the way outgoing events are produced in response to incoming events. Rapide
provides tools for analyzing the result of simulations. Ideally, a software designer
would like to have as many capabilities as possible available to him/her in the
ADL he/she is using. However, given the current situation, the designer will have
to use multiple ADLs. Clearly, it will make ADLs more useful and powerful if we
can the share architectural description, and integrate the tools that have been
developed for various ADLs.

In the paper, we propose a denotational semantics based framework to in-
tegrate ADLs. Essentially, the denotational semantics of the ADL notation is
written in Horn logic. If the semantics is executable, the denotation of a doc-
ument written in that notation is also executable and can be used to capture
the semantics of architecture information implied in that document. There are
at least three benefits for our framework. The first is that software designer
and analysis tools can use query language to retrieve architectural descriptions
written in different ADLs. The integration becomes more flexible. At the same
they can use the desirable format to output query result. We separate the ar-
chitectural description language and query language. Second, interpreters and
toolsets for ADLs can be developed extremely quickly. Thus, as an ADL rapidly
evolves, its implementation infrastructure can be developed at the same pace.
Third, an architecture description written in one ADL can be readily translated
into another ADL due to the use of Horn clause logic for coding their semantics.

The article is organized as follows. Section 2 describes the framework of inte-
gration ADLs. Section 3 concentrates on how to write an interpreter for ADLs
based on denotational semantics. Section 4 explains the implementation details
of our system. Section 5 shows two simple query examples. Finally we draw a
conclusion.

2 Retrieving Software Architectural Information Based
on Semantic Approach

2.1 ADLs Integration Framework

When you want to integrate multiple languages, a number of approaches can
be selected to cope with problems of language heterogeneity. But the common
approach can’t deal with integration of ADLs. There is a detailed discussion
on this issue in ACME paper [3, 6]. In our framework, the whole process is di-
vided into two phases. First we need to extract the architecture information
implied in ADL document. In order to integrate more ADLs, we need to obtain

436 Q. Wang

more detailed information from documents. Therefore we transfer architectural
information into small pieces of information. A whole ADL document can be
converted into many small pieces of information. Each small piece of informa-
tion is a record in a database. We write an interpreter for each ADL to build
architectural information database. This kind of interpreter for ADL is easy to
implement based on denotational semantics. Such an approach has been ap-
plied in lots of applications. In this approach, to transfer one notation Ls to Lt,
the denotational semantics of Ls is given in terms of the language constructs
of Lt. Given a document coded in Ls, its denotation under this semantics is
the document coded in Lt. The executable semantics acts as a translator. Here
we can consider that each ADL is Ls and the internal database notation is Lt.
Defining the internal fatabase stucture is a challenge. If the information can-
not transfer small enough, then database cannot accept all ADLs semantics. If
the information become too small, it will effect performance of process. Another
point need mention is that the structure of database is different with intermedi-
ate ADL language, such as ACME. Because it need not keep ADL syntax and
structure according to compatible with other ADLs. It just records architectural
information.

In the second phase, software designer and analysis tools can use uniform
query language to retrieve architectural information. It is good to use uniform
query language to retrieve information. There are two advantages. First is soft-
ware designer and analysis tools can ignore the format of ADL. Designer and
tools just retrieve information from the internal database and not directly from
different ADLs. If a newly developed ADL transfers information into internal
database, designer and tools also can retrieve information. Second is designer
and tools can use declarative query language. The declarative query language
is easy to learn and use. The same approach is used to valuate the semantics
of query language. Because we can also give denotational semantics for nota-
tion of query language. We don’t try to translate one ADL into another ADL.
We transfer architecture information from database format into certain format
which is agreeable to the software designer or analysis tools. Also we transfer
the architectural information which is retrieved by query language not whole
information in database. Therefore this framework provides more flexibility. For
example, Aesop and Wright, ACME developed by CMU, have lots of common
conceptions. Therefore it is easy to compare lots of architectural information. Al-
though there are many commonalities, Aesop can not express information about
connector behavior. Therefore it is hard to translate CSP part of Wright into
Aesop. In our framework, we can ignore to compare or translate this part.

2.2 Denotational Semantics

The denotional semantics-based language [13, 14, 15] consists of three compo-
nents: syntax, semantic algebra and semantic valuation function. Language syn-
tax is specified as a context free grammar. Semantic algebra is the basic domains
along with associated operations. The real meaning of a program is expressed
in the terms of these basic domains. Semantic valuation functions are mappings

Integrating Architecture Description Languages 437

from syntactic structures to corresponding semantic values in the semantic al-
gebra. The implementation of the interpreter exactly follows the theory of de-
notational semantics.

2.3 Using Horn Logic to Implement Language Interpreter

Traditional method expresses syntax of denotational definitions in the BNF
format. The semantic algebras and valuation function are described in lamda-
calculus. However a disadvantage of this approach is that while the semantic
algebra and the valuation functions can be easily made executable, syntax check-
ing and generation of parse tree cannot. A parser has to be written to do syntax
checking and generate parse trees. The two phases constitute an interpreter for
the language being defined. An interpreter for a language can be thought of as
a specification of its operational semantics, however, using traditional notation
it has to be obtained in a complex way.

In our framework we use logic programming (Prolog) to describe all three
components. Thus, given a formal language, both its syntax and semantics can
be directly specified in logic programming. With logic programming, the syntax
of the specification can be specified by Definite Clause Grammars (DCG) [15].
DCG provides some nice methods such as argument passing to obtain a parser to
handle context free grammars. Given a grammar written as a DCG, the Prolog
interpreter interprets this DCG specification as a logic program which serves as
a parser for this grammar.

Semantic specification can be implemented by appropriate valuation predi-
cates, which essentially map the syntax structure (parse trees) of specification
to its semantic value. The valuation predicates, defined recursively based on the
syntax structure of formal language, not only specify the semantics of the ap-
plication, but also form an executable application, that can be executed using a
logic programming system.

Therefore, logic programming and denotational semantics make it easy to
implement an interpreter of a language [7]. All we need to do is to specify the
syntactic and semantic specification, and then execute them using logic pro-
gramming system.

2.4 Semantics-Based Format Translation

Horn logical semantics also provides a formal basis for language translation. Es-
sentially, the meaning of semantics of the language Ls can be given in terms of the
constructs of the language Lt. This meaning consists of both syntax and semantic
specifications. If these syntax and semantics specifications are executable, then
the specification itself acts as a translation system, providing a provably correct
translator. The task of specifying the filter from Ls to Lt consists of specifying
the DCG for Ls and Lt and the appropriate valuation predicates which essen-
tially map parse tree patterns of Ls to parse tree patterns of Lt. Let Ps(Ss,Ts)
to be the top level predicates for the DCG of Ls that take a sentence Ss of Ls,
parse it and produces the parse tree Ts for it. Let Pt(St,Tt) be the top level
predicate for the DCG of Lt that takes a sentence St of Lt, parse it and produces

438 Q. Wang

the parse tree Tt for it. Let Mst(Ts,Tt) be the top level valuation predicate that
relates parse trees of Ls and Lt. Then the relation

Translate(Ss,St):-Ps(Ss,Ts),Mst(Ts,Tt),Pt(St,Tt).

Declaratively specifies the equivalence of the source and target sentence under
the semantics mapping given. The translate predicate can be used for obtaining
St given Ss(and vice versa).

In our Framework, we need not directly translate one ADL to another ADL.
We introduce an intermediate structure – internal database. For any ADL, we
first transfer architecture information into internal database. Then the user uses
query language to retrieve information from internal database. Finally, we trans-
fer the result information into certain ADL format. The predicate of Query(Qc)
means there is a query Q and the output format is Lt. The task of query Qc
consists of specifying the DCG for Lq and Lt, retrieving information and the
appropriate valuation predicates which essentially map result to parse tree pat-
terns of Lt. Let Pq(Qt,Tq) be the top level predicates for the DCG of query
language with a sentence Qq of Lq, parse it and produce the parse tree Tq.
Let Retrieve(Tq,Ri) be the top level predicate for retrieving information from
internal database and produce the result information Ri. Let Mit(Ri,Tt) be the
top level valuation predicate that map result information from internal database
to Lt. Let Pt(Rt,Tt) be the top level predicate for the DCG of Lt that takes a
sentence Rt of Lt, parse it and produces the parse tree Tt for it. The top level
query predicate changes to the following form:

Query(Qq,Rt):-Pq(Qq,Tq),Retrieve(Tq,Ri),Mit(Ri,Tt),Pt(Rt,Tt).

3 Introduce Internal Database and Definition of Query
Language

In order to explain more detail about internal database structure, we first in-
troduce a very simple example. This example describes a simple client/server
structure [6]. In this structure, ADL defines two components, client and sever.
They are connected by one connector, rpc. You can find the complete example
in ACME [3] paper.

The internal database is used to record architectural information which is
described by ADLs. We create the structure of database considered two points.
The first is that information must be stored in small pieces of information in or-
der to integrate more ADLs. The second is to keep the semantics first-order. It is
not simply because we are interested in using horn logic programming, but also
because higher order logic quickly becomes intractable and inefficient. Therefore,
we represent ADL document as a set of relations. Different architectural infor-
mation has different relation name. For example, a whole system is described
by relation system. A relation system has three arguments. The first argument
denotes the identifier of system or system name. It is a list of name. We use
the first argument to identify the elements in database. The second argument
indicates type of system. The last argument is used to point to a system body.

Integrating Architecture Description Languages 439

Each system body has a unique identifier which is created by system. The system
body is described by a relation called systemBody. There are three arguments.
The first is identifier of system body. The second is type of body. The third is
used to store which elements are contained in the system body. In this example,
we can see there are four elements in the system body. They are client, server,
rpc and attachment. In order to make the element name unique, we combine
the upper level id and element itself to form a unique identifier for elements.
Additional benefit is that we can find the relationship between elements using
elements name.

Here is part of the internal database for simple client server example.

acmeADL(acmeADL9, [none import define], [[simple cs]]).
system([simple cs], [none type appoint], systemBody8).
systemBody(systemBody8, [none type appoint], [[simple cs, client],
[simple cs, server], [simple cs, rpc], [simple cs, attachment5]]).
%define component
component([simple cs, client], [none type appoint], componentBody2).
component([simple cs, server], [none type appoint], componentBody3).
componentBody(componentBody2, [none type appoint],
[[simple cs, client, ’send-request’], [simple cs, client, ’request-rate’],
[simple cs, client, ’source-code’]]).
componentBody(componentBody3, [none type appoint],
[[simple cs, server, ’receive-request’], [simple cs, server, idempotence],
[simple cs, server, ’max-concurrent-clients’],
[simple cs, server, ’source-code’]]).

3.1 Definition of Query Language

We present a query language for ADL, called ADL-QL. ADL-QL requires the following
two features. First ADL-QL is declarative. Query users can just express what informa-
tion is to be obtained. They need not express how to retrieve information. It is easy to
use and learn the ADL-QL. Second, query is based on zero or partial knowledge. It is
unrealistic to assume the user has complete knowledge about the content and structure
of software architecture.

ADL Query language can do the following two tasks. First it can query architectural
information from internal database. Second, it can format the query result according
to user requirement.

There are two types of architecture information retrieved by the query language. The
first is basic information about software architecture. For example, what components
are included in current system? What properties the components have? The second
is the structure information of software system. For example, the two components are
connected or not, the relationship between two components and so on.

The semantics of ADL can be expressed in Horn logic, using the approach described
above. An ADL-QL is like this:

SELECT ArchitectureExpression
FROM ADL DOCUMENT
WHERE WhereClauseExpression
CONSTRUCT OutputFormat
USING NameSpace

440 Q. Wang

where SELECT clause indicates what type architectural information is to be retrieved.
At present there are eleven predefined types of information. They are system informa-
tion, component information, connector information, role information, port informa-
tion, property information, attachment information, path information, contain infor-
mation, substitution information and connect information. The FROM clause denotes
the internal database sources to be queried. The WHERE clause indicates the con-
straints that the result architectural information need to satisfy. The CONSTRUCT
clause defines what format is applied for result information. Currently, we just support
ACME and ADML format. ADML [12] is an XML representation for ACME by the
Microelectronics and Computer Technology Corporation(MCC). Finally, the USING
clause declares the name space that will be used.

ADL-QL queries are also converted to Horn Logic queries, using the same method
as before. A syntax specification for ADL-QL as a DCG is developed. The denotational
semantics of ADL-QL as a mapping from parse trees to logic programming facts and
queries is also specified. Given an ADL-QL query, its denotation can be viewed as a
query coded in logic programming. The logic programming coded query can be exe-
cuted on top of logic programming coded database obtained denotationlly from the
database.

4 Implement Integration Framework

4.1 An Interpreter for ADLs to Build Internal Database

In order to build an internal database, we need to write an interpreter for each ADL.
As described in section 2, there are three components in the implementation of an
interpreter for an ADL. First task is to build a parse tree. The parsing procedure is the
first step in implementation of a language interpreter based on denotational semantics
approach. The goal of the parsing procedure is to make explicit the hierarchical struc-
ture of the input by identifying which parts should be grouped together. The syntactic
specification must tell us what hierarchical structure each source code has. Second is
to define the semantic algebra. Here the semantic algebra consists of a store domain-
internal database and operations used for creating internal database. Third is to define
valuate predicate to map from syntactic structures and a global state to a domains
that are used to store architectural information.

Build Parse Tree. The syntax of DCG allows context free grammars to be easily
expressed in Prolog. The grammar specification automatically acts as a parser after
adding one argument to store parser tree. Given the grammar of ADL, the DCG parser
builds parse trees for input file. Each node of the parse tree forms the root of a sub tree
corresponding to the ADL syntax for that portion of the specification. When trans-
forming BNF grammar into DCG grammar, sometimes we need to make simple changes
to the original syntax to remove left-recursion. The following examples illustrate some
rules from ACME and their corresponding DCG rules.

For example, ACME system Declaration BNF Grammar rule:

SystemDeclaration ::= <SYSTEM> <IDENTIFIER>
(”:” lookup SystemTypeByName (”,” lookup SystemTypeByName)*)?
(”=” SystemBody (”;”)? | ”;”)

Integrating Architecture Description Languages 441

Change to

SystemDeclaration ::= <SYSTEM> <IDENTIFIER>
lookup SystemTypeByName option ”=” SystemBody (”;”) ?

SystemDeclaration ::= <SYSTEM> <IDENTIFIER>
lookup SystemTypeByName option ”;”

DCG Rules:

systemDeclaration(systemArch(ID,TypeList,Body)) –>
[’System’],id(ID),lookup systemTypeByName list option(TypeList),
[’=’],systemBody(Body),semicolon.

systemDeclaration(systemArch(ID,TypeList)) –>
[’System’],id(ID),
lookup systemTypeByName list option(TypeList),[’;’].

The above BNF grammar rule states that a system declaration of ACME consists of
the key word ”SYSTEM” followed by an identifier, and then followed by an one or
more type name list which denote types of the current system, and finally followed by
a more detail information about system body or terminating with semicolon. We first
make little changes to the BNF grammar. Then it is easy to rewrite rules with DCG.

Define Semantic Algebra. In our approach, the semantic algebra consists of
two basic domains. One is global store domain, realized as an association list of the
form [(Id,Value),] with operations for initialization, accessing, updating the store. The
second is internal database domain which is used to store architectural information. It
consists of system, component, connector and so on. We also define relative accessing
and updating operation for database domain. Logic program can support global data
structures through their database facility. It is easy to model the database as a collection
of dynamic facts manipulated using assert and retract.

Mapping Semantics. After obtaining the parse tree, we need define a set of val-
uation predicates. The result of program is obtained by using the semantic mapping
function in logic programming to transfer the syntactic tree of ADL to a set of Prolog
relation facts. The general structure of evaluation predicate at least consists of four
arguments. The first argument is used to express the subtree of parse tree. The second
argument is used to return an identifier of current evaluation element. The third is
used to express the current global memory. The fourth argument is used to refer to the
new global memory after computing the valuation predicate.

The following example illustrates fragments of rules used to map system declaration
into a relation of system which store in the global database. The rules essentially
compute parse tree to generate the Prolog fact database.

systemDeclaration eval(systemArch(ID,TypeList,Body),SystemID,
Store,NS) :- name space push(ID,Store,NS1),
lookup systemTypeByName list option eval(TypeList,NameList,
NS1,NS2),
systemBody eval(Body,BodyID,NS2,NS3),name space pop(NS3,NS4),
create systemDecl(ID,NameList,BodyID,SystemID,NS4,NS).

systemDeclaration eval(systemArch(ID,TypeList),SystemID,Store,NS):-

442 Q. Wang

name space push(ID,Store,NS1),
lookup systemTypeByName list option eval(TypeList,NameList,
NS1,NS2),
name space pop(NS2,NS3),
create systemDecl(ID,NameList,[],SystemID,NS3,NS).

In the first evaluation predicate, the value of systemArch(ID,TypeList,Body) de-
notes a parse tree. It consists of three parts. The first part is identifier of system.
The second part is a list of type name. The third part contains the detailed infor-
mation of system body. We use two evaluation predicates to obtain the list of type
name and a unique identifier for system body. Then create a new Prolog facts sys-
tem(ID,TypeList,BodyID). Here we also use two other predicates:name space push and
name space pop. In order to keep the identifier of elements unique, we need to remem-
ber the upper level element identifier. The lower elements identifier consists of an upper
level identifier and identifier of itself. For example, one system element called ”A” con-
tains one component element called ”B”. Then the identifier of that component will
be [A,B]. Therefore the predicate of name space push is to push a new identifier into
a global variable called ”NameSpace” and name space pop is used to remove the end
identifier from ”NameSpace”. The second evaluation predicate has similar semantics
except no detailed information about system body.

4.2 An Interpreter for Query Language and Format Result
Information

We can use the same approach to deal with query language to retrieve architectural
information from internal database. If the query language is simple and has a fix
pattern, then we can convert query language to Horn Logic queries. But here the query
language is little complex. Therefore it is hard to be converted to horn logic query. We
need to write an interpreter for the query language. The procedure is similar to the
above description. First we need to write DCG grammar to parse the query language
according to the gramma of the query language in BNF. For example, the top level
DCG grammar looks as following:

adlQuery(query(Expr,From,Where,Format,NameSpace))–>
[’SELECT’],architectureExpression(Expr),
[’FROM’],adl document(From),
[’WHERE’],whereClauseExpression(Where),
[’CONSTRUCT’],outputFormat(Format),
[’USING],name space(NameSpace).

Then we write a set of evaluation predicates to retrieve architectural information
from database. The evaluation predicate first searches all elements which satisfy with
architectural expression from database. Then interpreter will compute where clause to
erase some elements which can not make where clause true. Finally we format the result
information according to construct clause requirement. Here is the top level predicate
of evaluation for query language.

adlQuery eval(query(Expr,From,Where,Format,NameSpace),NS):-
initialize store(Store),name space eval(NameSpace,Store,NS1),
adl document eval(From,NS1,NS2),

Integrating Architecture Description Languages 443

architectureExpression eval(Expr, NS2,NS3),
select whereClauseExpression(Where,NS3,NS4),
outputFormat eval(Format, NS4,NS).

5 Two Simple Examples of Query Language

Example 1: retrieve component information from internal database
SELECT component(?ComponentName)
FROM system(simple cs) WHERE (?ComponentName = client).
CONSTRUCT ADML

Show all information of a component ”client” from ”simple cs” ADL using ADML
format output. The Result is the following:

<AcmeComponentDeclaration id = ’client’>
<AcmeComponentDescription>

<AcmePort id = ’send-request’>
</AcmePort>
<AcmeProperties>
<AcmeProperty id = ’request-rate’ type = ’float’>17.0
</AcmeProperty>
... ...

</AcmeComponentDeclaration>

Example 2: What elements are contained in an architecture element.
contain(A,B) means an architectural element ”A” contains architectural elements ”B”.
SELECT contain(server, ?List)
FROM system (simple cs)
WHERE true CONSTRUCT ACME
Show all elements contain in component ”server”.

Port send-request;
Properties {idempotence:boolean = true;}
Properties {max-concurrent-clients:integer = 1;}
Properties {source-code:external-file = ’Code-Lib/server.c’ }

6 Related Work

Similar work is done by ACME [3, 6] which is an interchange ADL developed by CMU.
ACME provides a simple structural framework for representing architectures, together
with a liberal annotation mechanism. ACME does not impose any semantic interpreta-
tion of an architectural description, but simply provides a syntactic structure on which
to hang semantic descriptions, which can then be interpreted by tools.

An architectural design is shared among several ADLS by first translating the de-
sign into an ACME representation. This representation can be read by other ADLs
that understand ACME, or it can be manipulated by tools that operate on ACME
directly. The main benefit of ACME is that it defines an intermediate language. Due
to open semantic framework, ACME can represent more general architecture informa-
tion compared to previous ADLs. But ACME has a big problem that it only integrate
compatible ADLs. Therefore it is hard to integrate new developing ADL.

444 Q. Wang

Comparing our method with ACME, there are three differences:

1. ACME defines an interchange ADL. We define a intermediate structure-internal
architectural database. Because our data structure need not to be compatible with
other ADL syntax. Therefore it can be used to represent more ADLs.

2. ACME tries to translate the whole ADL file between two or more ADLs. We
just transfer the result information of query. It is easy to implement subset language
translation.

3. We use uniform query language to retrieve architectural information. There are
two different tasks. ADL is used to represent structure of software system. Query lan-
guage is used to retrieve these information. We use two different languages to describe
different tasks.

Another similar work in this area includes research work on developing an XML
syntax for ADL(xADL). This work is done by University of California at Irvine. They
developed an ADL-neutral interchange format called Extensible Architecture Descrip-
tion Language(xADL) [8]. xADL is designed as a shared language for representing a
variety of possible ADLs. xADL can be customized to different style ADL. In the case
study of their work, they customized xADL to C2 [10] style. They have adopted XML
as key technology for enabling architecture centric tool integration in the ArchStudio
2.0 IDE which is used to support the development of C2 style software.

7 Conclusions

In this paper, we propose a new integration framework to integrate different kinds of
ADLs. Under this framework we can integrate more ADLs than intermediate ADL
approach. Software designer and analysis tools can use uniform query language to
retrieve architectural information from architectural descriptions written in different
ADLs. We do not try to write a whole translator among different ADLs. We just
transfer subset of ADL.

Second, interpreters and toolsets for ADLs can be developed extremely quickly.
Thus, as an ADL rapidly evolves, its implementation infrastructure can be developed
at the same pace. Third, an architecture description written in one ADL can be readily
translated into another ADL due to the use of Horn clause logic for coding their
semantics.

Then we present a denotational semantics method to implement this framework.
We demonstrate our approach by developing the Horn logical denotational semantics
for ACME, ADML and query language. Interpreters and toolsets for ADLs can be
developed extremely quickly. Thus, as an ADL rapidly evolves, its implementation
infrastructure can be developed at the same pace.

References

1. R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans-
actions on Software Engineering and Methodology, July 1997.

2. D. Garlan, R. Allen, and J. Ockerbloom. Exploiting Style in Architectural Design
Environments. In Proceedings of SIGSOFT’94: The Second ACM SIGSOFT Sym-
posium on the Foundation of Software Engineering, pages 179-185. ACM Press,
December 1994.

Integrating Architecture Description Languages 445

3. D. Garlan, R. T. Monroe and D. Wile. Acme: An Architecture Description Inter-
change Language. In Proceedings of CASCON’97, pages 169-183, Ontario, Canada,
November, 1997.

4. D. Garlan and D. Perry. ”Introduction to the special issue on Software Architec-
ture”. IEEE Transactions on Software Engineering, 21(4), April 1995.

5. D. Garlan and M. Shaw. ”An Introduction to Software Architecture”. In V. Am-
briola and G. Tortora, editors, Advances in Software Engineering and Knowledge
Engineering. World Scientific Publishing Company, 1993.

6. D. Garlan and Z. Wang. A Case Study in Software Architecture Interchange. In
Proceedings of Coordination’99, Springer Verlag, 1999.

7. G. Gupta. Horn logic denotations and their applications. In The Logic Program-
ming Paradigm: A 25 year perspective. Springer-Verlag, 1999:127-160.

8. R. Khare, M. Guntersdorfer, P. Oreizy, N. Medvidovic, R. N. Taylor. xADL: En-
abling Architecture-Centric Tool Integration With XML. In Proceedings of the
34th Hawaii Conference on System Sciences, Mani, Hawaii, January 2001

9. D. C Luckham, L. M. Augustin, J. J. Kenney, J. Veera, D. Bryan, and W. Mann.
Specification and analysis of system architecture using Rapide. IEEE Transactions
on Software Engineering, Special Issue on Software Architecture, 21(4):336-355,
April 1995.

10. N. Medvidovic, P. Oreizy, Robbins, J.E., and R. N. Taylor. Using object-oriented
typing to support architectural design in the C2 style. SIGSOFT’96. pp24-32. San
Francisco, CA, October 1996.

11. N. Medvidovic and R. N. Taylor. Architecture description languages. In Software
Engineering - ESEC/FSE’97, volume 1301 of Lecture Notes in Computer Science,
Zurich, Switzerland, September 1997, Springer. Also published as Software Engi-
neering Notes, Vol 22, No 6, November 1997.

12. Open Group Technology Report. ”Architecture Description Markup Language
(ADML)”, available online at http://xml.coverpages.org/adml.html, June 2000

13. D. Schmidt. Denotational Semantics: a Methodology for Language Development.
W.C. Brown Publishers, 1986.

14. D. Schmidt. Programming language semantics. In CRC Handbook of Computer
Science, Allen Tucker, ed., CRC Press, Boca Raton, FL, 1996. Summary version,
CM Computing Surveys 28-1 (1996) 265-267.

15. L. Sterling & S. Shapiro. The Art of Prolog. MIT Press, 1994.

Automated Runtime Validation of Software
Architecture Design

Zhijiang Dong1, Yujian Fu1, Yue Fu2, and Xudong He1

1 School of Computer Science, Florida International University,
{zdong01, yfu002, hex}@cs.fiu.edu

2 Technical center, Dogain securities Co., Ltd.
fuy@ydzq.com.cn

Abstract. The benefits of architecture description languages (ADLs)
cannot be fully captured without a automated and validated realization
of software architecture designs. In addition to the automated realiza-
tion of software architecture designs, we validate the realization pro-
cess by exploring the runtime verification technique and aspect-oriented
programming. More specifically, system properties are not only verified
against design models, but also verified during execution of the generated
implementation of software architecture designs. All these can be done
in an automated way. In this paper, we show that our methodology of
automated realization of software architecture designs and validation of
the implementation is viable through a case study.

1 Introduction

Software architecture plays a critical role in software development processes since
it helps us further understand systems through the construction of high-level sys-
tem structures and it becomes the corner stone for subsequent software develop-
ment activities. Therefore, lots of work have been done in software engineering
community to validate and verify architectures against system requirements or
specifications.

However, a complete and correct software architecture at design level does not
ensure the correctness of its implementation because the transformation from a
model to its implementation is error-prone, and “while architectural analysis
in existing ADLs may reveal important architectural properties, those proper-
ties are not guaranteed to hold in the implementations” [1]. In order to attack
this problem, on the one hand, the transformation had better to be done au-
tomatically with tool support, which can prevent man-made errors. Although
automatic programming from a formal specification is in general impossible [3],
generating the implementation from design models automatically is viable since
architectural design provides enough details. Currently, some architecture de-
scription languages (ADLs) support the implementation of architectural designs
in a number of ways [24, 19], but none of them can enforce communication in-
tegrity [20, 18] in the implementation, which is necessary to enable architectural
reasoning about an implementation [1]. On the other hand, properties held in

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 446–457, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Automated Runtime Validation of Software Architecture Design 447

realized
automated

Runtime Verification Code

ArchJava Code

realized
automated

Monitoring Code

Java Program

Behavior Structure

Software Architecture

Property Specification

construct

transfer

compile

hooked
compile

Fig. 1. Framework of Our Approach

architectures should be guaranteed to hold in implementations. This means,
the transformation not only ensures the functionality correctness of implemen-
tations, but also guarantees the correctness of implementations with regard to
architectural properties. Unfortunately, none of current ADLs tools can achieve
this goal.

In this paper, we propose an approach to achieve above goals, i.e. not only
implements software architectures automatically, but also verifies if an architec-
tural properties are satisfied at the implementation, and applies the approach
to a case – station-to-station protocol – to show its feasibility and practicabil-
ity. As Fig. 1 indicates, the structure and the behavior of software architectures
are realized in Java and ArchJava [1] respectively by supported tools. These
codes, called functionality code, simulate the execution of architectures. The
property specifications that describe important behavioral properties are imple-
mented as aspects of components or connectors. The aspects containing runtime
verification code are weaved into functionality code through hooks (joinpoints)
provided by aspect-oriented programming. To our best knowledge, we are the
first to integrate automated realization, runtime verification and aspect-oriented
programming seamlessly for software architectures, which brings some benefits
that cannot be achieved by using individual technique: verifying architecture de-
sign models at implementation level, presenting counter examples for property
violation, validating automated realization process, providing potentiality to de-
tect exceptions and steer model execution at runtime, and most importantly
these work can be done automatically.

2 Preliminaries

In our work, SAM (Software Architecture Model) [15] is chosen as the architec-
tural description language because unlike other ADLs, SAM not only provides
means to define structure and behavior of software architectures, but also pro-
vides means to specify behavioral properties for components and connectors that
should hold in architectures.

SAM is an architectural description model based on Petri nets [21], which
are well-suited for modeling distributed systems. SAM [15] has dual formalisms
underlying – Petri nets and Temporal logic. Petri nets are used to describe

448 Z. Dong et al.

behavioral models of components and connectors while temporal logic is used to
specify system properties of components and connectors.

SAM architecture model is hierarchically defined as follows. A set of composi-
tions C = {C1, C2, ..., Ck} represents different design levels or subsystems. A set
of component Cmi and connectors Cni are specified within each composition Ci

as well as a set of composition constraints Csi , e.g. Ci = {Cmi , Cni , Csi}. In ad-
dition, each component or connector is composed of two elements, a behavioral
model and a property specification, e.g. Cij = (Sij , Bij). Each behavioral model
is described by a Petri net, while a property specification by a temporal logical
formula. The atomic proposition used in the first order temporal logic formula
is the ports of each component or connector. Thus each behavioral model can
be connected with its property specification. A component Cmi or a connector
Cni can be refined to a low level composition Cl by a mapping relation h, e.g.
h(Cmi) or h(Cmi) = Cl.

SAM gives the flexibility to choose any variant of Petri nets and temporal
logics to specify behavior and constraints according to system characteristics. In
our case, Predicate Transition (PrT) net [12] and linear temporal logic (LTL)
are chosen.

Predicate Transition (PrT) net [12] is a high level Petri net. A PrT has a net
structure: (P ,T ,F), where P is a set of places represented by circles, T is a set of
transitions represented by rectangles and T is disjoint from P , and F is a relation
between P and T represented by arcs. Each place is assigned a sort indicating
what kind of tokens it can contain. The tokens in a place can be viewed as a
multi-set over the sort. A marking of a PrT net is a function that assigns tokens
to each place. A label is assigned to each arc to describe types and numbers of
tokens that flow along this arc. Each transition has a boolean expression called
guard, which specifies the relationship among arcs related with the transition.
A transition is enabled if there is an assignment to all variables occurred in
arcs related with the transition such that each incoming place contains the set
of tokens specified by the label of the arc, and the guard of the transition is
satisfied. A enabled transition is fired under an assignment by removing tokens
from incoming places and add tokens to outgoing places.

3 Methodology

Fig. 2 shows the framework of our approach. The core part is the SAM parser,
which is responsible for the automatic generation of functionality code and run-
time verification code. Runtime verification code is weaved into functionality
code through joinpoints provided by aspect-oriented programming. The input of
the SAM parser is a XML file, which specifies SAM structures (such as compo-
nents, connectors, ports and their relationships) and related property specifica-
tions. In the XML file, SAM behavior is defined as a reference to a Petri Net
Markup Language (PNML) [4] file, which is an XML-based interchange format

Automated Runtime Validation of Software Architecture Design 449

refer to
PNML

SAM in XML
propertybehavior

SAM Paser

hooked
Runtime VerificationGenerated ArchJava,

Code (AspectJ)Java Code

formulae formulae

Monitoring
code

Logic Server Logic Engine

Fig. 2. The Methodology

for Petri nets. The logic engine is responsible to construct a piece of pseudo
code called monitoring code for each temporal logic formula. A piece of monitor-
ing code is invoked to check if the corresponding formula is satisfied whenever
an interesting event occurs. The logic server is a middleware that translates
monitoring code to the target language, here Java. The SAM parser merges all
translated monitoring code for properties of a component or a connector into an
aspect. All generated aspects are called runtime verification code.

3.1 Automated Generation of Functionality Code

Automated realization of functionality code for SAM models consists of two
parts: generating code for structure and behavior respectively. In order to gen-
erate code for behavior (PrTs), we predefine a set of classes called templates,
which specify structure and dynamic semantics of high level Petri nets. For ex-
ample, the basic elements of Petri nets such as places, arcs, transitions, guards,
inscriptions are defined by individual classes. We also provide dynamic semantics
of Petri nets in Java classes Net and Transition. In other words, we provide a
general but maybe not efficient approach to check if a transition is enabled and
to fire a transition. In our work, a class is constructed as a child of templates
for each net, arc inscription, and guard. The user can provide a more efficient
way to check the enableness of a transition and the way to fire it by overloading
methods of corresponding classes without any side effects on other transitions.
The execution of generated code is non-deterministic, i.e. an enabled transition
and a valid assignment is randomly chosen to fire.

It is hard to generate code automatically given a Petri net due to the com-
plexity of sorts, guard conditions of transition and arc labels [17]. Although
we cannot achieve this goal for Petri nets in general, we can achieve it if the
specifications of Petri nets satisfy the following restrictions:

– The sorts of Petri nets either are Java primitive types such as int, long, and
boolean etc., or are defined as a Java classes including its operators, or are
a product of already defined sorts.

– The type of variables occurred in the label of an incoming arc of a transition
is the same as the token type of the incoming place.

– Only labels of incoming arcs of transitions can introduce variables.

450 Z. Dong et al.

– If a variable is a product type such as int×int and this product type is
generated by Petri net code generator, its field is referred in the form of
“.field?”, where ? is the field sequence number starting at 1. For example,
x is a variable of type int×int, then x.field1 and x.field2 refer to first and
second field respectively.

SAM structure is implemented as ArchJava [1] code by the SAM parser. Arch-
Java is an extension to Java that seamlessly unifies software architecture with
implementation, which uses a type system to ensure that the implementation
conforms to architectural constraints. In other words, ArchJava is proposed to
avoid inconsistency, confusion, and violation of architecture properties when de-
coupling implementation code from software architecture. To our best knowl-
edge, ArchJava is the best candidate to the target language for the implementa-
tion of SAM structure – not only because it provides architecture concepts such
as components, ports as first-level entities, but also because it enforces commu-
nication integrity. A system has communication integrity of implementation if
components only communicate directly with the components they are connected
to in the architecture.

In the SAM Parser, it is straightforward to realized components/connectors,
compositions, and ports as ArchJava entities such as components, component
compositions, and ports respectively. More specifically, an incoming/outgoing
port in SAM is realized by a ArchJava port that declares a provides/requires
method. A SAM component/connector is realized as a ArchJava component
class that consists of the declarations of ports, the mapping between ports and
places of its behavioral Petri net, reference to its generated behavioral code, and
other necessary methods. A SAM composition is realized as a ArchJava com-
ponent composition that specifies and establishes dynamic connections among
sub-components and contains port declarations if necessary. More detailed infor-
mation about automated generation of functionality code can be found at [11].
Due to the space limit, only generated codes for the component TrustedAuthority
and the composition Alice in Fig. 4 are attached at the appendix.

3.2 Automated Generation of Runtime Verification Code

Runtime verification [16] has been proposed as a lightweight formal method
applied during program execution. It can be viewed as a complement to tradi-
tional methods of proving design model or programs correct before execution.
Aspect-oriented software engineering [22] and aspect-oriented programming [10]
were proposed to separate concerns during design and implementation. Aspect-
Oriented Programming complements OO programming by allowing the devel-
oper to dynamically modify the static OO model to create a system that can grow
to meet new requirements. In other words, it allows us to dynamically modify
models or implementations to include code required for secondary requirements
(in our case, it is runtime verification) without modifying the original code.

The SAM parser generates runtime verification code automatically and weaves
it into functionality code seamlessly without side effects on the functionality

Automated Runtime Validation of Software Architecture Design 451
as

pe
ct

pointcut defintion

advice

helper variables

In
te

r−
ty

pe
 D

ec
la

ra
ti

on

G
enerated D

ynam
ic P

rogram
m

ing A
lgorithm

 for form
ula 2 in Section 4.2

Fig. 3. Generated Aspect for Composition Alice

code. In order to generate monitoring codes for properties (linear temporal for-
mulae), a logic server, Maude [6] in our case, is necessary. Maude, acting as
the main algorithm generator in the framework, constructs an efficient dynamic
programming algorithm (i.e. monitoring code) from any LTL formula [23]. The
generated algorithm can check if the corresponding LTL formula is satisfied over
an event trace.

The SAM parser weaves monitoring code into functionality code by integrat-
ing them as aspects. In aspect-oriented programming, AspectJ [2] in our case,
aspects wrap up pointcuts, advice, and inter-type declarations in a modular unit
of crosscutting implementation where pointcuts pick out certain join points in
the program flow, advice brings together a pointcut (to pick out join points) and
a body of code (to run at each of those join points), and Inter-type declarations
are declarations that cut across classes and their hierarchies. In our case, for each
component or connector, pointcuts specify time spots: whenever a port sends or
receives a message; pieces of code brought together by advice with pointcuts are
the generated monitoring code; and Inter-type declaration specifies helper vari-
ables and methods. Fig. 3, which is a part of generated aspect for composition
Alice in Fig. 4, clearly shows the way to weave runtime verification code into
functionality code through aspects. Currently the SAM parser can handle future
time linear temporal formulae as well as past time linear temporal formulae.

452 Z. Dong et al.

Intruder/Ink

m1_o_A m1_i_I m1_o_I

m2_i_Im2_o_Im2_i_A

P_A_I P_B_I

t1_AI

m1_i_B

Bob
t1_IB

t2_IA t2_BI

m3_o_Im3_i_I

t3_AI t3_IB
m3_o_A

m3_i_B

m2_o_B

TrustedAuthority

Alice

P key 3A

result A

result AT

id 3AT

T sig AT

P key 3AT

T sig A
T sig B

id 4B

P key 4B

result B

P key 4BT

id 4BT

T sig BT

id 3B
result BT

id 3A

Cert AT

P key 3B
Cert TA

id 4A
P key 4A

id 4AT

P key 4AT

id 3I

P key 3IT

Cert TI Cert TB

Fig. 4. SAM Architecture of STS with Intruder

By combining runtime verification and automated implementation of software
architecture, we can obtain the following benefits:

– The transformation from design models to implementations is generally in-
formal, therefore error-prone. Automated implementation provide a means
to prevent man-made errors, and runtime verification can validate transfor-
mation indirectly.

– Runtime verification at implementation level is a natural complement to
analysis techniques of design level. Not all properties can be verified against
a design model either due to the state space explosion problem or due to
characteristic of open-systems. In either case, runtime verification can be
explored to verify the correctness of design models.

– Runtime verification provides a mechanism to handle exceptions of imple-
mentations that are not detected during development or testing.

4 Case Study – Network Security Protocol Under Attack

E-commerce and enterprise systems can be secured in many different ways from
simple use of password to digital authentication. State-to-state ENC (STS-ENC)
protocol,a version of the authenticated Diffie-Hellman key agreement protocol
[7], is to provide desirable security attributes in the network communication. The
immunity is achieved by allowing the two parties to authenticate themselves to
each other by the use of digital signatures and public-key certificates.

But this is not strong enough to immune from malicious attacks. Public key
substitution attacks [5] on the protocol is an attack on a key agreement protocol
that mislead one principal to false beliefs. An participant A ends up believing

Automated Runtime Validation of Software Architecture Design 453

she shares a key with B, and although this is in fact the case, B mistakenly
believes the key is instead shared with an entity I �= A. We use A ↪→ B to
represent that A sends a message intended for B, but intercepted by intruder I.
This attacks can be described in the following message sequence (A for Alice, B
for Bob and I for intruder Ink):

1. M1: A ↪→ B A, αrA

2. M1′: I → B I, αrA

3. M2: B ↪→ A CertB , αrB , EK(SB(αrB , αrA))
4. M2′: I → A CertB , αrB , EK(SB(αrB , αrA))
5. M3: A ↪→ B CertA, EK(SA(αrA, αrB))
6. M3′: I → B CertI , EK(SA(αrA, αrB))

where CertA = (A, PA, sT {A, PA}), is A’s certificate containing A’s identifying
information, A’s public key PA, and a trusted authority T ’s signature sT over
these information. SA(x) is A’s signature on x using her secret key. EK(M) is
encryption over message M using a symmetric key encryption scheme with key
K = αrA×rB, which is the ephemeral Diffie-Hellman shared secret key. rA and
rB are the number picked up randomly by A and B respectively. In this message
sequence, steps 1, 3, and 5 establish the normal communication between A and
B without intruder.

The series of steps indicate an intruder Ink successfully impersonate Alice to
communicate with Bob. The communication starts from Alice sending a message
M1 to Bob, which is intercepted by Ink. Intruder Ink uses PA as its own public
key, to impersonate Alice to get the shared key with Bob. After Ink intercepts
message M1, he impersonates Alice and sends a modified message M1′ with his
identifying information to Bob. When Ink receives the message M2 from Bob,
he sends message M2′ to Alice without modification. Thus when Alice sends out
the message M3, he intercepts and decrypts it with the shared key, and sends
the faked message M3′ with his certificate to Bob.

4.1 SAM Model of Network Security Protocol Under Attack

The top level of SAM model of STS-ENC protocol under attack scenario is
demonstrated in Fig. 4. There are one component TrustedAuthority, three com-
positions Alice, Intruder, and Bob denoted by rectangles, and five connectors in
this level. Due to space limit, the mappings from compositions to subcomponents
and behavioral specifications are omitted. Because each connector behaves just
like a data pipe, we simply explain components functionalities in the following.

The functionalities of component TrustedAuthority is either to calculate a cer-
tificate given identifying information and a public key, or to check if a certificate
is valid or not. The composition Alice is responsible for sending message M1,
receiving message M2′, checking the validation of message M2′, and sending
message M3. The composition Intruder/Ink intercepts message M1, substitutes
identifying information, sends message M1′, intercepts message M2, sends mes-
sage M2′, intercepts message M3, substitutes certificate and sends message M3′.
The composition Bob is responsible for receiving message M1′, sending message
M2, receiving message M3′, and checking the validation of message M3′ accord-
ing to previous information.

454 Z. Dong et al.

In SAM, components communicate with each other through ports represented
as semicircles. An incoming port, represented by a semicircle inside of the com-
ponent, only receives messages from other components at the same hierarchy,
like port m2 i A of composition Alice in Fig. 4. Similarly, an outgoing port, rep-
resented by a semicircle outside of the component, only sends messages to other
components, like port m2 o I of composition Intruder in Fig. 4. Therefore, com-
position Intruder can sends a message M2′ from the outgoing port m2 o I to
the incoming port m2 i A of the composition Alice through the connector P A I.

4.2 System Properties

In SAM model, we have to make sure that compositions Alice, Ink, and Bob
behave as expected from STS-ENC protocol. In other words, composition Alice
first sends message M1, then receives message M1′, and finally sends message
M3. This can be expressed by the following formulae on composition Alice:

♦(m3 o A(< CertB, EK(SA(αrA, αrB)) >)) (1)

[∗](m2 i A(< CertB, αrB, EK(SB(αrB , αrA)) >) →
〈∗〉(m1 o A(< A, αrA >))) (2)

[∗](m3 o A(< CertB, EK(SA(αrA, αrB)) >) →
〈∗〉(m2 i A(< CertB, αrB, EK(SB(αrB, αrA)) >))) (3)

The atomic predicate in above formula is in the form Port(m), which is
evaluated true if specified port contains the message m. For example, predicate
m1 o A(< A, αrA >) is true if the port m1 o A of composition Alice has a
message < A, αrA >. Our work supports future time linear temporal logic and
past time linear temporal logic. Formula 1 is a future time LTL formula, while
formulae 2 and 3 are past time LTL. In above formulae, ♦, [∗], and 〈∗〉 are future
time operator eventually, past time operator SometimeInThePast (sometime in
the past), and AlwaysInThePast (always in the past) respectively.

Similarly, we can specify formulae for compositions Bob and Ink to guarantee
the correctness of their behavior. In addition to these formulae, another formula

♦(Succ(true)) (4)

on composition Bob is defined to indicate if STS-ENC protocol can be attacked
by the public key substitution attack, where Succ is a outgoing port of a sub
component of composition Bob. In other words, if formula 4 is satisfied, it means
Alice thinks she shares a key with Bob, but Bob thinks he shares a key with
third party Ink.

4.3 Results

The SAM model of STS-ENC protocol totally has 3 compositions, 16 compo-
nents, 20 connectors, 312 ports, and 36 high level Petri nets with 290 places, 116
transitions and 331 arcs. It takes about 10 seconds for the SAM parser to gen-
erate the implementation of SAM model of STS-ENC protocol on a P4 2.4Ghz
machine with 512MB RAM. The generated implementation has 491 files, and it

Automated Runtime Validation of Software Architecture Design 455

is executable without any modification. Most of them (419) is the implementa-
tion of components or connectors behavior (Petri nets). The reason of generating
so many files is due to the most important principle for the SAM parser: We
have to make the generated code easy to understand and minimize the cost
of modification. It takes about 96 seconds for the generated implementation to
execute and verify above 10 formulae. The execution of the generated implemen-
tation fires transition 114 times, i.e. almost one transition is fired every second.
Most of the time is spend on the search of enabled transition and valid assign-
ments to variables. The code can be manually optimized for critical transitions
by overriding methods that judge if a transition is enabled.

From the log file generated in the execution of the implementation, the formula
4 is true, which means that the well-known public key substitution attacks on
STS-ENC protocol is viable. In other words, Alice wants to share a public key
with Bob. But in fact, Bob shares a public key with Ink. From the log file, we
also can see that the formula 1 holds. However, the evaluations of formulae 2
and 3 are neither true nor false. This seems strange at first since the purpose
of runtime verification was to check if formulae are satisfied or not. However
this result is correct because these two formulae are past time LTL, which are
supposed to be always satisfied. In other words, runtime verification code only
reports exception for past time LTL formulae if it is violated, just like code in
Fig. 3. Therefore, the unsure results for formulae 2 and 3 indicate that there
are no violation detected. This means these formulae hold during the program
execution, which assures the behavioral correctness of Alice, Ink, and Bob.

5 Conclusion and Discussion

We have proposed an approach for validating conformance of an architecture
model to system properties in an automatic way. The architecture model is au-
tomated realized in ArchJava/Java through a SAM parser. This parser not only
generates code for structure and behavior of a architecture design model, but also
generates runtime verification codes for system properties. The generated func-
tionality code and runtime verification code are executable without any manual
modification if SAM specifications follow the restrictions mentioned in section
3.1. By integrating automated realization technique and runtime verification
technique on architecture design models, we not only verify the correctness of
design models against system properties, but also validate the automated realiza-
tion process indirectly. To our best knowledge, this is the first work to combine
runtime verification, aspect-oriented programming with automated realization
of architectural design models.

Currently, most ADLs such as MetaH [25],Unicon [24] and Weaves [13], sup-
port semi-automatic code generation from an architecture model. However, none
of them can enforce communication integrity [20, 18] in the implementation that
is necessary to enable architectural reasoning about an implementation [1].

For the runtime verification part, our work is similar to MaC tool [16]. MaC
provides a general framework to verify specified properties against Java program.

456 Z. Dong et al.

It defines two script languages to specify properties and events. However, our
work focus on a more specific area – architectural design models, not on any
Java program, which makes it possible to hide event definition, event recognize
and runtime verification code generation. In other words, our work is more au-
tomated. Several other approaches to runtime verification (especially for Java)
exist. Java PathExplorer [14] picks up the idea of runtime verification and uses
the Maude rewriting logic tool [6] to implement LTL. The Temporal Rover [8, 9]
checks time-dependent specifications and handles assertions embedded in com-
ments by source-to-source transformation.

Acknowledgements. This work is supported in part by NSF under grant HRD-
0317692 and by NASA under grant NAG 2-1440.

References

[1] J. Aldrich, C. Chambers, and D. Notkin. Archjava: Connecting Software Archi-
tecture to Implementation. In International Conference on Software Engineering,
Orlando, FL, USA, May 2002.

[2] AspectJ Project. http://eclipse.org/aspectj/.
[3] R. Balzer. A 15 year Perspective on Automatic Programming. IEEE Transactions

on Software Engineering, 11(11):1257–1268, 1985.
[4] J. Billington, S. Christensen, et al. The Petri Net Markup Language: Concepts,

Technology, and Tools. In Proceedings of the 24th International Conference on
Applications and Theory of Petri Nets (ICATPN 2003), volume 2679 of Lecture
Notes in Computer Science, pages 483–505. Springer-Verlag, June 2003.

[5] S. Blake-Wilson and A. Menezes. Unknown Key-Share Attacks on the Station-to-
Station (STS) Protocol. Technical Report CORR 98-42, University of Waterloo,
1998.

[6] M. Clavel, F. J. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
J. F. Quesada. Maude: Specification and Programming in Rewriting Logic.
http://maude.csl.sri.com/papers, March 1999.

[7] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and Authenti-
cated Key Exchanges. Designs, Codes and Cryptography, 2, 1992.

[8] D. Drusinsky. The Temporal Rover and the ATG Rover. In Proceedings of SPIN:
SPIN Model Checking and Software Verification, Stanford, California, USA, Lec-
ture Notes in Computer Science, pages 323–330, 2000.

[9] D. Drusinsky. Monitoring Temporal Rules Combined with Time Series. In Pro-
ceedings of CAV’03: Computer Aided Verification, Boulder, Colorado, USA, Lec-
ture Notes in Computer Science, pages 114–118, 2003.

[10] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming: Introduc-
tion. Communnications of the ACM, 44(10):29–32, 2001.

[11] Y. Fu, Z. Dong, and X. He. A Methodology of Automated Realization of a
Software Architecture Design. In Proceedings of the The Seventeenth International
Conference on Software Engineering and Knowledge Engineering (SEKE2005),
2005.

[12] H. J. Genrich. Predicate/Transition Nets. Lecture Notes in Computer Science,
254, 1987.

Automated Runtime Validation of Software Architecture Design 457

[13] M. M. Gorlick and R. R. Razouk. Using Weaves for Software Construction and
Analysis. In Proceedings of the 13th International Conference on Software Engi-
neering (ICSEI3), Austin, TX, USA, May 1991.

[14] K. Havelund and G. Rosu. An Overview of the Runtime Verification Tool Java
PathExplorer. Journal of Formal Methods in System Design, 2004.

[15] X. He. A Framework for Specifying and Verifying Software Architecture Specifi-
cations in SAM. volume 45 of The Computer Journal, pages 111–128, 2002.

[16] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time Assur-
ance Tool for Java. In Proceedings of of RV’01: First International Workshop on
Runtime Verification, Paris, France, Electronic Notes in Theoretical Computer
Science. Elsevier Science, 2001.

[17] S. W. Lewandowski and X. He. Generating Code for Hierarchical Predicate Tran-
sition Net Based Designs. In Proceedings of the 12th International Conference on
Software Engineering & Knowledge Engineering, pages 15–22, Chicago, U.S.A.,
July 2000.

[18] D. C. Luckham and J. Vera. An Event Based Architecture Definition Language.
IEEE Transactions on Software Engineering, 21(9), 1995.

[19] N. Medvidovic, P. Oreizy, et al. Using Object-Oriented Typing to Support Ar-
chitectural Design in the C2 Style. In Proceedings of the 4th ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages 24–32, 1996.

[20] M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct Architecture Refine-
ment. IEEE Transactions on Software Engineering, 21(5), 1995.

[21] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

[22] G. Murphy and K. Lieberherr, editors. Proceedings of the 3rd International Con-
ference on Aspect-oriented Software Development. ACM Press, 2004.

[23] G. Rosu and K. Havelund. Rewriting-Based Techniques for Runtime Verification.
Journal of Automated Software Engineering, 2004.

[24] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik.
Abstractions for Software Architecture and Tools to Support Them. IEEE Trans-
actions on Software Engineering, April 1995.

[25] S. Vestal. MetaH User’s Manual, 1998.

Analyzing Loop Paths for Execution
Time Estimation

Abhik Roychoudhury, Tulika Mitra, and Hemendra Singh Negi

School of Computing, National University of Singapore
{abhik, tulika, hemendra}@comp.nus.edu.sg

Abstract. Statically estimating the worst case execution time of a pro-
gram is important for real-time embedded software. This is difficult even
in the programming language level due to the inherent difficulty in de-
tecting infeasible paths in a program’s control flow graph. In this paper,
we study the problem of accurately bounding the execution time of a
program loop. This involves infeasible path detection followed by timing
analysis. We employ constraint propagation methods to detect infeasi-
ble paths spanning across loop iterations. Our timing analysis is exact
modulo the infeasible path information provided. Moreover, the analysis
is efficient since it relies on memoization techniques to avoid exhaustive
enumeration of all paths through a loop. The precision of our timing
analysis is demonstrated on different benchmark programs.

1 Introduction

Statically analyzing the worst-case execution time (WCET) of a program is im-
portant for real-time embedded software. An embedded system contains pro-
cessor(s) running specific application programs which communicate with an ex-
ternal environment in a timely fashion. These application programs thus have
real-time requirements, that is, there are hard deadlines on the execution time
of such software. Therefore, it is important to perform static analysis of embed-
ded software to guarantee the satisfiability of all timing constraints. One of the
prominent uses of the WCET estimate of a program is in schedulability analysis.

Due to its inherent importance in embedded system design, timing analysis
of embedded software has been extensively studied [6, 8, 12, 13, 17, 18, 20]. Usu-
ally this involves (a) a programming language level path analysis to find out
infeasible paths in the program’s control flow graph, and (b) micro-architectural
modeling to take into account the effect of performance enhancing architectural
features (such as pipeline, cache and branch prediction). In this paper, we only
concentrate on path analysis. Program path analysis for WCET estimation in-
volves solving two related problems (a) detecting infeasible paths and (b) using
infeasible path information for timing calculation.

Concretely, the contributions of this paper can be summarized as follows.

– We design and implement an infeasible path detection method based on
constraint propagation via weakest pre-condition calculation. The infeasible

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 458–469, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Analyzing Loop Paths for Execution Time Estimation 459

paths detected by our method can be exploited for WCET analysis as well as
other purposes (like reducing test suite sizes, software model checking etc.)

– We provide a programming language level timing analysis algorithm for find-
ing the WCET of a program loop (which is bounded). The algorithm is ex-
act modulo the infeasible path information provided (via our infeasible path
detection method). In other words, we can find the longest feasible path
through a program loop if the infeasible path information provided is exact.
In particular if the detected infeasible path patterns span across at most K
loop iterations, we construct a transition system whose nodes denote paths
taken in K − 1 consecutive iterations. This allows us to ensure that no path
in the transition system contains any of the infeasible path patterns detected
in the first phase; so we can efficiently find the longest path through the pro-
gram loop. Our technique has been implemented and we show its utility via
experimental results on various programs.

We note that different WCET analysis techniques combine the results of path
analysis and micro-architectural modeling in different ways. Many of these ad-
vocate a separated approach (e.g. [20]) where the micro-architectural modeling
performs a categorization of the program’s instructions and this categorization
information is fed into path based timing estimation. The WCET analysis tech-
nique presented in this paper can also be extended in this fashion; that is, we can
augment it to take into account categorization of program instructions based on
micro-architectural modeling.

2 Related Work

One of the earliest works on programming language level timing analysis is the
timing schema approach [18]. It is a bottom-up compositional technique which
finds the worst-case execution time of a program fragment without considering
the contexts in which it is executed. Another early work by Puschner and Koza
[17] studied the conditions for decidability of WCET analysis and provided some
rules for WCET analysis.

Techniques to extend the timing schema approach with infeasible path infor-
mation have been reported in [15]. In this work, the infeasible path patterns are
user-provided, that is, the technique only performs path analysis and not infea-
sible path detection. Lundqvist and Stenstrom [14] provide an instruction level
simulation approach for detection and elimination of infeasible paths. Ermedahl
and Gustafson [7] present a static analysis method to derive (and exploit) in-
feasible paths using program semantics. A nice feature of this work is that it
also automatically derives minimum and maximum loop bounds in a program.
Altenbernd [1] searches for infeasible paths in a control flow graph via branch-
and-bound search.

The components of our WCET analysis mechanism are probably most related
to the infeasible path detection technique of [3] and the path analysis technique
of [10]. The key idea in [10] is to compute the effect of any assignment or a
branch on other branch outcomes; if the effect of an assignment a is to force the

460 A. Roychoudhury, T. Mitra, and H.S. Negi

outcome of branch b to true, then a path from a to b with the outcome of b being
false is an infeasible path. This is certainly a clever and effective way of detecting
many commonly occurring infeasible path patterns. However, we note that since
our approach is based on constraint propagation, we do not rely on capturing
relationship between individual pairs of branches. In general, the outcome of a
program branch may be correlated to the outcome of several previous branches.

We also note that our constraint propagation methods differs substantially
from the propagation method of [3]. This work relies on inferring simple invariant
properties (which hold for all visits to a specific control location) in order to
detect infeasible paths in the control flow graph. The propagation is stopped at
basic block b if the propagated constraint c at basic block b can be be proved to
hold for all executions of basic block b. Note that if this condition holds then we
have found an infeasible path: a path from n to b that cannot make the branch
constraint of b false when b is reached. [3] uses some simple sufficient conditions
to check whether a constraint c holds for all visits to basic block n (such as n
containing an assignment statement whose effect constraint implies c).

1 sum = 0;
2 for (j=1; j<= limit; j++) {
3 if (j % 2 == 0) {
4 sum +=j;}
5 }
6 return sum;

Fig. 1. Sum of even numbers

To see the difficulties of the approach of [3], let us consider the program in
Figure 1 (taken from [2]) which adds up even numbers. Suppose we want to find
out the infeasible paths ending in the branch at line 3. A backward propagation
of the branch constraint will revisit the branch on line 3 (the previous iterations).
In fact, if we start at the branch on line 3 with the constraint j is even, we will
propagate this constraint backwards and visit the branch at line 3 with the
constraint j is odd. Note that in this program, the strongest invariant on j that
holds for all executions of line 3 is 1 ≤ j ≤ limit. From this constraint it is not
possible to infer that line 4 cannot be executed/skipped in consecutive iterations
(which says that both j and j+1 cannot be even/odd). Hence the infeasible path
detection technique of [3] will fail to infer this information. In the next section,
we will demonstrate how this information can be inferred in our infeasible path
detection method.

Finally, we note that our infeasible path detection technique is inspired by
the recent progress in abstraction refinement based software model checking of
invariants(e.g. see [11]). These works search through an abstract model of the
program to generate a counter-example trace and then show that the given
counter-example trace is an infeasible path in the program’s control flow graph.
The proof of infeasibility can be done via a backward (or forward) constraint
propagation along the counter-example trace. In our work, we start the propa-

Analyzing Loop Paths for Execution Time Estimation 461

gation from a program branch and backwards propagate the branch constraint
to all paths leading into the branch. Consequently we need to consider issues
like termination/speed-up of propagation. These issues are not so important in
checking of counter-examples where the propagation is restricted to one finite
(and typically short) counter-example trace.

3 Detecting Infeasible Paths

In this section we concentrate on the problem of detecting infeasible paths. First
we define the notion of an execution trace.

Definition 1 (Execution Trace). Given a program P with an initial control
location lstart and feasible inputs drawn from a (potentially infinite) set I, an
execution trace of the program is the sequence of basic blocks traversed by starting
from lstart with some input i ∈ I.

In practice, we are always dealing with programs where the length of every
execution trace is bounded, i.e., the loops are bounded. Indeed for timing analysis
of programs, we cannot work with programs having unbounded loops. Hence we
consider programs with bounded execution traces. In the rest of this paper,
whenever we refer to an infeasible path, we mean the following.

Definition 2 (Infeasible Path). Given a program P with feasible inputs drawn
from a (potentially infinite) set I, an infeasible path π is a finite sequence of basic
blocks which does not appear in any execution trace of P (i.e. π is not contained
in the execution trace of P for any input i ∈ I).

Our approach for infeasible path detection is based on constraint propagation.
In general, to detect infeasible paths ending at a given branch b, we need to
propagate backwards the constraint of b to all its immediate predecessors (who
in turn propagate it to their immediate predecessors and so on). This essentially
amounts to weakest pre-condition computation along the various paths coming
into b [5]. In other words, let ϕb(X) be the branch constraint for b where X
denotes the program data variables. Let stmt1 and stmt2 be two statements
which may be executed immediately before branch b. We can capture the effect
of any program statement as a constraint relating the program variable values
before and after the execution of the statement.1 Let the effect constraint of
stmt1 and stmt2 be ψ1(X, X

′
) and ψ2(X, X

′
) respectively, where X

′
denotes

the values of X after the statement execution. Then one step of the weakest
pre-condition computation (for computing infeasible paths ending at branch b
involves computing

wpi(X) def= ∀X ′
ψi(X, X

′
)⇒ ϕb(X

′
) i = 1, 2

1 For example, the assignment statement x:= x+1 can thus be represented as x′ =
x + 1 ∧ ∀y ∈ X − {x} y′ = y where the primed variables denote the value of the
corresponding program variables after the statement is executed. Effect of branch
statements can also be captured as a constraint representing the branch condition.

462 A. Roychoudhury, T. Mitra, and H.S. Negi

for the two incoming edges from stmt1 and stmt2 into branch b in the control
flow graph.

Clearly such a constraint propagation based approach can detect whether
the outcome of a branch b can be deduced from the constraints for several
other branches. Termination of the propagation is guaranteed since we only
consider bounded loops. However, we still face the practical problem of the con-
straint propagation amounting to an exhaustive enumeration of paths ending at
a branch b. Thus, we need to incorporate mechanisms for speeding up the con-
straint propagation. In the following, we give our technique for infeasible path
detection and illustrate it via an example.

3.1 Technique

We now elaborate our technique for detecting infeasible paths. For simplicity of
exposition, let us first consider a single program loop. Let us consider a bounded
loop L with k branches inside the loop. Depending on the structure of the control
flow within L, the possible number of paths within each iteration can vary from
k + 1 to 2k (not all of these paths may be feasible though). To find the infea-
sible path patterns which (potentially) span across iterations, we first define k
propositions p1, . . . , pk corresponding to the conditions in the k branches inside
the loop. Let us suppose that the basic blocks which capture control flow within
the loop are B1, . . . , Bn. Then, the infeasible paths detected will be sequences
over the alphabet {B1, . . . , Bn}.

Our constraint propagation algorithm proceeds by backwards traversal. Each
visit of a basic block Bi is annotated with

– a constraint ci over the program variables X.
– a boolean formula bi over p1, . . . , pk.

The constraint propagation terminates if Bi was earlier visited with the same
boolean formula bi, or if ci is unsatisfiable. If the constraint propagation does
not terminate at this visit of Bi, then for each immediate predecessor Bij of Bi

we do the following.

– the constraint cij of Bij is computed by a weakest pre-condition of ci w.r.t.
the statements in Bij .

– the boolean formula bij is the strongest boolean formula over p1, . . . , pk which
is implied by cij .

Thus, bij and cij become the annotations of the corresponding visit of Bij .
We can see that the annotations bi and ci for a visit of a basic block Bi

serve two different purposes. The boolean formula bi serves as an approximation
of the constraint store ci. Since the number of distinct boolean formula over a
fixed finite set of atomic propositions is bounded, this ensures that the number
of visits to any basic block is bounded (thereby ensuring termination).2 The
2 One can use a canonical representation of boolean functions such as reduced ordered

Binary Decision Diagrams to detect whether a basic block was previously visited
with the same boolean formula bi.

Analyzing Loop Paths for Execution Time Estimation 463

check for unsatisfiability of ci allows us to terminate the detection along certain
paths earlier. In other words, we maintain the concrete constraint store ci to
accurately detect infeasible paths. We also maintain bi, a boolean abstraction of
the constraint store ci, to guarantee termination of constraint propagation.

So far we have outlined the termination condition and each step of the con-
straint propagation. We have not specified the initial condition. In practice, we
run the constraint propagation algorithm 2k times, corresponding to the true
and false outcomes of the k branches within the loop. This will find out all
infeasible paths terminating at any of k branches.

j <= limit ?

j % 2 == 0 ?

sum += j

j++

yes no

yes no
return sum

B0

B1

B2

B3

B4

B5

j = 1
sum = 0

Fig. 2. Control Flow Graph for Example Program in Figure 1

Extensions. In the above, we described a method for detecting infeasible paths
within a single loop. However, the constraint propagation mechanism in the
method is generic, and can analyze arbitrary nestings and sequences of loops.
We will then need to run the constraint propagation for all program branches
which are not loop branches. We note that our current implementation performs
infeasible path detection for each loop separately. This is not due to a limitation
of our infeasible path detection technique; rather this is because of the fact that
our WCET analysis method analyzes each program loop separately. So even if
we detect infeasible path patterns spanning across different loops, our current
WCET analysis cannot exploit such information. In future, we plan to augment
our WCET estimation technique to more accurately analyze complex control
flow involving sequences and nesting of loops.

3.2 An Example to Show Infeasible Path Detection

We now work out the even number addition example in Figure 1 to detect
infeasible paths using our constraint propagation technique. The program in

464 A. Roychoudhury, T. Mitra, and H.S. Negi

Figure 1 illustrates a class of infeasible paths which are hard to detect statically
using current methods. In particular, these paths:

– span across multiple iterations of a loop
– contain branches whose outcome is different in different iterations (the dif-

fering outcomes make it impossible to use strong invariants for all executions
of the branch).

The control flow graph of the program fragment in Figure 1 is shown in Figure 2.
The loop is shown in a bold box. There is only one branch inside the loop, the
branch in basic block B2. Thus, the constraint propagation algorithm will be
executed twice corresponding to the yes/no outcomes of this branch. We also
define only one proposition corresponding to the condition in the only branch
inside our loop. Thus, proposition p1 is defined as p1 ≡ j % 2 == 0. Let us
now illustrate the constraint propagation for finding infeasible paths which end
at a no outcome at basic block B2. Note that during constraint propagation,
for each visit of a basic block we maintain a boolean formula (over the branch
propositions) and a constraint (computed via weakest pre-condition analysis).
So, we start with

B2, ¬p1, j%2 �= 0

We now propagate backwards and visit B1. This produces

B1, ¬p1, j ≤ limit∧ j%2 �= 0

Now, the predecessors of B1 are B0 and B4. Since we are only analyzing the
infeasible paths spanning the iterations of a loop (this of course can be relaxed),
we only visit B4. This produces

B4, p1, j + 1 ≤ limit∧ (j + 1)%2 �= 0

Note that this involves inferring the truth of p1 from (j+1) % 2 �= 0. This in-
ferencing has to be achieved by an external constraint solver. If this cannot be
inferred, then we will visit B4 with the boolean formula true instead (i.e., the
constraint propagation will anyway proceed). The predecessors of B4 are B2 and
B3. When we visit B2, the constraint store implies (j+1) % 2 �= 0∧ j % 2 �= 0.
Since this is false, we can infer that the path B2,B4,B1,B2 cannot end with a no
outcome. In other words B2,B4,B1,B2,B4 is an infeasible path. Note that termi-
nation of the analysis is guaranteed, since each basic block in this example can be
visited at most four times (with the boolean formulae true, p1, ¬p1 and false).

4 WCET Analysis

In this section, we present our analysis technique for estimating the WCET of a
program loop. We note that if the input program has nested loops or sequences
of loops, we perform the analysis for each loop separately and then compose the
results. Thus, for nested loops, the inner loop is analyzed first followed by the
outer loop.

Analyzing Loop Paths for Execution Time Estimation 465

The inputs to our analyzer are the following.

– The loop bound N . The loop bound is computed using offline techniques
like [9].

– The set of feasible paths IP , each member of which denotes the possible
execution of one iteration of the loop. From now on, we will refer to a path in
the set IP as ipath to distinguish it from a path through multiple iterations
of the loop. Each ipath is associated with its WCET.

– The set of infeasible ipath sequences through the loop called the infeasible
patterns. Each infeasible pattern is a finite string over the alphabet IP .
Let K + 1 be the maximum length for any infeasible pattern for the loop.
Clearly 1 ≤ K ≤ N − 1. Typically, K << N .

The basic idea of the technique is based on the following observation. Let the
maximum length of any infeasible pattern for the loop be K + 1. Therefore,
given a partially constructed ipath sequence, we need to look back at most K
iterations to enumerate the feasible ipaths in the next loop iteration such that
the sequence does not contain any infeasible pattern. Therefore, in order to
compute the WCET for the entire loop, we only exhaustively enumerate all the
legal ipath sequences of length K. As K is quite small in practice, this exhaustive
enumeration is quite fast. Note that if there is no infeasible pattern, then the
WCET of the loop is simply (maxp∈IP wcet(p)) ×N .

Next, we find out whether an ipath sequence can follow another ipath se-
quence. This information is represented by a directed graph, called the transi-
tion graph G = (V, E). Each node v ∈ V of this graph represents a legal ipath
sequence of length K. An edge u → v ∈ E implies that v can follow u. A node
v can follow a node u if and only if the concatenation of the ipath sequences of
u and v does not include any infeasible pattern. Note that the graph can also
contain self-edges. Clearly, in the worst case |V | = |IP |K . Each node v ∈ V is
annotated with its WCET, wcet(v), defined as the summation of the WCETs of
its K constituent ipaths.

Given the transition graph G = (V, E), we need to find the WCET of the
loop. First, let us assume that N is a multiple of K. Then the problem reduces to
finding the sequence of N/K nodes (with possibly repeating nodes) of maximum
weight through the transition graph G. This problem can be solved through
dynamic programming as follows. Let WCET l

v be the maximum execution time
of any sequence of nodes of length l (i.e., a sequence of ipaths of length l ×K)
ending at node v. We define WCET l

v recursively as follow. First,

WCET 1
v = wcet(v) ∀v ∈ V

For l > 1
WCET l

v = max
u∈V, u→v

(
WCET l−1

u + wcet(v)
)

Therefore, the WCET of the loop is defined as

WCET = max
v∈V

(
WCET N/K

v

)

466 A. Roychoudhury, T. Mitra, and H.S. Negi

The complexity of this dynamic programming approach is O(N
K ×|V |2) = O(N

K×|IP |2K). In practice, both |IP | and K are quite small.
If N is not a multiple of K, then we need to take the remainder iterations

N%K into consideration. First, we enumerate all legal sequences of ipaths of
length N%K; the number of such sequences is small since K << N . Let these
sequences be represented by the set S. Then, the WCET of the loop is defined
as

WCET = max
v∈V,s∈S,feasible(v,s)

(
WCET N/K

v + wcet(s)
)

where feasible(v, s) is true if and only if the concatenation of the ipath sequence
corresponding to v and s does not include any infeasible pattern. A fast but
conservative approach can simply use the worst possible ipath for the remainder.
That is, the WCET of the loop is

max
v∈V

(
WCET N/K

v

)
+ (maxp∈IP wcet(p))× (N%K)

Note that the algorithm above works only because the state transition graph
is defined in such a way that no path in the graph contains any known infeasible
sequence of ipaths (i.e. a sequence detected as infeasible in the previous phase
of infeasible path detection).

5 Experimental Results

We have implemented a prototype analyzer to estimate the worst case execution
time of a loop using the technique described in the previous sections. Figure 3
shows the framework of out timing analyzer which combines the infeasible path
detection and WCET analysis. The input to our analyzer is the binary exe-
cutable. For this particular implementation, we use executables compiled by
modified gcc for Simplescalar [4], an architectural simulation platform. The an-
alyzer first disassembles the binary, identifies the basic blocks, and constructs
the control flow graph (CFG) of the entire program. It then separates out the
CFGs corresponding to the loops. The analyzer first estimates the WCET of
inner loops and then uses these information to estimate the WCET of outer
loops. For each loop, the analyzer enumerates all the ipaths in the loop. Each
ipath is associated with the corresponding execution time. In the prototype an-
alyzer, we simply assume the execution time of an ipath is equal to the number
of instructions in the ipath.

The core of the analyzer first identifies the infeasible paths using the constraint
propagation method. We use the Simplify theorem prover [19] in this phase
to check satisfiability of the constraint store in each step of the weakest pre-
condition computation. The infeasible path information is used to eliminate some
ipaths from further consideration. Moreover, this information is also used to
generate the infeasible ipath patterns. Finally, we generate the transition graph
over ipath sequences and use it to compute the WCET.

In our experiments, we have used the benchmarks shown in Table 1. Each of
these benchmarks contains only one loop. Three of them: fresnel, sprsin and

Analyzing Loop Paths for Execution Time Estimation 467

estimate
WCET based WCET analysis

Dynamic Programming

nodes
sequences as
graph with ipath
State transition

Feasible ipaths,

Iteration contsraints
(Start, End)

Loop Bound,

Constraint

theorem prover
SIMPLIFY

Disassembly

Executable

Binary

Control Flow Graph
of basic blocks
ipaths as seq.

basic blocks
sequences of
Infesiable

B1 B2 B4 of feasible ipaths
Infeasible sequences

B1 B2 B3 B5

Propagation

Fig. 3. Design Flow of Timing Analyzer

Table 1. Description of benchmarks used

Benchmark Description
Wordcount Counts the number of words in a string of 256 characters
Check data Check if the input vector of 100 integers has a negative entry

Fresnel Computes non-complex Fresnel integrals
Sprsin Convert 10 × 10 matrix to row-indexed sparse storage mode
Expint Computes an exponential integral
SHM Sequence of variable values repeats in a loop

according to Simple Harmonic Motion

Table 2. WCET Estimation Results

Program # Iterations Default WCET Our WCET Improvement
wordcount 256 9472 8064 14.9%

fresnel 100 5200 5000 3.8%
SHM 100 2200 2002 9%

check data 100 1900 916 51.8%
sprsin 10 520 476 8.5%
expint 100 185200 6109 96.7%

expint are taken from the book Numerical Recipes in C [16]; these benchmarks
have been used in other works on program path analysis for estimating WCET
(e.g. see [10]). The fresnel program has a loop which takes different ipaths
in odd and even numbered iterations. The loop in sprsin avoids the longer
ipath when the iteration counter reaches a specific constant value. Expint has
the reverse characteristic: the longer ipath in a loop is executed only when the

468 A. Roychoudhury, T. Mitra, and H.S. Negi

loop iteration counter reaches a specific constant value. The wordcount program
counts the words in a file by detecting spaces; this is done by a loop which ex-
ecutes different ipaths depending on whether (or not) the next character marks
the end of a word. This leads to infeasible path patterns spanning across itera-
tions. The programs SHM and check data also have iteration spanning infeasible
path patterns. In particular, since the loop in check data exits when a negative
number is encountered, an ipath corresponding to a negative number input can
never be followed by any other ipath.

The estimated WCET values for the benchmarks are shown in Table 2. The
estimate is given in terms of the number of instructions executed in the loop.
The number of iterations for the only loop in each benchmark is shown in the
column # iterations. Default WCET is simply the execution time of the longest
ipath multiplied by the number of iterations. In other words, it does not take into
account infeasible path information. The column Our WCET shows the result of
our WCET analysis which takes into account infeasible path information. The
column Improvement shows the reduction in WCET estimate using our method.

Running Times. On a Pentium IV 2.4 GHz machine, our infeasible path
detection phase takes only few seconds for all the benchmarks. The time is
primarily spent in the external prover Simplify. We found that the time overheads
for using the Simplify prover are tolerable, with each call to Simplify typically
taking less than 10 milliseconds. The second phase of our technique (i.e. WCET
analysis) takes less than 0.01 second for all the benchmarks.

6 Discussion

Detection of infeasible paths is central for obtaining tight Worst-case Execution
Time (WCET) estimates. In this paper, we have developed an infeasible path
detection technique based on constraint propagation. We have then exploited
these path patterns to develop tight WCET estimates of program loops. Our
WCET analysis technique is based on dynamic programming and carefully avoids
exhaustive enumeration of feasible path sequences. Experimental results on non-
trivial benchmarks show that our technique leads to substantial reduction in
WCET estimates.

References

1. P. Altenbernd. On the false path problem in hard real-time programs. In Euromicro
workshop on Real-time Systems, 1996.

2. T. Ball and J.R. Larus. Programs follow paths. Technical report, Microsoft Re-
search, MSR-TR-99-01, 1999.

3. R. Bodik, R. Gupta, and M. Lou Soffa. Refining data flow information using
infeasible paths. In ESEC/SIGSOFT FSE, 1997.

4. D. Burger, T. Austin, and S. Bennett. “Evaluating future microprocessors: The
simplescalar toolset”. Technical Report CS-TR96-1308, University of Wisconsin-
Madison, 1996.

Analyzing Loop Paths for Execution Time Estimation 469

5. E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
6. J. Engblom and B. Jonsson. Processor pipelines and their properties for static

WCET analysis. In Intl. Conf. on Embedded Software (EmSoft), LNCS 2491,
2002.

7. A. Ermedahl and J. Gustafsson. Deriving annotations for tight calculation of
execution time. In EUROPAR, 1997.

8. C. Ferdinand, F. Martin, and R. Wilhelm. Applying compiler techniques to cache
behavior prediction. In ACM Intl. Workshop on Languages, Compilers and Tools
for Real-Time Sys. (LCTRTS), 1997.

9. C.A. Healy et al. Supporitng timing analysis by automatic bounding of loop iter-
ations. Real-Time Systems, 18(2-3), 2000.

10. C.A. Healy and D.B. Whalley. Automatic detection and exploitation of branch
constraints for timing analysis. IEEE Transactions on Software Engineering, 28(8),
2002.

11. T.A. Henzinger, R. Jhala, R. Majumder, and G. Sutre. Lazy abstraction. In POPL,
2002.

12. X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-order processors for soft-
ware timing analysis. In IEEE Real-time Systems Symposium (RTSS), 2004.

13. Y-T. S. Li, S. Malik, and A. Wolfe. Performance estimation of embedded software
with instruction cache modeling. ACM Transactions on Design Automation of
Electronic Systems, 4(3), 1999.

14. T. Lundqvist and P. Stenstrom. Integrating path and timing analysis using
instruction-level simulation techniques. In Intl. Workshop on Languages, Com-
pilers and Tools for Embedded Systems (LCTES), 1998.

15. C.Y. Park. Predicting program execution times by analyzing static and dynamic
program paths. Real-time Systems, 5(1), 1993.

16. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numeri-
cal Recipes in C: The Art of Scientific Computing, Second Edition,. Cambridge
University Press, 1988.

17. P. Puschner and Ch. Koza. Calculating the maximum execution time of real-time
programs. Real-time Systems, 1(2), 1989.

18. A.C. Shaw. Reasoning about time in higher level language software. IEEE Trans-
actions on Software Engineering, 1(2), 1989.

19. Simplify. Simplify theorem prover, 1998. http://www.research.compaq.com/SRC/
esc/Simplify.html.

20. H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction by
separated cache and path analysis. Real Time Systems, 18(2/3), 2000.

A Technique for Early Software Reliability
Prediction

Rakesh Tripathi1 and Rajib Mall2

1 LRDE Bangalore, KA 560 093, India
tripathir2000@yahoo.com

2 Department of Computer Science & Engineering,
IIT Kharagpur, WB 721 302, India

rajib@cse.iitkgp.ernet.in

Abstract. In early developmental stages of software, failure data is not
available to determine the reliability of software. But developers need
reliability prediction for quality assessment and resource planning. We
propose a model based on Reliability Block Diagram (RBD) for repre-
senting real-world problems and an algorithm for analysis of these models
in early phase of software development. We have named this technique
Early Reliability Analysis Technique (ERAT). We have performed sev-
eral simulations on randomly generated software models to compute reli-
abilities and sensitivity. The simulation result shows that reliabilities are
good quality indicator and sensitivity of system reliability to functions
reliability can be determined.

1 Introduction

Most software reliability prediction models are failure based growth models [1].
For some models where failure data is not available it is assumed that reliability
of component is available [2, 3]. But to get reliability of component, we need prior
information on component’s failure pattern. In all we can say that, systems
quality cannot be assessed until the late stages in the software development
process, when failure data becomes available. A problem of this approach is that
at the early stage of the software development there is no failure data available,
although software reliability predictions are required at the early stage both for
customer and developer.

Some software reliability prediction models do provide a reliability estimation
without any actual failure data [4]. These methods either model very specific set
of problems or makes use of very complicated system model [5].

So, to overcome the problem of system modeling of real-world problems and
early-prediction of reliability we propose an algorithm called Early Reliability
Analysis Technique (ERAT). ERAT models problem based on Reliability
Block Diagram (RBD) [6] and Function Diagram (FD) [7, 8]. In modeling
real-world problems, ERAT makes use of Operational Profile (OP) [9] for
computation of usage frequency of system operations. System operations are
realized by set of system functions. Based on the usage frequency, functions of
system are prioritized . ERAT makes use of rank-based Genetic Algorithms

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 470–481, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Technique for Early Software Reliability Prediction 471

(GA) [10] for test suite selection based on functions priority. Functions reliability
is computed based on number of test cases testing the function and their error
correction capability. Error correction capability is the probability that error will
be detected and immediately corrected.

The rest of the paper is organized as follows. In section 2, we review the
related work. In section 3, we present the system modeling and test suite selection
method. In Section 4 we discuss ERAT algorithm in detail and in section 5 we
present experiments and results. Section 6 concludes the paper.

2 Related Work

In most of the reported early reliability prediction methods, it is assumed that
component reliability is already available. Also, internal structure of system is
rarely considered for the overall system reliability prediction. As a result, pre-
dicted reliability is often very inaccurate. In case of multiple scenarios, reliability
in situation of failure of some of the least frequently used scenarios are also ig-
nored. This gives an impression that system either fails or works successfully
and at no point of time system operations degrade or work less efficiently.

Meng et al. [5] proposed method for early-stage system-level software reliabil-
ity estimation. This method is based on Petri-nets approach. For large systems
Petri-nets approach is not feasible.

Wohrun et al. [11] proposed a method for early reliability estimation based
on formal description technique. This technique does not consider multiple sce-
narios and system degradation. This technique is more appropriate for hardware
systems.

Yacoub et al. [2] proposed Scenario Based Reliability Analysis (SBRA). In
this, system reliability is estimated based on components reliability. It is assumed
that components are existing (including Commercial Off-The-Shelf COTS). Also,
algorithm that was used for analysis of system assumes that system will consist
of serial and parallel configurations of components.

In all the above techniques, either white box model or black box model is con-
sidered. But in none of the work, as far as our knowledge, we found application
of both models. Each model has got its own advantage. In our work we have
tried to take advantage of both. Black box model is used so that internal details
are not required for usage frequency computation. For prediction of reliability,
we have used the white box model.

3 System Model

To model system used for the purpose of analysis, we have made following as-
sumptions:

1. Software development process is not from scratch. User profile is available
for the system.

2. In case of more than one scenarios of a use-case, always there will be one
scenario that will be most frequently used.

472 R. Tripathi and R. Mall

3. System fails if use-case fails.
4. System will not fail under failure of scenario(s) of use-case except the most

frequently used (MF) scenario. In case of scenario(s) failure, we consider
system to be degraded.

5. There is no loop in any of the scenario or use-case.
6. Functions used as start or terminate function of system cannot be reused.

Otherwise it will introduce loop i.e. contradiction to #5.
7. Transition probability from one function to other is 1.

In our work, system model(as shown in Figure 1) is composed of following com-
ponents in bottom-to-top order.

– Functions: Correspond to functions, procedures, object in a software. There
are two special set of functions called Start and Terminal functions. These
functions are unique. In figure 1, A and G are the start and terminal functions
respectively.

– Scenarios: Correspond to different usage of use-cases. Scenario consist of
one each Start and Terminal function and intermediate functions. In figure
1, ABDG, ADFG and ACFG represents the scenarios of use-case.

– Use-cases: Corresponds to high-level functionality of a software. Use-case
consist of one each Start and Terminal function and intermediate functions.
Figure 1 shows an use-case.

Usecase

B C

D

F

G

Sharing

Scenarios
1. ABDG
2. ADFG
3. ACFG

Start Function

Terminal Function

A

E

Fig. 1. Block diagram for system model

All the components and models used to represent our real-world problem are
described in following subsections.

3.1 Use-Cases

In our work use-cases represent high level functionalities identified during re-
quirement specification. System usage probability provided by Operational Pro-
file are used as use-case usage probability. Usage probability tells frequency of
usage of particular use-case by set of user groups. For a system to be operational,
all use-cases must be operational.

A Technique for Early Software Reliability Prediction 473

3.2 Scenarios

Scenarios represent different run-types and operations [4, 12] of an use-case. That
means for any use-case there will be one or more scenarios. And these scenario
will be sharing some of the functions as we know that in real-life problems,
re-usability is very common. For any use-case to be operational, at-least most
frequently used scenario must be operational. In other words we have considered
parallel configuration among scenarios of a use-case. Also we have assumed that
there can be dependence for functions among scenarios.

3.3 Function Diagram

A Function Diagram (FD) [7, 8] is a directed graph. Each node of an FD cor-
responds to a function of the program. The edges of the graph represent either
control dependency or data dependency among the nodes. These dependencies
are represented as directed arrows. We do not use different symbols to represent
these two types of dependencies since we are considering these two dependencies
as same in our work. We have used FD to model our scenarios of use-case.

3.4 Reliability Block Diagram

A Reliability Block Diagram (RBD) is a graphical representation of the com-
ponents of the system and how they are reliability-wise related [6]. An overall
system reliability prediction can be made by looking at the reliabilities of the
components that make up the whole system. In order to construct a RBD, the
reliability-wise configuration of the components must be determined.

Series Configuration. In a series configuration, a failure of any component
results in failure for the entire system. The reliability of a serial system is the
probability that unit 1 succeeds and unit 2 succeeds and all of the other units
in the system succeed. So, all n units must succeed for the system to succeed.
The reliability of the system is then given by

Rs = P (X1 ∩X2 ∩ . . . ∩Xn)
= P (X1)P (X2 | X1)P (X3 | X1X2) . . . P (Xn | X1X2 . . . Xn−1)

(1)

Where:
Rs = reliability of the system; Ri = reliability of unit i
Xi = event of unit i being operational; P (Xi) = probability that unit i is oper-
ational
If components are considered independent then equation (1) becomes

Rs = P (X1)P (X2) . . . P (Xn) =
n∏

i=1

P (Xi) =
n∏

i=1

Ri (2)

In a series configuration, the component with the smallest reliability has the
biggest effect on the system’s reliability. As the number of components in series
increases, the system’s reliability decreases.

474 R. Tripathi and R. Mall

1 2 N

Fig. 2. Block diagram for serial configura-
tion

1

2

N

Fig. 3. Block diagram for
parallel configuration

Parallel Configuration. In a parallel system, as shown in Figure 3, at least one
of the units must succeed for the system to succeed. The probability of failure, or
unreliability, for a system with n statistically independent parallel components
is the probability that unit 1 fails and unit 2 fails and all of the other units in
the system fail. Putting another way, if unit 1 succeeds or unit 2 succeeds or
any of the n units succeeds, then the system succeeds. The unreliability of the
system is then given by

Qs = P (X1 ∩X2 ∩ . . . ∩Xn)
= P (X1)P (X2 | X1)P (X3 | X1X2) . . . P (Xn | X1X2 . . . Xn−1)

(3)

Where:
Qs = unreliability of the system; Qi = unreliability of unit i
Xi = event of failure of unit i ; P (Xi) = probability of failure of unit i
If the components are considered independent then, Equation (3) becomes

Qs = P (X1)P (X2) . . . P (Xn) =
n∏

i=1

P (Xi) =
n∏

i=1

Qi (4)

The reliability of the parallel system is then given

Rs = 1−Qs = (Q1·Q2· . . . ·Qn)
= 1− [(1 −R1)· (1−R2)· . . . · (1−Rn)]

= 1−
n∏

i−1

(1−Ri)
(5)

In a parallel configuration the component with the highest reliability has the
biggest effect on the system’s reliability, since the most reliable component is
the one that will most likely fail last. For a parallel configuration, as the number
of components increases, the system’s reliability increases.

Complex Configuration. A complex configuration system cannot be broken
down into a group of series and parallel systems as shown in Figure 4. This is
primarily due to the fact that component C has two paths leading away from
it, whereas B and D have only one. Several methods exist for obtaining the
reliability of a complex system including

A Technique for Early Software Reliability Prediction 475

A

B

C

D

E

F

G

Fig. 4. Block diagram for complex configuration

– The decomposition method
– The event space method
– The path-tracing method

In our work we have used the path-tracing method, as in our reliability model
we are available with scenarios in form of paths. In the path-tracing method,
every path from a starting point to an ending point is considered. System success
involves having at least one path available from one end of the RBD to the other.
The reliability of the system is simply the probability of the union of these paths.
General equation for union of n paths Pi can be given as

n⋃
i=1

Pi =
n∑

i=1

Pi −
∑

1≤i<j≤n

(Pi ∩ Pj) + . . . + (−1)n−1
n⋂

i−1

Pi. (6)

3.5 Test Suite (TS)

Test suite consists of all the test cases that are going to be used for testing
software. Generally test suite is selected out of tests pool. For our work we
have used Genetic algorithm (GA) for test suite (TS) selection. As GA’s are
popularly used for optimization, we have used GA for selecting TS to optimize
system reliability for assessing the effectiveness of our algorithm.

4 Early Reliability Analysis Technique (ERAT)

In this section we will discuss our reliability estimation technique. We stress that
ERAT is more appropriate during the early stages of system development.

Our proposed algorithm ERAT is presented in the following.

Algorithm: ERAT
Input: Fi, pi, pij , s, slice(Ui), slice(sij), numTest, slice(Ti)
Output: System Reliability , System ReliabilityMF

a. Model the system
Normalize probabilities
Compute OP for use-cases
Compute operations run-type probability

476 R. Tripathi and R. Mall

b. Compute priority of each function
pv(Fi) =

∑k
j=1 qj

where qj = pj if Fi ∈ slice(Uj) else qj = 0
c. Select test cases that optimizes reliability using GA

Ti ∈ TS consists of all test cases in test suite selected using GA
Utility(Ti) =

∑
Fk∈slice(Ti) pv(Fk)

d. Find number of test cases testing Fj

ki =
∑

x

where x =

{
1 if Fj ∈ slice(Ti)
0 if Fj , slice(Ti)

e. Compute functions reliability
rel(Fi) = 1− ski

f. Manipulate functions reliability to measure sensitivity
rel(Fi) = rel(Fi) ∗ p
where p can take values between [0-1] depending upon reliability degra-

dation
g. Compute use-case reliability

Generate combinations pi of different paths
Compute union of different combinations Pi

Let slice(Pi) contains functions available in Pi without repetition
rel(Pi) =

∏
Fk∈slice(Pi) rel(Fk)

rel(Ui) is addition of terms according to equation 6.
rel(Ui) =

∏
Fk∈slice(Pi) rel(Fk)

h. Compute MF scenario reliability
rel(MFi) = rel(sik)
where rel(sik) =

∏
Fk∈slice(sij) rel(Fk)

i. Compute overall system reliability
System Reliability =

∏N
i=1(1 − ((1− rel(Ui)) ∗ pi))

j. Compute MF system reliability
System ReliabilityMF =

∏N
i=1 rel(UMFi)

4.1 Test Suite Selection

We have used Pareto Convergence Genetic Algorithm PCGA [10] based on
Pareto-ranking for test suite selection. PCGA works on the notion of Pareto
optimality [13], which is based on the concept of dominance. We have used the
concept of intra-island rank histogram [10] in formulating our stopping criterion
for selection.

4.2 Functions Reliability Estimation

Functions diagram(FD) are prepared by system analyst to model system for
analysis. Functional analyst, with the help of modeling tools provides important
details that will be used in later stages of analysis.

In early stages of software development, as failure rates and error correction
rate will not be available, we have used fixed error correction rate. Let s be the

A Technique for Early Software Reliability Prediction 477

probability that errors remain undetected in a function, after it has been tested
using a single test case. We have taken s to be equal to 0.95. This means we
have assumed that each test case has a 5 percent chance of uncovering an error
existing in a function.

Let a function Fi be tested by ki test cases in the test suite TS. Then, the
reliability rel(Fi) associated with the function Fi can be defined as follows,

rel(Fi) = 1− ski .

4.3 Scenario Reliability Estimation

The functionality of any system can be modeled using use-cases [14]. Each use-
case typically has multiple scenarios. Each scenario is an alternate path through
the use-case.

We compute the slice slice(sij) of the FD corresponding to each scenario sij .
We define a slice of an FD due to a scenario as the set of all the functions that
influence execution of this scenario.

To compute slice(sij), we transitively traverse along all data and control
dependence edges starting from the directed edge corresponding to the input to
the scenario sij and include all functions so traversed in the slice.

Since scenarios of an use-case are considered inter-dependent, we will not
compute scenario reliability separately. But for most frequently used scenario
(MF), if the probability of usage of scenario j of use-case i is pij , then its prob-
ability of usage will be max(pij). Now let k be the index having value max(pij),
then the reliability of MF scenario sik is the product of all rel(Fi), such that
Fi ∈ slice(sij).

rel(sik) =
∏

Fk∈slice(sij)

rel(Fk)

Hence,
rel(MFi) = rel(sik).

4.4 Use-Case Reliability Estimation

Different scenarios of an use-case are connected either in parallel, serial/parallel
or complex configuration. But we always considers complex relationship for worst
case analysis.

If the functions are connected in series or parallel configuration, we can com-
pute reliability of scenario and subsequently use-case by making use of algorithm
given by [2]. As this algorithm considers OR and AND path to be in parallel
and series configuration. But as we are more concerned with accurate estimation,
we always consider complex configuration. So, we will make use of path tracing
method described in equation (6).

In case of MF scenario, use-case reliability will be the probability that most
frequently scenario will not fail i.e.,

rel(UMFi) = 1− fail(MFi).

478 R. Tripathi and R. Mall

4.5 System Reliability Estimation

If we consider system consisting of N use cases, then the system reliability
System Reliability for a selected test suite TS can be computed as follows:

System Reliability =
N∏

i=1

(1− ((1− rel(Ui)) ∗ pi))

In case of most frequently used scenario, we will have

System Reliability =
N∏

i=1

rel(UMFi).

4.6 Sensitivity Computation

We have computed sensitivity of ERAT by modifying reliability of individual
functions based on its priority. In ERAT it is important to note that reliability
modification should not be done immediately after computation of functions
reliability. As this modification will allow test case selection algorithm to select
test cases based on the new reliability of functions.

Lets assume Fi be the function and rel(Fi) be its reliability for which we want
to modify, then reliability of Fi after 25% degradation will be

rel(Fi) = rel(Fi) ∗ 0.75.

5 Experiments and Results

In this section we illustrate the working of the algorithm with the help of an
example. We have tabulated all the intermediate results obtained. The exam-
ple consists of randomly generated model of a system representing the real-
world problem. We have chosen, Total Functions = 40, Total Use− cases = 6,
Number of test cases = 500 and Test Suite size = 400.

a. System Modeling. Model of the system is generated randomly and satisfies
all the assumptions we have made to represent the system. Table 1 shows
model with usage probability pi of an use-case Ui and usage probability pij

of a scenario sij .

Table 1. System model of working example

Use − case Ui Usage Prob. pi Scenarios sij Probability pij

1 0.3631 1,2,3,4 0.2916,0.0947,0.4795,0.1343
2 0.1319 1,2,3 0.4796,0.3173,0.2030
3 0.1133 1,2 0.2641,0.7359
4 0.2806 1 1.0
5 0.0295 1,2,3,4 0.2232,0.0858,0.5641, 0.1269
6 0.0816 1,2,3,4 0.2413,0.2228,0.2913, 0.2445

A Technique for Early Software Reliability Prediction 479

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

Functions

P
rio

rit
y

Functions priority

Max Priority

Min Priority

Fig. 5. Graph showing priority of func-
tions

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

Functions

T
es

t C
as

es

Number of test cases testing function

Fig. 6. Graph showing number of test
cases testing functions

b. Functions Probability Computation. Probability of functions Fi are
shown in Figure 5

c. Test Cases Testing Functions. Number of test cases, available in TS test-
ing functions Fi are presented in Figure 6.

d. Functions Reliability Computation. Reliability of function Fi is shown
in Figure 7.

e. Use-case Reliability Computation. Reliability ofuse-casesUi is presented
in Figure 8.

f. Reliability Range Computation. Range of reliability, one for the system
as a whole and another for most frequently used scenario in a use-case are
presented in Table 2.

g. Sensitivity of ERAT. Sensitivity of algorithm to functions reliability is
presented in Table 3.

0 5 10 15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Functions

R
el

ia
bi

lit
y

Functions reliability

Fig. 7. Graph showing functions reliability

1 2 3 4 5 6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Usecase

R
el

ia
bi

lit
y

Usecase reliability

Fig. 8. Graph showing use-case reliability

480 R. Tripathi and R. Mall

Table 2. Reliabilities computation for overall system and for MF

Expt# Test Cases System Reliability MF Reliability

1 100 0.4162 0.3312
2 200 0.4885 0.3320
3 300 0.5216 0.3348
4 400 0.6378 0.4342

Table 3. Sensitivity of System reliability to functions reliability

Expt# Function Type % Degradation Sys. Reliability

1 Maximum Reliable 0,25,50,75,100 0.6362,0.6090,0.5819,0.5548,0.5277
2 Minimum Reliable 0,25,50,75,100 0.6362,0.6340,0.6319,0.6297,0.6276

5.1 Analysis of Results

Results in Table 3 shows that any system will be more sensitive to functions
having high priority. So, testing efforts for such functions must be maximized.
Due to high reliable function failure, degradation in system reliability is close to
17%, whereas low reliable causes just 1.35% degradation.

Results in Table 2 shows that even though system reliability is a good measure,
but it is better to rely more on reliability of most frequently used scenarios.
Reliability range demonstrates the maximum degradation that can be caused to
system reliability in event of failure of other scenarios of use-case.

6 Conclusions and Discussion

In this paper we have proposed an early stage reliability estimation technique
(ERAT). Application of reliability estimation during early stages of development is
a good measure of initial design. We observed that even if error data is not available
for software development efforts, this algorithm will provide reliability estimation.

We observed that system reliability is sensitive to functions reliability. But
this sensitivity varies from function to function, as functions with higher usage
frequency affects system reliability more as compared to ones with lesser usage.
So, just by increasing the number of test cases testing a function does not help
much in increasing system reliability. As there is a limit beyond which improve-
ment will be insignificant. Rather than increasing more test cases, we should try
to make sure that only those test cases that improve system reliability should
be made available in test suite. We have planned to continue efforts in future to
extend the capabilities of ERAT.

References

1. Runeson, P., Wohlin, C.: Statistical usage testing for software reliability control.
Informatica 19 (1995) 195 – 207

2. Yacoub, S., Cukic, B., Ammar, H.H.: A scenario-based reliability analysis approach
for component- based software. IEEE Transactions on Reliability 53 (2004) 465 – 480

A Technique for Early Software Reliability Prediction 481

3. Kuball, S., Hughes, G., Gilchrist, B.I.: Scenario-based unit testing for reliability.
In: IEEE Proceedings Annual Reliability and Maintainability symposium. (2002)
222 – 227

4. M., L.: Handbook of Software Reliability Engineering. McGraw-Hill and New York
(1996)

5. Yin, M.L., Hyde, C.L., James, L.E.: A petri-net approach for early-stage system-
level software reliability estimation. Proceedings Annual Reliability and Maintain-
ability Symposium (2000) 100 – 105

6. 6, B.: (System analysis reference, reliability, availability and optimization) Provided
by Reliasoft.

7. Sarkar, A.: (A novel scheme for regression test suite selection) Master of Technology
2004, Thesis , IIT Kharagur, WB 721302, India.

8. Phien, T.T.: (System analysis and design, chapter 2, systems analysis) Training of
computer specialists, trainers and users, Sponsored by UNESCO, Implemented by
IIT-NCST-Vietnam 1999-2000.

9. Musa, J.D., Iannino, A., Okumoto, K.: Software Reliability: Measurement, Pre-
diction, Application. McGraw-Hill, New York. (1987)

10. Kumar, R., Rocket, P.: Assessing the convergence of rank-based multi-objective
genetic algorithm. In: Proc IEE/IEEE 2nd Int. Conf. on Genetic Algorithms in
Engineering Systems:Innovations and Applications, (GALESIA 97) Glasgow, U.K.
IEE Conference Publication. (1997) 446

11. Wohlin, C., Runeson, P.: A method proposal for early software reliability estima-
tion. IEEE (1992) 156 – 163

12. Mall, R.: Fundamentals of Software Engineering. Prentice Hall of India (2003)
13. C.M.Fonseca, P.J.Fleming: An overview of evolutionary algorithm in multi-

objective optimization. Evolutionary Computation 3 (1995) 1 – 16
14. Jacobson, I., Christerson, M.: Object Oriented Software Engineering: A Use Case

Driven Approach. Addison-Wesley, Workingham, England (1992)

Executable Requirements Specifications Using
Triggered Message Sequence Charts

Bikram Sengupta1 and Rance Cleaveland2

1 IBM India Research Laboratory, Block 1, Indian Institute of Technology,
Hauz Khas, New Delhi - 110016
bsengupt@in.ibm.com

2 Department of Computer Science, SUNY at Stony Brook,
Stony Brook, NY 11794-4400, USA

rance@cs.sunysb.edu

Abstract. Triggered Message Sequence Charts (TMSCs) are a scenario-based
visual formalism for early stage requirements specifications of distributed sys-
tems. In this paper, we present a formal operational semantics for TMSCs that
allow the simulation of TMSC system descriptions, so that errors and inconsisten-
cies in specification may be detected early on. The semantics is defined in terms
of Structured Operational Semantics (SOS) rules that guide the step-wise execu-
tion of TMSC specifications. We also consider the equivalence of this semantics
and the TMSC denotational semantics that has been presented in previous work.

1 Introduction

Triggered Message Sequence Charts (TMSCs) have been proposed in [13] as an exten-
sion of the well-known visual formalism of Message Sequence Charts (MSCs) [1, 11].
Like MSCs, TMSCs describe system scenarios in terms of exchange of messages and
execution of local-actions that a set of processes (or instances) may engage in as they
execute. Unlike MSCs, however, TMSCs can specify conditional scenarios, which rep-
resent requirements that constrain system behavior only when certain “triggering be-
haviors”, are observed; and partial scenarios, which permit users to leave aspects of
system behavior unspecified. The theory is also equipped with a refinement ordering
(based on the must preorder of [8]) that determines when one specification is a “correct
elaboration of” another, by correctly adhering to prescriptive and conditional-scenario
constraints and properly “filling in” unspecified behavior in partial scenarios [12].

TMSCs are thus well-suited for early-stage behavioral descriptions, which may be
subject to refinement and elaboration as design proceeds. Accordingly, practitioners
will find it useful to be able to simulate the behavior of TMSC-based system descrip-
tions. This will allow early detection of inconsistencies and aberrant scenarios, which
may otherwise be very expensive to fix once the system has been constructed. How-
ever, as evident in the technical development of [13], the formal semantics of TMSCs,
which translates TMSC specifications to acceptance trees [8], is declarative in nature:
it provides a precise definition of what the acceptance tree should be for a given TMSC
specification, without describing how it may be constructed step-by-step. Thus this se-
mantics does not allow ready simulation of TMSC specifications.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 482–493, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Executable Requirements Specifications Using TMSCs 483

The goal of this paper is to present an alternative (but equivalent) semantics of TM-
SCs, which is operational in nature. This semantics can serve as the basis for tool-
support, and help build executable models of TMSC specifications for early simulation.
The rest of the paper is organized as follows: in the next section, we introduce TM-
SCs and the main ideas behind the acceptance tree semantic model. In Section 3, we
explain the operational behavior of single instances in a TMSC; this is then extended
to enable simulation of complete, single TMSCs. Section 4 outlines how the ideas may
be extended to define the executable behavior of structured TMSC specifications. In
Section 5, we discuss the equivalence of the declarative and operational semantics
of TMSCs. Section 6 considers tool support. Section 7 presents related work, while
Section 8 contains conclusions and directions for future research.

2 Background

Triggered Message Sequence Charts: Graphically, we represent TMSCs as in Fig. 1.
There are two new features in the visual syntax of TMSCs when compared to traditional
MSCs. The first is the dashed horizontal line running through the instances, which par-
titions the sequence of events on an instance’s axis into two subsequences: the first,
located above the line, constitutes the instance’s trigger, and the second, below the line,
constitutes its action. This partition, in effect, forms the basis of a conditional scenario:
for each instance, the execution of the action is conditional on the occurrence of the
trigger. In other words, the behavior of the instance is constrained to its action only
when it has executed its trigger; otherwise, there are no restrictions. The second new
feature in a TMSC is the presence/absence of a small bar at the foot of each instance.
The presence of such a bar (as in instance I1 in Fig 1) indicates that the instance cannot
proceed beyond this point in the TMSC, while the absence (as in instance I2) means
that the behavior of this instance beyond the TMSC is left unspecified i.e. there are
no constraints on its subsequent behavior. Such a scenario is thus partial, and may be
extended in future.

Fig. 1. An Example TMSC

The TMSC in Fig.1 may be read as follows: “If I1 sends a to I2, then it should
receive b from I2 and terminate; if I2 receives a from I1 and c from I3, then it should
send b to I1 and d to I3, and its subsequent behavior is left unspecified; if I3 sends c to
I2 and receives d from I2, then it should perform the local-action la and terminate”.

484 B. Sengupta and R. Cleaveland

Fig. 2. The must preorder: L1 �must L2

Acceptance Trees: Acceptance trees and the must preorder arise in the theory of testing
of concurrent processes given in [8]. In this theory, tests, which may also be thought
of as processes that are capable of reporting “success”, interact with a process under
test. When processes and tests are nondeterministic, a process may be capable both of
passing and failing a test, depending on how nondeterministic choices are resolved. A
process must pass a test if, regardless of how such choices are made, the process passes
the test. One process refines another with respect to the must preorder if it must pass
every test that the less refined process must. We use an alternative characterization of
the must preorder that is given in terms of the processes themselves, rather than tests.
Specifically, the must pre-order may be characterized in terms of acceptance sets (that
are a measure of the non-determinism of a process) when the processes are given as
Labeled Transitions Systems (LTSs).

Definition 1. Let P = 〈P, E,−→, pI〉 be a Labeled Transition System (LTS),where P
is a set of states, E a set of events,−→⊆ P ×E×P the transition relation, and pI ∈ P
the start state. Then, for p ∈ P and w ∈ E∗. the following may be defined.

L(P) = {w ∈ E∗ | ∃p′ ∈ P.pI
w−→ p′} (Language)

SP(p) = {a | ∃p′ ∈ P.p
a−→ p′} (Successors)

Acc(P , w) = {SP(p′) | pI
w−→ p′} (Acceptance set)

We now define a saturation operator, sat, on acceptance sets. Let A ⊆ 2E ; then
sat(A) is the least set satisfying:

1. A ⊆ sat(A).
2. If A1, A2 ∈ sat(A) then A1 ∪A2 ∈ sat(A).
3. If A1, A2 ∈ sat(A) and A1 ⊆ A ⊆ A2, then A ∈ sat(A).

The alternative characterization of-must can now be given as follows [8].

Theorem 1. Let P1 = 〈P1, E1,−→1, pI1〉 and P2 = 〈P2, E2, −→2, pI2〉 be two LTSs,
and let E = E1 ∪ E2. Then P1 -must P2 iff for all w ∈ E∗, sat(Acc(P1, w)) ⊇
sat(Acc(P2, w)).

Intuitively, P2 refines P1 if it has “less nondeterminism.” This alternative characteri-
zation forms the basis for representing processes as acceptance trees [8], which map
sequences of events to acceptance sets.

Executable Requirements Specifications Using TMSCs 485

Definition 2. Let E be a finite set of events. Then an acceptance tree T is a function in
E∗ → 22E

satisfying:

1. For any w ∈ E∗, sat(T (w)) = T (w).
2. For any w, w′ ∈ E∗, if T (w) = ∅ then T (w · w′) = ∅.
3. For any w ∈ E∗, e ∈ E , T (w · e) �= ∅ iff there exists A ∈ T (w) such that e ∈ A.

We say that T1 ⊇ T2 if for all w ∈ E∗, T1(w) ⊇ T2(w).

For any LTS P there is an immediate way to construct an acceptance tree T [P]:
T [P](w) = sat(Acc(P , w)). It immediately follows that P1 -must P2 if and only if
T [P1] ⊇ T [P2]. For example, in Fig. 2, L1 -must L2 because T [L1] ⊇ T [L2].

3 Executing Single TMSCs

Having introduced TMSCs, let us now consider how they may be executed. The op-
erational behavior of single TMSCs will be described by Plotkin-style [7] Structured

Operational Semantics (SOS) rules. A SOS rule of the form R.
l

p
a−→ p′

denotes

a rule R which describes the operational behavior of a process p that can perform an
event a to evolve to p′ provided each predicate in the list l is true. Since a TMSC con-
sists of a set of instances executing asynchronously, we begin by defining SOS rules to
model the operational behavior of individual instances in a TMSC.

Notational Convention. We fix finite sets I, M and A as the set of all instances, mes-
sage types and local action names, respectively. We write R = {in(I, J, m) | I, J ∈
I, m ∈ M} for the set of all receive events, and similarly define S = {out(I, J, m) |
I, J ∈ I, m ∈ M} as the set of all send events; in each case, I denotes the sender and J
the receiver of message m. We use L = {loc(I, �) | I ∈ I, � ∈ A} as the set of all local
actions. Our semantics also uses events of form end(I), where I ∈ I, which instances
emit when they terminate, and “potential events” of form wait(r), where r ∈ R, to
denote that an instance is capable of performing r once the corresponding send event
occurs. T and W denote the set of all end events and wait events respectively.

An instance in a TMSC M is initially specified by the term Ins(I, S, t, p, q), where
I is the name of the instance, S is the set of all events it may possibly perform, t
indicates if the instance terminates on performing its action or not (with t = “yes” if the
instance terminates, “no” otherwise), and p and q are sequences of events that constitute
respectively, the trigger and action of I in M . In addition to the Ins form, I may also be
specified by three other instance terms in course of its execution:(i) it may assume the
form Nondet ins(I, S), when its behavior is completely non-deterministic (e.g. when
the trigger has been violated, or I has performed the trigger, followed by the action, and
I is not required to terminate subsequently), (ii) it may be of the form Term ins(I),
after it has terminated, or (iii) it may move to the form Restr ins({e}, It), (where only
event e is enabled, and It is an instance term) from the Ins and Nondet ins forms,
once it has non-deterministically chosen to perform event e, from the set of possible
events. As we will see, these instance forms are necessary to capture the evolution of
an instance in a conditional/partial scenario.

486 B. Sengupta and R. Cleaveland

Table 1. Operational semantics for Instances

I1.
p �= nil, e ∈ possible ev(S, me)

me : Ins(I, S, t, p, q) τ−→ Restr ins({e}, Ins(I, S, t, p, q))

I2.
e = wait(r), r ∈ me, p = r · p′

me : Restr ins({e}, Ins(I, S, t, p, q)) r−→ Ins(I, S, t, p′, q)

I3.
e = wait(r), r ∈ me, p = r′ · p′, r′ �= r

me : Restr ins({e}, Ins(I, S, t, p, q)) r−→ Nondet ins(I, S)

I4.
e = wait(r), r �∈ me

me : Restr ins({e}, Ins(I, S, t, p, q)) e−→ Restr ins({e}, Ins(I, S, t, p, q))

I5.
e ∈ R ∪ S ∪ L, p = e · p′

me : Restr ins({e}, Ins(I, S, t, p, q)) e−→ Ins(I, S, t, p′, q)

I6.
e ∈ R ∪ S ∪ L, p = e′ · p′, e �= e′

me : Restr ins({e}, Ins(I, S, t, p, q)) e−→ Nondet ins(I, S)

I7.
e ∈ T

me : Restr ins({e}, Ins(I, S, t, p, q)) e−→ Term ins(I)

I8.
e ∈ possible ev(S, me)

me : Nondet ins(I, S) τ−→ Restr ins({e}, Nondet ins(I, S))

3.1 Operational Semantics for an Instance

We will now present SOS rules that govern the operational behavior of an instance in a
TMSC. These rules, defined in Tables 1 and 2, assume the existence of a message en-
vironment me which represents the set of enabled in events; an instance J may perform
an event in(I, J, m), only if in(I, J, m) ∈ me. Thus me corresponds to messages that
have been sent but not yet received.

In I1 (Table 1), instance I begins in its initial state Ins(I, S, t, p, q), and as long as
its trigger has not been completely satisfied (i.e. p �= nil), I may non-deterministically
choose to perform any event in S that is allowed by me; possible ev(S, me) returns
the set of such events and may be defined as:

possible ev(S, me) = {e | e ∈ S ∧ (e ∈ S ∪ L ∪ T

∨(e ∈ R ∧ e ∈ me))}
∪{wait(e) | (e ∈ S ∩ R) ∧ e �∈ me}

Thus, an out, loc or end event is always possible. An in event is only possible if it is
in me, otherwise the corresponding wait event is possible. For each such possible event

Executable Requirements Specifications Using TMSCs 487

Table 2. Operational semantics for Instances (Cont.)

I9.
e = wait(r), r ∈ me

me : Restr ins({e}, Nondet ins(I, S)) r−→ Nondet ins(I, S)

I10.
e = wait(r), r �∈ me

me : Restr ins({e}, Nondet ins(I, S)) e−→ Restr ins({e}, Nondet ins(I, S))

I11.
e ∈ R ∪ S ∪ L

me : Restr ins({e}, Nondet ins(I, S)) e−→ Nondet ins(I, S)

I12.
e ∈ T

me : Restr ins({e}, Nondet ins(I, S) e−→ Term ins(I)

I13.
(e ∈ S ∪ L) ∨ (e ∈ R ∧ e ∈ me)

me : Ins(I, S, t, nil, e.q) e−→ Ins(I, S, t, p, q)

I14.
e ∈ R ∧ e �∈ me

me : Ins(I, S, t, nil, e · q)
wait(e)−→ Ins(I, S, t, nil, e · q)

I15.
t = yes

Ins(I, S, t, nil, nil)
end(I)−→ Term ins(I)

I16.
t = no

Ins(I, S, t, nil, nil) τ−→ Nondet ins(I, S)

e, I non-deterministically moves to a restricted mode represented by Restr ins({e},
Ins(I, S, t, p, q)) (I1).

If e is a wait(r) event and r subsequently becomes enabled (because the correspond-
ing message has been sent), then there are two possibilities: (i) r is the next event in the
trigger, and the instance performs r, and evolves to the mode Ins(I, S, t, p′, q), where
p′ represents the suffix of the trigger that is left to be performed; this is shown in I2
(ii) r is not the next event in the trigger, in which case performing r violates the trig-
ger, and the instance moves to a totally unconstrained (non-deterministic) mode given
by Nondet ins(I, S) (I3). If e is a wait(r) event and r is currently not allowed, then
the instance stays in the same mode as indicated by I4. (Note that wait events are only
potential events, not actual ones, hence, they do not cause a change of state).

If e is an in, out or loc event, and is also the next event in the trigger, then the instance
moves to a mode Ins(I, S, t, p′, q) (I5), where p′ represents the suffix of the trigger yet
to be performed, as in I2. If e is not the next event in the trigger, then performing e
causes the instance to move to the (unconstrained) mode Nondet ins(I, S) (I6). If the
end is enabled in the restricted mode, then the instance terminates by performing e, as
it moves to the mode Term ins(I) from which no transitions are enabled (I7).

488 B. Sengupta and R. Cleaveland

If I is in the mode Nondet ins(I, S), then it may non-deterministically choose to
perform any event e that is possible, and move to a restricted mode where e is enabled.
This is shown in I8. If e is a wait(r) event and r gets enabled, then r is performed,
and the instance returns to the non-deterministic state (I9, Table 2); however, if r is not
allowed, then the instance waits in the same mode (I10). If e is an in, out or loc event,
then it may be immediately performed, and the instance returns to the non-deterministic
mode (I11). If e is an end event, then the instance terminates on performing e (I12).

I13, I14, I15 and I16 describe the behavior of I once it has satisfied its trigger. If the
next event e in the action is enabled, then it is performed (I13), else the corresponding
wait event is performed (I14). Once the action has been completely executed, the pa-
rameter t comes into play. If I has to terminate immediately (t = yes), then I performs
the end(I) event (I15), else it moves to the nondeterministic mode (I16).

3.2 A Single TMSC M = me:IL

A single TMSC M consists of a set of instance terms IL, having a common message
environment me, which represents the set of enabled receive events. Initially me is
empty. Table 3 presents the execution behavior of TMSC M in terms of the execution
of its instances. In rule M1, we first compute the set of instance names that are ex-
plicitly mentioned in M, using the function Ins name list(IL) = {Ins name(It) |
It ∈ IL}, where Ins name(It) returns the instance name of It. We then get T =
I − Ins name list(IL) as the set of instances which are not explicitly mentioned in
the TMSC M. According to the TMSC semantics [13], these instances are assumed to
terminate immediately. As rule M1 shows, IL is annotated with T , to record this set of
instances.

As long as an instance term It in IL is unstable i.e. may perform a τ transition, M
is also unstable: if It evolves to I ′t on performing τ , M also performs τ and moves to
a new state where me remains unchanged, but within IL, It is replaced by I ′t (M2).
The update msc function may be written simply as update msc(IL, It, I

′
t) = (IL −

It) ∪ I ′t.
Once all the instances have resolved their internal non-determinism and stabilized

(It � τ−→ is taken to mean It is unable to perform a transition labeled by τ), and an
instance term Ip may perform an event e to become I ′p, M may also perform e, as
shown in M3. In this case, me may get updated (if e is an in or out), and the instance
term list IL now contains I ′p in place of Ip. The update env function may be written as

update env(me, e) = me ∪ in(J, I, m), if e = out(J, I, m)
= me− in(I, J, m), if e = in(I, J, m)
= me, otherwise

Thus, if e is an out event, the corresponding in event becomes enabled in me, whereas
if e is an in event, it is removed from me upon execution. Finally, M4 indicates that
when the system reaches a stable state, any instance not explicitly mentioned in M
may terminate immediately; the parameter T is then updated to reflect all remaining
instances that are still active.

Executable Requirements Specifications Using TMSCs 489

Table 3. Operational semantics for TMSC M = me: IL

M1.
T = I − Ins name list(IL)

me : IL
τ−→ ILT

M2.
It ∈ IL,me : It

τ−→ I ′
t

me : ILT
τ−→ me : update msc(IL, It, I ′

t)T

M3.
∀It ∈ IL, me : It � τ−→, ∃Ip ∈ IL.me : Ip

e−→ I ′
p

me : ILT
e−→ update env(me, e) : update msc(IL, Ip, I ′

p)T

M4.
∀It ∈ IL, me : It � τ−→, J ∈ T

me : ILT
end(J)−→ ILT−{J}

4 TMSC Expressions

Single TMSCs can express single scenarios of systems. In order to provide capabilities
for structured system specifications, the TMSC language also includes a suite of oper-
ators for assembling sub-specifications. The resulting terms, called TMSC expressions,
are defined by the following grammar:

S ::= M (single TMSC)
| X (variable)
| S1 ‖ S2 (interleaving parallel composition)
| S1 ∓ S2 (delayed choice)
| S1 ⊕ S2 (internal choice)
| S1; S2 (sequential composition)
| S1 ∧ S2 (logical and)
| recX.S (recursive operator)

S1 ‖ S2 denotes the “interleaving” parallel composition of expressions S1 and S2: it
allows the interleaving of events from S1 and S2 while the expressions execute inde-
pendently. S1 ∓ S2 represents the “deterministic choice” between S1 and S2: a correct
refinement must be able to behave like both S1 and S2 until their behaviors differ, at
which point a choice is allowed. S1 ⊕ S2 is the nondeterministic choice between S1
and S2; a successful refinement can choose either. S1; S2 denotes the “instance-level”
(asynchronous) sequential composition [11]; S1 ∧ S2 represents logical conjunction,
and is primarily used in our framework to weave together individual constraints on sys-
tem behavior Finally, the recursive operator recX allows us to model infinite behavior
of processes, where a new execution cycle starts whenever there is a reference to the
variable used in the recursive definition (say X).

490 B. Sengupta and R. Cleaveland

4.1 Executing TMSC Expressions

The operational behavior of TMSC expressions may also be defined in terms of SOS
rules. Due to space constraints, we are unable to provide the entire semantics here.
However, to provide some illustrative examples, we present the semantics of the two
choice operators, ⊕ and ∓. This will also help bring out the difference between these
two operators.

S1 ⊕ S2: The SOS rules for the TMSC expression S1 ⊕ S2 are shown in Table 4. The
rules simply state that S1 ⊕ S2 may non-deterministically (internally) choose between
S1 (O1) or S2 (O2).

Table 4. Operational semantics for S = S1 ⊕ S2

O1.
S1 ⊕ S2

τ−→ S1
O2.

S1 ⊕ S2
τ−→ S2

S1 ∓ S2: In S1 ∓ S2, the choice between S1 and S2 is delayed till a point is reached
where their behaviors differ; at that point, a choice is made. Thus initially, S1 and S2 are
allowed to resolve their internal non-determinism through sequences of τ transitions,
till they both reach a stable state (D1 and D2 in Table 5); if S1 and S2 can then both
perform an event a to evolve to S′

1 and S′
2 respectively, then S1 ∓ S2 can also make an

a transition to the state S′
1 ∓ S′

2 (D5). The choice between S1 and S2 is thus delayed.
However, if S1 (S2) can make an a transition and S2 (S1) cannot, then S1 ∓ S2 may
perform an a transition thereby resolving the choice in favor of S1 (S2). This is shown
in D3 (and D4).

Table 5. Operational semantics for S = S1 ∓ S2

D1.
S1

τ−→ S′
1

S1 ∓ S2
τ−→ S′

1 ∓ S2
D2.

S2
τ−→ S′

2

S1 ∓ S2
τ−→ S1 ∓ S′

2

D3.
S1

a−→ S′
1, S2 � a−→, S1 � τ−→, S2 � τ−→
S1 ∓ S2

a−→ S′
1

D4.
S2

a−→ S′
2, S1 � a−→, S1 � τ−→, S2 � τ−→
S1 ∓ S2

a−→ S′
2

D5.
S1

a−→ S′
1, S2

a−→ S′
2, S1 � τ−→, S2 � τ−→

S1
a−→ S′

1 ∓ S′
2

Executable Requirements Specifications Using TMSCs 491

5 Operational vs. Declarative Semantics

The TMSC declarative semantics is given as a set of equations [13] that define what the
acceptance tree should be for a given TMSC expression. For a single TMSC M , this
computation considers if an execution sequence w satisfies the triggers of the instances,
and then either selects the next events from the action sequences (if an instance’s trig-
ger is complete), or non-deterministically chooses any enabled event (since there are no
constraints on the instance’s behavior). Acceptance tree computation for a TMSC ex-
pression S then proceeds by induction on the structure of S. For example, T [S1⊕S2](w)
= sat(T [S1](w) ∪ T [S2](w)). The interested reader is referred to [13] for more details.

Although the declarative semantics gives a precise definition of the acceptance tree
for a TMSC expression, it does not support ready simulation through the construction of
executable models. This motivates the need for the operational semantics we presented
in this paper. Given a TMSC expression S, we may apply the SOS rules repeatedly to
generate a behavioral model of S in the form of a labeled transition system, from which
an acceptance tree may be extracted, as outlined in Section 2. We make a reasonable
assumption that variables inside recursive TMSC expressions are guarded i.e. preceded
by a sub-expression in which no constituent instance may terminate immediately. This
ensures that a TMSC expression may not be infinitely unrolled without making any
actual progress. The aim is to constrain the TMSC language to those expressions S for
which LTS(S) is actually constructible using the TMSC SOS rules.

We will now relate the TMSC operational semantics with the declarative semantics.
To distinguish the two semantics, for a TMSC expression S, we will denote by T D[S],
the acceptance tree of S that is derived from the declarative semantics, and by T O[S],
the acceptance tree that is derived from the transition system of S, generated by the
operational semantics, i.e. SOS rules. The following theorem captures the equivalence
of the two semantics. The result may be proved by induction on the structure of S; for
brevity, we do not include the proof details here.

Theorem 2. Let S be a TMSC expression such that LTS(S) is constructible. Then, for
any execution sequence w, T D[S](w) = T O[S](w).

The above theorem implies that the executable models we build using the TMSC SOS
rules described in this paper are “correct” i.e. they conform to the original (declarative)
TMSC semantics. Note that we may define a refinement notion on TMSC expressions,
based on the must preorder, in terms of the LTSs obtained through the operational se-
mantics as follows:

Definition 3. Let S1 and S2 be TMSC expressions such that LTS(S1) and LTS(S2)
are constructible. Then, S1 -must S2 iff T O[S1] ⊇ T O[S2].

6 Tool Support for TMSCs

The TMSC operational semantics outlined in this paper provides the basis for automated
analysis of TMSC expressions through the TRIM tool. TRIM provides a simulator for
executing TMSC expressions (according to the SOS rules) and also includes routines

492 B. Sengupta and R. Cleaveland

for checking refinement ordering between TMSC expressions and for returning diag-
nostic information when refinement fails to hold. TRIM is built on top of the Concur-
rency Workbench (CWB-NC) [10] an easy-to-retarget verification tool for finite-state
sysems. A brief description of the TRIM architecture and some of the implementation
considerations may be found in [4].

7 Related Work

The formal MSC language appears in a recommendation of the ITU [1]. An executable
semantics for this language has been defined in [11] in a process algebraic setting, where
the system behavior is interpreted in terms of SOS rules. However, basic MSCs in the
ITU standard are expressively weak, offering only a visual partial ordering of events.
The technical development in [1, 11] does not provide a natural way for expressing
conditional/partial behavior and for the step-wise refinement of behavior. TMSCs were
motivated by a need to enhance the MSC language along these directions. Accordingly,
our operational semantics had to account for aditional considerations that arise from the
specification of conditional and partial behavior, as also new structuring constructs (like
⊕ and ∧) that TMSCs support. Note that [5], [9] have also proposed MSC extensions
that support variations of trigger/action-like behavior as captured by TMSCs.

Several tools have been developed to support the use of scenarios in practice. MESA
[3] allows certain properties, such as process divergence to be efficiently checked on
MSCs. UBET ([2]) detects potential race conditions and timing violations in an MSC,
and also provides automatic test case generation over HMSCs. The play-in/play-out ap-
proach of [6] is based on LSCs and has been implemented via a tool called the play
engine. [15] shows how Constraint Logic Programming (CLP) may be used to sup-
port symbolic execution of LSC requirements. LTSA-MSC [14] supports synthesis of
behavior models from MSC-based specifications and implied-scenario detection.

8 Conclusions

In this paper, we presented an operational semantics of the TMSC language in terms of
SOS rules. This semantics complements the denotational TMSC semantics presented
in earlier work [13] and provides the basis for simulation and analysis of TMSC-based
specifications. We also considered the relation between the operational and denotational
semantics of TMSCs, and discussed related work. In future, we intend to study how to
generate test cases from TMSC specifications.

References

1. Message sequence charts (MSC). ITU-TS Recommendation Z.120, 1996.
2. R. Alur, G. J. Holzmann, and D. Peled. An analyzer for message sequence charts. Software

Concepts and Tools, 17(2):70–77, 1996.
3. H. Ben-Abdallah and S. Leue. MESA: Support for scenario-based design of concurrent

systems. Proc. of the Fourth International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems TACAS’98, LNCS volume 1384:118–135.

Executable Requirements Specifications Using TMSCs 493

4. B.Sengupta and R.Cleaveland. TRIM: A tool for triggered message sequence charts. Pro-
ceedings of 15TH Computer Aided Verification Conference (CAV’03) (tool paper), 2003.

5. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. Formal Methods
in System Design, 19(1), 2001.

6. D.Harel and R.Marelly. Specifying and executing behavioral requirements: The play-in/
play-out approach. Software and System Modeling (SoSym), 2003.

7. G.Plotkin. A structural approach to operational semantics. Technical report, University of
Aarhus, Denmark, 1981.

8. M. Hennessy. Algebraic theory of processes. The MIT Press, 1988.
9. I. Kruger. Distributed system design with message sequence charts. PhD Thesis, Technical

University of Munich, 2000.
10. R.Cleaveland and S.Sims. The ncsu concurrency workbench. Computer Aided Verification

(CAV), 1996, LNCS volume 1102:394–397.
11. M. A. Reniers. Message sequence chart: Syntax and semantics. PhD Thesis, Eindhoven

University of Technology, 1998.
12. B. Sengupta and R. Cleaveland. Refinement-based requirements modeling using triggered

message sequence charts. 11th IEEE Int’l Requirements Engineering Conference, 2003.
13. B. Sengupta and R. Cleaveland. Triggered message sequence charts. ACM SIGSOFT 2002,

10th Int’l Symposium on the Foundations of Software Engineering (FSE-10), pages 167–176.
14. J.Kramer S.Uchitel and J.Magee. Ltsa-msc: Tool support for behaviour model elaboration

using implied scenarios. TACAS’03.
15. T.Wang, A.Roychoudhury, R.Yap, and S.C.Choudhary. Symbolic execution of behavioral

requirements. PADL 2004, LNCS vol. 3057.

Efficient Symmetry Reduction for an
Actor-Based Model

M.M. Jaghoori1, M. Sirjani2, M.R. Mousavi3, and A. Movaghar1

1 Sharif University of Technology, Tehran, Iran
2 University of Tehran and IPM, Tehran, Iran

3 Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. Symmetry reduction is a promising technique for combat-
ting state space explosion in model checking. The problem of finding the
equivalence classes, i.e., the so-called orbits, of states under symmetry is
a difficult problem known to be as hard as graph isomorphism. In this pa-
per, we show how we can automatically find the orbits in an actor-based
model, called Rebeca, without enforcing any restriction on the modeler.
The proposed algorithm solves the orbit problem for Rebeca models in
polynomial time. As a result, the simple actor-based Rebeca language
can be utilized efficiently for modeling and verification of systems, with-
out involving the modeler with the details of the verification technique
implemented.

1 Introduction

Model checking is the automatic and algorithmic way for the verification of system
correctness. State space explosion is a major obstacle in exploiting model checking
in practice. The problem arises when we try to explore all the possible states of a
system to see whether a specific property is met or not. To overcome this problem,
numerous methods have been proposed in order to avoid the construction of the
complete state graph [6]. Among these methods are symbolic verification, partial
order reduction, modular (parameterized) model checking, and symmetry reduc-
tion [8, 13, 18]. These techniques are sometimes combined to achieve even more
compression in the representation of the system under analysis [1, 9, 11].

The symmetry technique is based on the fact that many systems are com-
posed of similar and symmetric parts. These symmetric parts yield a similar
behavior and have similar state graphs. The sub-graphs of these parts are usu-
ally interchangeable with respect to some permutation on the states. Therefore,
it is possible to divide the state graph into symmetric graph quotients. One of
these quotient graphs, annotated with the corresponding permutations, is shown
to be enough for checking a general class of properties for the whole system [8].
However, for the technique to be useful, we need to find these permutations
without constructing the total state space.

In concurrent systems, we can make use of the notion of processes running
in parallel. Theoretically, a process is responsible for the behavior of some part
of the system. We can consider the symmetry among processes and look for

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 494–507, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Symmetry Reduction for an Actor-Based Model 495

the permutations of processes, as suggested in [10]. Compared to permutations
on states, permutations on processes are easier to find and maintain. However,
checking all possible permutations for finding the ones that reveal the symmetries
is not computationally efficient. Therefore, heuristic methods should be utilized
for this purpose.

Alternatively, designer’s insight may be use to reveal symmetry. Some tools,
such as Murphi [13, 14], SMC [17] and SymmSpin [4], use the notion of scalar
sets or a similar concept. Scalar sets are fully symmetric indices that are added
to the model by the modeler to expose the symmetry of the system, so that the
compiler can detect the symmetries automatically. In this paper, an algorithm
is presented for finding the symmetry in Rebeca models automatically, with no
changes to the syntax of Rebeca.

Rebeca [15] is an actor-based language, which can be used at a high level of
abstraction for modeling concurrent systems. Using an object-based approach,
and the asynchronous message-passing paradigm, Rebeca provides a basis that
naturally fits in modular verification methods. Reactive objects are instantiated
from reactive classes as templates. This suggests the idea that there is an inherent
symmetry among the reactive objects of the same type (instantiated from the
same reactive class).

It is preferred that the modeler is only involved in modeling issues, rather
than the details of verification techniques. The interesting characteristic of Re-
beca is that the only communication mechanism among the rebecs is through
asynchronous message passing. This helps us find the symmetric permutations
in polynomial time in the number of processes, without any extra work in mod-
eling. We show that symmetry can be utilized in the presence of dynamic object
creation and a special kind of changing topology.

In the rest of this paper, we first provide an overview of the symmetry reduc-
tion technique in Section 2. In Section 3, we introduce Rebeca and its semantics.
Section 4 shows how symmetry reduction can be applied to Rebeca models and
demonstrates the algorithm proposed for automatically detecting the symmetry
in a Rebeca model. Section 5 extends our approach to the setting with dynamic
creation of rebecs and dynamic topology. In Section 7, we present a brief com-
parison of our approach with related work. The concluding remarks and future
work are presented in Section 8.

2 The Symmetry Reduction Technique

In this section, we explain the symmetry reduction technique [13, 8, 18]. The aim
of this technique is to find the parts of the system that yield similar behavior.
Intuitively, it is enough to run the model checking algorithm on one of these
similar parts.

Consider a system M , consisting of n concurrently executing processes that
communicate through shared variables.1 Let I be the set [1..n] of natural num-

1 In later sections, we will use a restricted form of shared variables to represent asyn-
chronous message passing in Rebeca.

496 M.M. Jaghoori et al.

bers. We assume that each process is identified by a unique index from I. The
variables in M are also subscripted by an index set, which denotes the processes
that access the variable, e.g. the variable v1,3 is accessed by processes 1 and
3, and the variable w2 is a local variable of process 2. Each process is defined
as a set of actions, where each action is a conditional assignment of values to
some of the variables. A specific action is said to be enabled at some state, if
the respective condition evaluates to true. The whole system, called an indexed
transition system or briefly a program, is viewed as the interleaving of the pro-
cesses. In other words, each process may have zero or more actions enabled at
each particular state, and which move the system to (probably) another state.
Figure 2.(a) (taken from [8] with minor changes) shows a simple system com-
posed of n identical processes that start in a non-critical state and try to enter
their critical section (by executing action ai), and then leave the critical section
(by executing action bi). There is a variable associated to each process, which
shows whether it is in its critical section or not.

The formal definition of an indexed transition system M is given as a 4-tuple
〈S, A, T, s0〉. S denotes the set of global states, where a global state is a valuation
of all the variables; and s0 is the initial state. The transition relation is defined
as T ⊆ S ×A× S, where A denotes the set of the actions of different processes.
The transitions in T represent the behavior of the system; i.e. (s, ai, t) ∈ T when
the action a from process i is enabled in state s and its execution leads to state
t. We may write s

ai→ t for (s, ai, t).
A permutation π : I → I is a bijection on the index set I. Recall that

I is the set [1..n]. We write a permutation as π = (i1, . . . , in), which means
∀1≤x≤nπ(x) = ix. The set of all permutations on I is denoted by SymI.

The application of a permutation π on a global state s should result in the
global state π(s), which is defined as follows. For every variable vi1,...,ik

, its
value in the state s is given to the variable vπ(i1),...,π(ik), in the state π(s). If
vπ(i1),...,π(ik) does not exist, then π(s) is undefined and π is said to be inconsis-
tent. In addition, the application of π on an action ai is the action aπ(i), which
must be a valid action in the system; otherwise, π is inconsistent. We say that a
consistent permutation π is an automorphism of the indexed transition system
M , when π(s0) = s0, and π preserves the transition relation, i.e., s

ai→ t ∈ T when

π(s)
π(ai)→ π(t) ∈ T .

The set of automorphisms of M is denoted by AutM and is a subgroup of
SymI [8]. Given any subgroup G ∈ AutM , we can define an equivalence rela-
tion on S. The states s and s′ are equivalent with respect to G when there is
a π ∈ G such that π(s) = s′. Each equivalence class is called an orbit. Intu-
itively, for model checking M , it is sufficient to construct the state space for the
representatives of each orbit.

The system shown in Figure 2.(a) is an example of a symmetric state graph.
Representatives of the two orbits of this system are distinguished by an ellipse
around them; for example, the states (C1, N2, . . . , Nn)2 and (N1, C2, . . . , Nn)

2 Assume that each process i has a variable vi that can be either C or N ; then, by Ci

or Ni we mean that vi has the value C or N , respectively.

Efficient Symmetry Reduction for an Actor-Based Model 497

(a) Selecting a Representative From Each Orbit (b) Annotated Quotient Structure

Fig. 1

are equivalent, because applying the automorphism (2, 3, . . . , n, 1) on the former
produces the latter.

The annotated quotient structure (AQS) for M is M = 〈S, T , s0〉, where S is
the set of the representative states (which contains exactly one state from each
orbit) and T

.= {s ai,π→ t | π ∈ G, s ∈ S ∧ t ∈ S ∧ s
ai→π(t) ∈ T }. Figure 2.(b)

shows the annotated quotient structure of the previous example. Note that in
this graph, there is only one edge with action b. Each pi shows the permutation
(i, i + 1, . . . , n, 1, 2, . . . , i− 1), which maps the i’th process to the first one (this
notation for permutations is explained earlier in this section).

Emerson, et.al, in [8], show that M can be used in the automata theoretic
approach to model check M against formulas that respect the symmetry of the
system. This approach is extended in [10] for efficient model checking under
fairness conditions. Bosnacki in [3] shows how symmetry reduction can be com-
bined with the nested depth-first search algorithm. In these methods, it is always
assumed that the orbit relation is previously known. However, the problem of
finding the equivalence relations (orbits), known as the orbit problem, is in its
general form shown to be as hard as graph-isomorphism [8, 5]. In the following
sections, we introduce Rebeca as an actor based language and explain how we
can automatically compute the equivalence relation without engaging the mod-
eler in the details of the verification method used. The algorithm proposed in
the later sections solves the orbit relation for a Rebeca model in polynomial time
(with respect to the number of the processes in the system).

3 Rebeca: An-Actor Based Model

The actor model was originally introduced by Hewitt [12] as an agent-based
language. It was later developed by Agha [2] into a concurrent object-based
model. Rebeca (Reactive objects language) [15] is based on the actor model
with an operational semantics.

3.1 Basic Definitions

A Rebeca model is constructed by the parallel composition of a set of rebecs,
written as R = ||i∈I ri, where I is the index set that is used to identify each
rebec. For the sake of simplicity, we ignore the dynamic features of Rebeca in

498 M.M. Jaghoori et al.

this section, and hence, assume that I is a fixed set for a given model. We
relax this assumption in Section 5, where dynamic behavior in Rebeca models
is addressed.

The concurrent execution of rebecs is modeled by interleaving, i.e., rebecs are
given turns for execution. For model checking a Rebeca model, all fair sequences
of execution are considered. An infinite sequence is considered fair when all the
rebecs are infinitely often executed or disabled.

The rebecs communicate by sending asynchronous messages. The messages
that can be serviced by the rebec ri are denoted by the set Mi. There is a message
server corresponding to each element of Mi. Each rebec has an unbounded queue
for storing its incoming messages. In each state, the message at the head of the
queue of a rebec specifies which one of its message servers is enabled. Each
rebec, in its turn, removes one message from the top of its queue and atomically
executes the corresponding message server.

The local state of a rebec ri is distinguished by the valuation of its local
variables and its queue. The global state of the model is obtained by the combi-
nation of the local states of all rebecs. For each rebec ri, an ordered list of known
rebecs is introduced, whose indices are collected in Ki. The rebec ri can only
send messages to its known rebecs. Since a rebec can also send messages to itself,
we always have j ∈ Kj. The known rebecs of all rebecs are specified statically.
As a result, we can derive the communications graph of a Rebeca model, from
the known rebecs lists. In this directed graph, nodes are rebecs, and there is an
edge from ri to rj when j ∈ Ki.

The behavior of a Rebeca model is defined as the interleaving of the enabled
rebecs in each state. A rebec is enabled, if its message queue is not empty.
There is at least a message server ’initial’ in each rebec, which is responsible
for the initialization tasks, and the corresponding message is assumed to be in
the queues of all rebecs in the initial state. The execution of a message server
is defined as the atomic sequential execution of its statements. Statements may
be either ‘(nondeterministic) assignments’ or ‘send’ operations. An assignment
changes the values of the local state variables. In the case of a nondeterministic
assignment, a set of values is used to specify the next value of the variable. A
rebec can send messages to its known rebecs. The messages may be accompanied
by parameters. The sent messages, together with their parameters are placed
(immediately) in (the tail of) the queue of the receiving rebec. The execution
of statements may be restricted by some conditions (on the values of the local
variables, the sender or the parameters of the message).

3.2 The Formal Semantics of Rebeca

The semantics of a Rebeca model is expressed with an indexed transition system
〈S, A, T, s0〉 (introduced in Section 2). Each state in the system is identified by
the values assigned to the local variables of the rebecs, together with the messages
(and their parameters and sender) in the queues of the rebecs. Without loss of
generality, we assume that all local variables take values from the domain set D.
This domain set includes the undefined value represented by ⊥.

Efficient Symmetry Reduction for an Actor-Based Model 499

It is also necessary to distinguish between the message, sender and parameter
queues. Suppose that the message servers of rj accept at most hj number of
parameters. Therefore, rj has one message queue, one sender queue, and hj

parameter queues. To make queues easier to represent, we regard each queue
as an array of variables. We assume an upper bound xj on the number of the
queue variables of rj (all queues of rj have the same upper bound). The domain
of the message queue variables is Mj ∪ ⊥, where ⊥ is re-used to represent an
empty queue element. The domain of the sender queue variables is I ∪⊥, where
I is the set of the indices (identifiers) of rebecs. The domain of parameter queue
variables is also D. We write the i’th local, message queue and sender queue
variable of rebec rj as rj .vi, rj .mi and rj .si, respectively. The i’th element of
the k’th parameter queue is written as rj .pki.

Assuming that there are wj local variables in rj , a local state of rj can
be represented formally as sj = (rj .v1, . . . , rj .vwj , rj .m1, . . . , rj .mxj , rj .s1, . . . ,
rj .sxj , rj .p11, . . . , rj .phjxj), where hj ≥ 0, xj ≥ 1 and wj ≥ 0. A global state
of the system is defined as the combination of the local states of all rebecs:
s =

∏
i∈I si. The set S denotes the set of all the global states. In the initial

state s0, ri.m1 =′ initial′ for all rebecs ri. If the initial message server of ri

accepts ij parameters, the variables rj .p11, rj .p12, . . . , rj .pij1 are also initialized
as specified in the model. All other (local and queue) variables are assigned the
value ⊥.

Since message servers are executed atomically, each message server is equiva-
lent to an action, unless there are nondeterministic assignments, in which case,
one action is defined per each nondeterministic choice. The set A denotes the
set of all actions resulting from the message servers. Therefore, the transition
relation T ⊆ S × A × S is defined as follows. There is a transition s

aj→ t in the
system, if the value of rj .m1 in the state s is equal to the message corresponding
to the action a, and the execution of a results in the state t.

In the following, we define different possible types of sub-actions that a tran-
sition s

ai→ t may contain. In the formulas below, the variables on the left hand
side of← refer to variables in t and the ones on the right hand side refer to their
values in s.

1. Message removal: This sub-action includes the removal of the first element
of message, sender and parameter queues. By removing the first element,
we mean shifting other elements of the queue toward the queue head. This
sub-action exists in all actions. It can be written as:

∀0<i<xj rj .mi ← rj .mi+1, and rj .mxj ← ⊥, and
∀0<i<xj rj .si ← rj .si+1, and rj .sxj ← ⊥, and
∀0<i<xj ,0<k≤hj rj .pki ← rj .pk(i+1), and rj .pk(xj) ← ⊥.

2. Assignment: An assignment can be a statement like ‘w ← d’, where w is
the i’th local variable in rj and d ∈ D \ ⊥. This statement simply means:
rj .vi ← d. The right hand side of an assignment may also be a more complex
expression based on the local variables of rj . In such cases, the expression
can be evaluated with the values of the local variables in state s, and finally

500 M.M. Jaghoori et al.

a value like d is obtained. Therefore, for the sake of simplicity, we can assume
that the right hand side of an assignment is always an explicit value.

3. Send: The rebec rj may send a message m to rk, where m ∈Mk and k ∈ Kj .
As stated earlier, by Kj , we mean the ordered list of (the indices of) the
known rebecs of rj . The message m is assumed to have hk parameters, say
n1, . . . , nhk

, where ni ∈ D, 1 ≤ i ≤ hk. Like an assignment, a parameter
may also be represented by an expression, which finally resolves into an
explicit value from D. Recall that rebec rk has hk parameter queues. Note
that ni may be ⊥; and for i < hk, if ni is ⊥, then ni+1 must also be ⊥. In
addition, the number parameters that are not ⊥ must agree with the number
of arguments that the message server corresponding to m accepts. The result
of this sub-action is:

If ∃0<y≤xk
(rk.my = ⊥ ∧ ∀0<z<yrk.mz �= ⊥), then

rk.my ← m, rk.sy ← j, ∀1≤i≤hk
rk.piy ← ni

Otherwise, xk must be increased and the transition system of the Rebeca
model cannot be constructed.

4 Symmetry in Rebeca

To exploit symmetry in an indexed transition system associated to a Rebeca
model, we need to find a permutation group acting on the index set [1..n] of the
rebecs. With the permutation group, the state space is partitioned into orbits
(equivalence classes). Since the rebecs of the same type (i.e. they are instances
of the same reactive-class) exhibit similar behavior, it is reasonable to limit the
permutations to those that preserve rebecs types. Theorem 1 helps to derive
the symmetry in Rebeca models in a straightforward way. It simplifies the orbit
problem by helping to obtain possible permutations prior to the real construction
of the state space.

From now on, consider a system R = 〈S, A, T, s0〉 = ||i∈I ri of a Rebeca model.
Here, we redefine the application of a permutation on a global state. Definition 2
is repeated for easier reference.

Definition 1. The application of a permutation π on a global state s, denoted
by π(s), is defined as follows:

1- Variables that are not of ‘rebec index’ type (i.e., don’t get their value from
the set I), like rj .vi, rj .mi and rj .pki: Their values in state s, is assigned to the
local or queue variables rπ(j).vi, rπ(j).mi and rπ(j).pki in state π(s), respectively.
2- Variables that are of ‘rebec index’ type, like rj .vi and rj .si (sender queue):
Suppose their value is state s is x. In state π(s), the value π(x) is assigned to
variables rπ(j).vi and rπ(j).si, respectively.

For static Rebeca models, the latter case shrinks only to the case of sender queue
variables. However, the more general case applies to dynamic Rebeca models,
which is discussed in the next section.

Efficient Symmetry Reduction for an Actor-Based Model 501

Definition 2. A permutation π, defined in I, is said to preserve the transition
relation when [s ai→ t ∈ T] → [π(s)

aπ(i)→ π(t) ∈ T]. Such a permutation is called
an automorphism of R, if π(s0) = s0.

Definition 3. A permutation π is said to preserve rebec types, if for all i,j such
that π(i) = j, the rebecs ri and rj are instances of the same reactive-class.

Definition 4. If Ki = (t1, t2, . . . , tPi) denotes the ordered list of the indices of
the known-rebecs of ri, where i ∈ I, a permutation π is said to preserve the
known-rebec relation iff: ∀i∈IKπ(i) = (π(t1), π(t2), . . . , π(tPi)).

Theorem 1. If a permutation π preserves both rebec types and the known-rebec
relation, and π(s0) = s0, then π is an automorphism of R.

Given an automorphism of a Rebeca model, we can partition the rebecs into
equivalence classes. To examine whether π(s0) = s0, the initialization of the
system must be checked to ensure that the parameters sent with the initial
message do not break the symmetry; i.e. equivalent rebecs receive similar values
for the normal parameters to initial , and symmetric values for rebec parameters.

The obtained equivalence relation on rebecs can be used to derive a symmetry
group on the states of the underlying structure. It shows how the simple natural
object-based syntax of Rebeca helps us find the symmetry automatically. Next
section presents an efficient algorithm that finds the symmetry groups of a given
Rebeca model, if there is any.

4.1 Implementation

In this section, we present an algorithm for detecting symmetry in Rebeca models
based on Theorem 1 of the previous section. In the following, we demonstrate
how symmetry can be detected from normal Rebeca models, i.e., with no change
in the syntax of Rebeca.

Theorem 1, implies that checking for equivalence of two rebecs, is reduced
to finding a permutation that maps one to the other and preserves the known-
rebec relation. The ordering among the known rebecs of each rebec helps us
implement a polynomial time algorithm for this purpose. First, we show that
checking whether two given rebecs belong to the same equivalence class can be
done in linear time. It is performed in the check algorithm given below.

check (i, j) : boolean;
if (i.type != j.type) return false;
define pi as an empty array of size n;// pi[i] = permutation acting on i
Let pi[i] := j; // suppose permutation of i is j
Let p1 := K(i); // the ordered known rebecs of i
Let p2 := K(j); // the ordered known rebecs of j
while p1 not empty do

x := removeFirstElementOf (p1);
y := removeFirstElementOf (p2);
if (pi[x] is undefined)
Let pi[i] := j;

502 M.M. Jaghoori et al.

p1 += K(x); // add to the end of the list
p2 += K(y); // add to the end of the list

else if(pi[x] != y) // knownrebec relation is not preserved
return false;

od
return true;

end

The inputs to check, i and j, are the indices of two rebecs. In this algorithm, we
try to find a permutation π that maps i to j, and also respects the known-rebec
relation. For this purpose, we take a constructive approach. The permutation is
represented by an array of size n. The i’th element of this array shows the result
of the permutation for rebec i. The algorithm starts with defining π(i) = j.
Then it tries to find the other elements of the permutation. It is expected that i
and j are rebecs of the same type. Therefore, they have equal number of known
rebecs, which are also of similar types. Since the permutation must respect the
known-rebec relation, it must also map the known rebecs of i to the known
rebecs of j. It is assumed that K(i) returns the ordered list of the indices of the
known rebecs of rebec i. In the algorithm, p1 and p2 are the lists of rebec indices
that must be checked for equivalency. Therefore, K(i) and K(j) are added to
p1 and p2. Then at each step, one element from p1 and p2 are removed and
checked against previous values of π. If π has another value then the algorithm
returns false and terminates. If a new pair has been added to π, the indices of
their known rebecs are added to p1 and p2. The algorithm continues until a
contradiction is encountered, or there are no other rebecs to be checked. The
return value shows whether they belong to the same equivalence class. As we
explained in section 3, we can construct a communication graph of a Rebeca
model. If this graph is not connected, the permutation of rebecs not connected
to i and j, are not important to the equivalence of i and j. This algorithm in
the worst case (i and j are equivalent), gives the answer in time linear in the
number of rebecs in the system.

For finding the biggest equivalence classes of rebecs, which yields the most
reduction in the state space, we first assume that each rebec by itself constitutes
an equivalence class. Then at each step, we take representatives of two different
equivalence classes, and check their equivalence. If they are equivalent, their
corresponding equivalence classes can be combined. In the worst case (which is
the case of an asymmetric system), every pair of rebecs of the same type are
checked for equivalence. It means O(n2) times calling of check, which is in turn
linear; and in total find is O(n3) in the number of rebecs in the system.

find ()
classes := empty list;
for every rebec r in the system add {r} to classes;
for each m,n classes such that m != n do

if check (m.rep, n.rep) // check representatives of m and n
replace m and n by the union of (m, n);

od
end

Efficient Symmetry Reduction for an Actor-Based Model 503

The find algorithm computes the equivalence classes of rebecs in a Rebeca
model. With these equivalence classes, the algorithms introduced in [17] or [3]
can be used to model check Rebeca models while exploiting the symmetry of the
models.

5 Dynamic Features in Rebeca

In this section, we deal with the dynamic features of a Rebeca model. Then
we show that Theorem 1 applies to dynamic models, too. In a dynamic Rebeca
model, rebecs may be created dynamically, i.e., during the execution of other re-
becs. We allow the definition of variables of rebec type, which can hold references
to rebecs (i.e., the index of the rebec). Due to dynamic creation, I is no longer
fixed and (only) changes upon creation of new rebecs. We use I(s) to denote the
set of (indices of) rebecs in state s. In addition, rebec references can be passed as
parameters to messages. Therefore, the set of rebecs that receive messages from
a given rebec includes its known rebecs, plus the rebecs dynamically assigned
to the rebec variables. Remember that the known rebec list of a rebec must be
determined upon creation, and may not change during the execution.

5.1 Formal Semantics

The behavior of a dynamic Rebeca model R = ||i∈I ri, where I is the (dynamic)
set of rebec indices, is defined as an indexed transition system 〈S, A, T, s0〉. The
set of states S contains all the global states and s0 is the initial state. The set
of actions, which are indexed by indices from I, is denoted A, and is the set
of all transitions. We use the notion I(s) to mean the index set in state s. We
may drop the s argument and just write I when s is irrelevant or clear from the
context. By a (rebec) reference, we mean an index from the set I. The domain
of rebec variables is I ∪ ⊥. Furthermore, like local variables, parameter queue
variables can also be divided into two groups of normal parameters, and rebec
parameters. The domain of normal parameters is D, and the domain of rebec
parameters is I.

The apparent difference here is the introduction of some new sub-actions.
Consider a transition s

aj→ t in a dynamic Rebeca model. In the following, the
new sub-actions of aj are introduced. In addition, the changes to some of the
sub-actions with respect to Section 3 are also explained.

1. Assignment: Assignment to local variables of rebec index type is only pos-
sible in the form of w ← z where w is a local variable and z is either a local
variable or an argument of the containing message server. Both w and z take
values from I, the set of rebec indices. As a result of this assignment, the value
of z in state s is assigned to w in state t. Assignment to normal variables does
not change compared to static models.

2. Rebec creation: A statement of the form ‘new rc(kr1, kr2, . . . , krm):
(p1, . . . , pd)’, where rc is the name of a reactive-class, and kru represents an
index from the current set I, and shows that u’th known rebec of the newly
created rebec must be bound to rkru , and pu shows the u’th parameter to the

504 M.M. Jaghoori et al.

initial message. The execution of this sub-action in aj , results in a new index v
being added to I. This index is assigned to the newly created rebec. The effect
of this new index is that the global state t, which is defined as

∏
i∈I ti, will

also include the local state tv. The local state tv of rebec rv is defined in the
same way as other rebecs, i.e. based on the variables and (message, sender and
parameter) queues of the reactive-class rc. The valuation of the local variables
of rv in t is defined as follows. The message initial is placed in rv.m1, and the
parameters p1, p2, . . . , pd are placed in rv.p11, rv.p21, . . . , rv.pd1, respectively,
and rv.s1 is assigned the value j (the index of its creator or parent). All other
(local and queue) variables of rv are undefined (⊥).

3. Send: In dynamic Rebeca models, messages can be sent both to known
rebecs, and to local variables of rebec type. Like the case of a static model,
the rebec rj may send a message m to rk with the parameters n1, . . . , nhk

,
where m ∈ Mk, and either k belongs to Kj or rj .vg is a rebec variable and
holds the value k. In addition, ni may be a normal parameter (ni ∈ D) or a
rebec parameter (ni ∈ I). In the case of a normal parameter, ni can also be an
expression that evaluates to some value from D \ ⊥. However, in the case of a
rebec parameter, ni must be a local variable or an argument of the containing
message server, and must be of rebec index type. This send operation, results in
the message m being placed in the first empty slot of the queue of the receiving
rebec. The result of sending m(n1, . . . , nhk

) is: (recall that hk is the number of
parameter queues of rk and for i < hk, if ni is ⊥ , then ni+1 must also be ⊥):

If ∃0<y≤xk
(rk.my = ⊥ ∧ ∀0<z<yrk.mz �= ⊥) then rk.my ← m, rk.sy ← j,

∀1≤i≤hk
rk.piy ← ni

Otherwise, xk must be increased and the transition system of the Rebeca
model cannot be constructed.

Passing a rebec reference as a parameter is treated the same as passing normal
variables. Note again that the known rebecs of a rebec must be determined upon
creation of that rebec.

5.2 Symmetry in Dynamic Rebeca Models

Detecting symmetry in the dynamic Rebeca models is possible in a similar way
as in the static ones. Theorem 1 applies to dynamic Rebeca models without
any changes. Note that Theorem 1 takes into consideration only the rebecs that
are created in the initial state (and the known rebec relation among them).
Theorem 2 carries over without any change to the extended setting.

Theorem 2. If a permutation π preserves both rebec types and the known-rebec
relation, and π(s0) = s0, then π is an automorphism of R.

The interesting point is that since we made no changes to the theorem, the same
algorithm is sufficient for detecting the symmetry in dynamic models.

6 Case Study

In this section, we give an example to show how our algorithm works. We use the
’load balancer’ example from [7] with some changes. In this example, there are

Efficient Symmetry Reduction for an Actor-Based Model 505

six identical clients that need some service, which is provided by three identical
servers. Instead of communicating directly with the servers, the clients send
their requests to load-balancers. The responsibility of the load-balancers is to
distribute the load evenly among the servers. In our example, the round robin
policy is used for load balancing, i.e., each load balancer sends the incoming
requests to the servers in a round-robin manner. The servers, however, reply
directly to the clients. In a static structure, the servers know all the clients
beforehand; but in a dynamic model, the reference of the requesting client is
passed to the server. The server uses that reference for sending its reply.

Fig. 2. The Load-Balancer

We first model it using only static features. In this case, the clients must
be assigned a distinguishing identifier. This identifier is passed to their initial
message server. Furthermore, all the clients are introduced to servers as known
rebecs. The clients pass their identifier together with their request message,
which is passed on by the load balancer. Thus the server knows to whom it
should direct the answer.

The initialization of this system is shown below:

main {
Client c1(lb1):(1),c2(lb1):(2),c3(lb1):(3),c4(lb2):(4),c5(lb2):(5),c6(lb2):(6);
LoadBalancer lb1(s1,s2,s3):(), lb2(s1,s2,s3):();
Server s1(c1,c2,c3,c4,c5,c6):(), s2(c1,c2,c3,c4,c5,c6):(),s3(c1,c2,c3,c4,c5,c6):();

}

In this model, the load-balancers and servers constitute two orbits. However,
clients are not symmetric (each client adds up to one orbit). That is because of
the symmetry-breaking identifiers passed to their initial message server. Using
dynamic features of Rebeca, we can change the model, so that each load-balancer
sends the reference of the sender of a request message to the servers. Therefore,
the servers do not need to know the clients in advance. They just forward the
reply to the rebec, whose reference is sent by the request.

The initialization of this system is shown below:

main {
Client c1(lb1):(),c2(lb1):(),c3(lb1):(),c4(lb2):(),c5(lb2):(),c6(lb2):();
LoadBalancer lb1(s1,s2,s3):(), lb2(s1,s2,s3):();
Server s1():(), s2():(), s3():();

}

506 M.M. Jaghoori et al.

In the dynamic model, the clients also form one orbit. This shows that using
dynamic features, we could model this example more naturally, which helps us
find bigger orbits. This encourages the use of this technique in model check-
ing symmetric Rebeca models. Figure 2 shows the static communication graph
(defined in Section 3) of the dynamic load-balancer example.

7 Related Work

Symmetry reduction technique has been implemented in many model checking
tools such as Murphi [13, 14] and SMC [17] and SPIN [4, 7]. Murphi is the first
language (and tool) that provided support for symmetry reduction. If the mod-
eled system is symmetric, the modeler must be aware of it, and use scalar sets
properly to expose the symmetry of the system. SMC was developed by Sistla
et.al., as a symmetry based model checker for verification of safety and liveness
properties. SMC uses a notion of ’modules’, which play the same role as scalar
sets of Murphi. Other tools, like UPPAAL, SMV and SPIN, use the approach of
Murphi for handling symmetry; namely, adding scalar sets to expose the sym-
metry of the system by the modeler. Using scalar-sets (or modules in SMC) is
error prone and sometimes makes modeling a symmetric system more difficult.
In our approach, no change to the syntax of Rebeca is made, and therefore the
modeler does not need to know about the symmetry of the system. Instead, the
symmetry in a Rebeca model is automatically detected, if there is any.

The work of [7] is similar to ours, in the sense that static graphs of channels are
used to detect the symmetry automatically from (dynamic) Promela models. The
dynamicity in their models is caused by sending the channels around. They do
not consider the dynamic creation of processes. In our approach, rebec references
(which can be interpreted as their inbox address) can be sent around, and rebecs
can also be created dynamically.

8 Conclusions

Rebeca is an object based language for modeling and verification of reactive
systems. Since rebecs of the same type show similar behavior, it is easy to find
symmetry in Rebeca models. We showed in this paper that if the static com-
munication graph of a Rebeca model is symmetric, then the whole model is
symmetric. Furthermore, an algorithm is presented for solving the orbit prob-
lem for Rebeca models in polynomial time. The algorithm finds the orbits of
rebecs by examining the known-rebec relation that defines the composition of
the system. In contrast to most other symmetry-related tools, no new construct
needs to be added to the syntax of Rebeca to be used by this algorithm. The
same algorithm still works when dynamic features, such as ‘the dynamic creation
of rebecs’ and ‘the dynamic changing of topology’, are added to the models. As
a result, the symmetry reduction technique can be efficiently implemented in
current Rebeca model checkers [16], or in the direct model checking of Rebeca.

Efficient Symmetry Reduction for an Actor-Based Model 507

References

1. P. A. Abdulla, B. Jonsson, M. Kindahl, and D. Peled. A general approach to
partial order reductions in symbolic verification. In Proceedings of CAV’98, pages
379–390, 1998.

2. G. Agha. The structure and semantics of actor languages. In Proceedings of the
REX Workshop, pages 1–59, 1990.

3. D. Bosnacki. A light-weight algorithm for model checking with symmetry reduction
and weak fairness. In Proceedings of the SPIN Workshop, pages 89–103, 2003.

4. D. Bosnacki, D. Dams, and L. Holenderski. Symmetric spin. Software Tools for
Technology Transfer, 4(1):92–106, 2002.

5. E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry reductions in
model checking. In Proceedings of CAV’98, pages 147–158, 1998.

6. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
7. A. Donaldson, A. Miller, and M. Calder. Finding symmetry in models of concurrent

systems by static channel diagram analysis. In Proceedings of AVOCS’04, pages
161–177, 2005.

8. E. Emerson and A. Sistla. Symmetry and model checking. Formal Methods in
System Design, 9(1–2):105–131, 1996.

9. E. A. Emerson, S. Jha, and D. Peled. Combining partial order and symmetry
reductions. In Proceedings of TACAS ’97, pages 19–34, 1997.

10. E. A. Emerson and A. P. Sistla. Utilizing symmetry when model checking under
fairness assumptions: An automata-theoretic approach. In Proceedings of CAV’95,
pages 309–324, 1995.

11. E. A. Emerson and T. Wahl. On combining symmetry reduction and symbolic
representation for efficient model checking. In Proceedings of CHARME’03, pages
216–230, 2003.

12. C. Hewitt. Procedural embedding of knowledge in planner. In Proceedings of
IJCAI’71, pages 167–184, 1971.

13. C. Ip and D. Dill. Better verification through symmetry. Formal methods in system
design, 9(1-2):41–75, 1996.

14. C. N. Ip and D. L. Dill. Verifying systems with replicated components in Murphi.
In Proceedings of CAV’96, pages 147–158, 1996.

15. M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer. Modeling and verification of
reactive systems using Rebeca. Fundamamenta Informaticae, 63(4):385–410, 2004.

16. M. Sirjani, A. Shali, M. M. Jaghoori, H. Iravanchi, and A. Movaghar. A front-end
tool for automated abstraction and modular verification of actor-based models. In
Proceedings of ACSD’04, pages 145–150, 2004.

17. A. P. Sistla, V. Gyuris, and E. A. Emerson. SMC: a symmetry-based model checker
for verification of safety and liveness properties. ACM Transactions on Software
Engineering Methodology, 9(2):133–166, 2000.

18. A. P. Sistla. Employing symmetry reductions in model checking. Computer Lan-
guages, Systems & Structures 30(3-4):99–137, 2004.

Validated Code Generation for Activity
Diagrams

A.K. Bhattacharjee1 and R.K. Shyamasundar2

1 Reactor Control Division, Bhabha Atomic Research Centre,
Mumbai 400 085

anup@barc.ernet.in
2 School of Technology and Computer Science,

Tata Institute of Fundamental Research, Mumbai 400 005
shyam@tifr.res.in

Abstract. Activity Diagram is an important component of the set of
diagrams used in UML. The OMG document on UML 2.0 proposes a
Petri net based semantics for Activity Diagrams. While Petri net based
approach is useful and interesting, it does not exploit the underlying
inherent synchronous concepts of activity diagrams. The latter can be
effectively utilized for validated code generation and verification. In this
paper, we shall capture activity diagrams in synchronous language frame-
work to arrive at executional models which will be useful in model based
design of software. This also enables validated code generation using
code generation mechanisms of synchronous language environments such
as Esterel and its programming environments. Further, the framework
leads to scalable verification methods.

1 Introduction

Activity Diagram is one of the important diagrams in UML. It is used to model
sequence of actions to capture the process flow actions and its results. It fo-
cuses on the work performed in the implementation of an operation (a method),
and the activities in a use case instance or in an object. In UML 2.0, activity
diagrams support concurrent control and data flow, loops, conditionals and ex-
ception handling. The two basic entities are Actions and Activities. An Action
is the fundamental unit of executable functionality and an activity provides the
coordinated sequencing of subordinate units whose individual elements are ac-
tions. This coordination is expressed as a graph of ActivityNodes connected by
ActivityEdges. Since there are actions that invoke activities, that may be nested
and possibly form invocation hierarchies invoking other activities (ultimately re-
solving to individual atomic actions). The OMG document [6] classifies activity
diagrams as Fundamental, Basic, Intermediate, Structured, Complete in terms
of complexity in the process flow. In this paper, we are concerned with the In-
termediate Level of Activity Diagrams that include control and data flow and
decisions. A simple activity diagram describing the order processing and account
is shown in Fig. 1.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 508–521, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Validated Code Generation for Activity Diagrams 509

Receive
Order

Fill Order Ship Order

Invoice

Make
Payment

[Order rejected]

Payment

Accept Send Invoice

Close Order

Cancel
Order

Order
Cancel Request

Fig. 1. Simple Activity Diagram

Although the OMG document [6] provides an intuitive semantics of Activity
Diagrams, it lacks a formal semantics required for analysis and automatic code
generation. Hence, in the recent past there has been a lot of interest in giving a
formal semantics to Activity Diagrams.

Most of the works on the semantics of UML activities in general have been
based on Petri nets. Two of the significant efforts toward formalization of UML
activities are [7] and [8]. Eshuis [7] proposes the semantics at the following two
levels :Requirement Level and Implementation Level. The first level is based on
Statechart like semantics and is transformed into a transition system for model
checking by NuSMV. The second level is based on STATEMATE semantics of
statecharts extended with properties to handle data. It is to be noted that the
implementation semantics has not been obtained as a refinement of the require-
ment level semantics. The semantics also covers activity charts of UML 1.5 but
not of activity diagrams of UML 2.01. Storrle [8] envisages a semantics by map-
ping activities into procedural Petri nets, which excludes data type annotations
but includes control flow. He has defined mappings to procedural Petri nets to
prevent multiple calls which otherwise would result in infinite nets.

In this paper, we propose a reactive formalism of Activity Diagrams of UML
2.0 description; for description purpose we use Esterel language. Our approach
combines the requirement level and implementation level semantics. Further the
notion of procedure call transitions as used in activity diagrams are captured
nicely through the ‘‘run module’’ construct and one can specify the number
of incarnations of the same module when called multiple times. Since it is based
on Esterel, that has efficient code generation tools, the transformations can be
used to realize a system directly from the model. Thus in our approach, we
can not only reason about activity diagrams but also generate validated code
automatically.

2 Activity Diagrams: Informal Interpretation

An action is the fundamental unit of executable functionality in an activity [6].
The execution of an action represents some transformation or processing in the

1 It should be pointed out that UML 2.0 is a significantly re-engineered version of
UML 1.5, particularly in the context of activity diagrams.

510 A.K. Bhattacharjee and R.K. Shyamasundar

modeled system, which could be a computer system or a process. An action may
have sets of incoming and outgoing activity edges that specify control flow and
data flow from and to other nodes. An action will not begin execution until
all of its input conditions are satisfied. The completion of the execution of an
action may enable the execution of a set of successor nodes and actions that
take their inputs from the outputs of the action. The sequencing of actions are
controlled by control edges and object flow edges within activities, which carry
control and object tokens respectively. An action can only begin execution when
all incoming control tokens are present and all input pins have object tokens. An
action execution represents the run-time behavior of executing an action within a
specific activity execution. When the execution of an action is complete, it offers
tokens in its outgoing control edges and output pins, where they are accessible
to other actions.

3 Synchronous Framework for Activity Diagrams

In this section, we capture activity diagrams in a synchronous framework. Syn-
chronous framework is based on the perfect synchrony hypothesis: the system
reacts instantaneously to events producing outputs along with the input com-
piling away the control commands. Synchronous languages are based on this
hypothesis and model reactive systems effectively and have a sound and com-
plete semantics. One of the distinct advantages of using synchronous languages
for specifying reactive systems is that the description of the system analyzed or
validated is very close to implementation. One of the oldest languages in the
family of synchronous languages Esterel has good developmental facilities such
as efficient code generating compilers, verifiers etc. For these reasons, we have
chosen Esterel as the underlying language for description of activity diagrams.
A brief characteristics of Esterel is given below.

3.1 Esterel

The basic object of Esterel without value passing, referred to as PURE Esterel,
is the signal. Signals are used for communication with the environment as well
as for internal communication. The programming unit is the module. A module
has an interface that defines its input and output signals and a body that is an
executable statement:

module M:
input I1, I2;
output 01, 02;
input relations
statement

end module

At execution time, a module is activated by repeatedly giving it an input
event consisting of a possibly empty set of input signals assumed to be present

Validated Code Generation for Activity Diagrams 511

and satisfying the input relations. The module reacts by executing its body and
outputs the emitted output signals. We assume that the reaction is instantaneous
or perfectly synchronous in the sense that the outputs are produced in no time.
Hence, all necessary computations are also done in no time. The only statements
that consume time are the ones explicitly requested to do so. The reaction is also
required to be deterministic: for any state of the program and any input event,
there is exactly one possible output event. In perfectly synchronous languages,
a reaction is also called an instant. Instantiation of a module is done through
the run statement. For instance, run exchange [X1/E1, ... Xn/En] copies the
body of the module exchange in place of the run command after renaming all
occurrences of the signals X1, ... Xn by E1, ... En respectively; in other words,
the parameters are bound by capture.

Asynchronous tasks are those tasks which do take time; that is, the time
between initiation and completion is observable. In the terminology of Esterel,
this can be interpreted to mean that there will be at least one instant between
initiation and completion. The exec primitive provides the interface between
Esterel modules and asynchronous tasks. An asynchronous task is declared by
the statement “task task id (f par lst) return signal nm (type);” where task id
is the name of the task, f par lst gives the list of formal parameters (reference
or value) and the signal returned by the task is given by the signal nm with
its type after the keyword return Instantiation of the task is done through the
primitive exec. For example, the above task can be instantiated from an Esterel
program as “exec task id (a par lst);”.

A typical task declaration appears as “task ROBOT move (ip, fp) return
complete” and the call appears as “exec ROBOT move (x,y)”. The execution
of this statement in some process starts task ROBOT move and awaits for the
return signal complete for it to proceed further. In other words, exec requests
the environment to start the task and then waits for the return signal.

4 Synchronous Interpretation of Basic Activity Diagrams

The synchronous model for the Activity Diagrams is represented as a collection
of transformation rules for each construct of the Activity Diagrams. A basic
ActivityNode is modeled by an Esterel module named after the node. The in-
vocation of the activity is modeled by instantiating the module using the run
module construct.

A basic ActivityNode can invoke an asynchronous task which can handle sys-
tem specific functions and can be modeled by an Esterel task statement such as
exec taskA ()() return ExitA, where taskA is the external process perform-
ing the actual action written in the host language. The completion of the task
is signaled by emitting the signal ExitA referred as a return signal. A return
signal cannot be internally emitted by the program. In our model we ignore the
external action for the purpose of simplicity.

Each activity node has the following set of signals associated with it.

– EntryS is the signal emitted when a particular activity node is entered.

512 A.K. Bhattacharjee and R.K. Shyamasundar

– InS is the signal emitted when an action in a particular activity node is
being performed.

– ExitS is the signal emitted when a particular activity node is completed.

We also assume that there is a root activity node which contains and controls
the sequencing of the activity nodes through the activity edges. In the exam-
ple shown in Fig. 2, the module simpleActivity performs the task of passing
control tokens from the activity sendPayment to the activity receivePayment
and is the the root activity. The activities sendPayment, receivePayment and
simpleActivity in the above example, can be interpreted through the Esterel
fragments shown in the Fig.2.

module receivePayment

 %do something

end module

output InreceivePayment;
output ExitreceivePayment;
 emit InreceivePayment;

emit ExitreceivePayment

SimpleActivity

Send Payment Receive Payment

module sendPayment

 %do something
 emit ExitsendPayment
end module

output InsendPayment;
output ExitsendPayment;
 emit InsendPayment;

module simpleActivity
inputoutput ExitsendPayment;
 run sendPayment;
 await immediate ExitsendPayment;
 run receivePayment
end module

Fig. 2. Simple node

Merge Node: A merge node (cf. Fig. 3) is a control node that brings together
multiple alternate flows. It is not used to synchronize concurrent flows but to
accept one among alternate flows. It has multiple incoming edges and a single
outgoing edge. It can be described as follows

module mergeNode
run A % the module A implements activity A
||
run B % the module B implements activity B
||
await ExitA;

run C % The module C implements activity C
||
await ExitB

run C % The module C implements activity C

end module

Validated Code Generation for Activity Diagrams 513

MergeNode

A

C

B

Fig. 3. Merge Node

decisionNode

A

B

C

v

u

e

Fig. 4. Decision Node

Here the activities A and B are started concurrently, but whichever activity
completes earlier, starts the activity C. If activity A and B completes together,
then two instances of C would be running at the same time. This interpretation
is in line with the recent OMG document [6].

Decision Node: A decision node (cf. Fig. 4) is a control node that chooses
between the outgoing flows. It has one incoming edge and multiple outgoing
edges. It can be described by the following Esterel fragment.

module decisionNode
var e in

run A;
if e = u

run B; % e is the guard which if u then run B
else if e = v

run C; % e is the guard which if v then run C
end

end
end module

Here after the activity A completes, the control passes to activity B or C de-
pending on the guard condition e being equal to u or v respectively.

ForkJoin Node: A forkJoin node (cf. Fig. 5) is a control node that splits a flow
into multiple concurrent flows. It has one incoming edge and multiple outgoing
edges. Tokens arriving at a fork node are duplicated across the outgoing edges.
Tokens offered by the incoming edge are all offered to the outgoing edges.

forkjoinNode

A

B C

D

Fig. 5. Fork Join Node

R

A B

(2)

Fig. 6. Reentrant Node

514 A.K. Bhattacharjee and R.K. Shyamasundar

The forking and joining of activities can be described by the following Esterel
fragment.

module forkJoinNode

run A % run activity A
[
run B % run activity B
||
run C % run activity C

]
run D % run activity D

end module

Here after the activity A completes the activities B and C are started concur-
rently. Once both of B and C are complete, D is started. If concurrent activities
are not modeled carefully this may lead to problem. Let us consider the case
as shown in the Fig. 6. Here completion of A forks A once again with B. Thus,
a possible run of the system is A → AB → ABB → · · ·. That is there can be
an infinite incarnation of B. This causes problem with verification because of
unboundedness of states.

If we need to consider finite number of instances, we can use the parallel
construct in Esterel to specify a finite number of concurrent activities. This is
an advantage of the model, where one can specify the number of instances of
the same activity which could be forked simultaneously. This closely maps to
Workflow Management Systems, where one would specify the maximum number
of such concurrent instances of an activity. The Esterel model of the activity
diagram shown in Fig. 6 is shown below. The module R is the coordinating
module for A and B. In this model we assume that there could be at most two
instances of activity B as shown by the two modules named B1 and B2 in the
code. In Fig.6 the number shown in bracket indicates the maximum possible
number of instances of activity B. Here we assume calling external tasks as final
activities for ActivityNodes A and B.

module A:
output InA;
return ExitA;
task activityA ()(); % external asynchronous task declaration

exec activityA()() return ExitA % external action
||
abort

sustain InA; % indicates module A is active
when ExitA

end module

module B:
return ExitB;
output InB;
task activityB ()();% external asynchronous task declaration

exec activityB()() return ExitB % external action
||
abort

sustain InB;
when ExitB

Validated Code Generation for Activity Diagrams 515

end module

module R:
return ExitA,ExitB1,ExitB2;
input InA, InB1,InB2;
task activityA ()();% external asynchronous task
task activityB ()();% external asynchronous task
input start;
signal b1b2, free in

loop
await [start or ExitA];
present free then [

abort
run A

when ExitA
]

end
end

||
loop

present [not InB1] then % First instance of B
[

await ExitA;
run B1/B[signal ExitB1/ExitB,InB1/InB] % Signal renaming

]
else [present not InB2 then

[% Second instance of B
await ExitA;
emit b1b2;
run B2/B[signal ExitB2/ExitB,InB2/InB] %Signal renaming

]
else [

await [ExitB1 or ExitB2];
emit start
]

end

]
end present

end
||
loop

await start;
abort

sustain free % free is on when B1 is active but B2 is dormant
when b1b2

end
end
end module

Since each run B produces a separate instance of the task associated with
the activity B, several simultaneous instances of activity associated with B can
exist. In this case one should specify the number of instances of such activities.
The model here shows capability of running two identical activities concurrently.

Modeling Exception: Fig. 7, shows the exception in an activity diagram.
The node which is aborted due to the exception is called the protected node
and the receiving node is the exception handler node. An exception handler
is an element that specifies a body to execute in case the specified exception
occurs during the execution of the protected node. In Fig. 7, Activity Node

B

Cancel
Order

cancelOrderEvent

Process Order

Protected Node

Exception Handler

Fig. 7. Exception Node

516 A.K. Bhattacharjee and R.K. Shyamasundar

ProcessOrder is the protected node and CancelOrder is the exception handler
and CancelOrderEvent is the exception input. This can be modeled in Esterel
as shown below.

module B
input cancelOrderEvent, ExitProcessOrder;
trap T in

run ProcessOrder
||
abort

loop
await cancelOrderEvent; % Watch exception event
exit T

end
when ExitProcessOrder

handle T do
run cancelOrder % Exception Handler

end
end

Here the activity ProcessOrder is preempted and the the activity cancelOrder
is executed on raising the exception event cancelOrderEvent.

4.1 Activity with Data and Nesting

In many instances one ActivityNode may need to pass a data to another Ac-
tivityNode for processing by the Activity performed at that ActivityNode. For
example if P and Q are two ActivityNodes and P is required send a data X to
Q. as shown in Fig.8. This can be modeled using the mechanism shown below.
The ExitS signal emitted by the activity node S is used for synchronizing the
fact that the data token is available at the end of activity P.

X

Main

P

Q

Fig. 8. Object node with data

Y

Y

(call)

A B

P

Q R

X

Fig. 9. Activity with Nesting

module main
inputoutput X:type % X is the data which is passed between
% activities

Validated Code Generation for Activity Diagrams 517

run P(X)
await immediate exitP
run Q(X)

end module
module P
output X:type
...

emit ExitP
end module

module Q
input X:type
task QActivity()(); % declaration of asynchronous task
...

exec task QActivity(X) return ExitQActivity;
...
end module

In our model, Activity Diagrams with nested call can be modeled naturally.
Let us assume that one activity Y is nested in another activity X as a call Y
action in the activityNode C of X shown in Fig. 9. This can be modeled by using
the run Y construct of Esterel. The following Esterel fragment describes the
nested call of the Fig.9.

module X module Y
...

run A run P;
|| if e = u then
run B; run Q
run Y else if e = v then
... run R
... end

end end

4.2 Communication in Activity Diagrams

The notion of communication between two Activity Diagrams can be nicely mod-
eled in the Communicating Reactive Processes (CRP) [3] framework. The CRP
model consists of network M1||M2||..Mn of Esterel modules, each having its own
inputs and outputs and its own notion of instants. The network is asynchronous
and the nodes communicate though synchronous channels. In this model, each
Mi is an Activity Diagram each of which evolve locally with its own input and
output and mutually independent notions of time [3]. Signals may be sent or
received in activity diagrams through channels and is denoted by the common
send and receive nodes. As an implementation model, one can think of an asyn-
chronous layer (task) that handles rendezvous by providing the link between

518 A.K. Bhattacharjee and R.K. Shyamasundar

the asynchronous network events and node reactive events. The shared task can
be called as channel. Fig. 10, shows a simple example of an activity diagram
showning two component activities PrintServer and PrintClient communicating
data (as files) through a channel. The CRP code for the same is shown below.

module PrintServer
input channel printq from PrintClient : FILE % CRP channel
......

receive(printq,file) % send data file to printq
.....
end module
module PrintClient
output channel printq from PrintServer :FILE % CRP channel
...

send(printq,file) % receive data file from printq
....
end module

The send and receive [1] are communication primitives realizing the commu-
nication rendezvous between two locally synchronous programs. The primitive
send blocks until sending data on the named channel succeeds and the primitive
receive blocks until a communication succeeds on the named channel and the
value assigned to the variable.

5 Simulation and Code Generation

Above we have shown how activity diagrams can be transformed into Esterel
model. We are augmenting our previous work [4] to translate them automati-
cally. The Esterel model can be simulated by using the xes interface. Xes is the
simulator freely available along with the Esterel distribution. The simulator can
be generated by compiling the Esterel program with the xes library. The sim-
ulation gives the user a clear picture of the execution of the activity diagrams
and checking conformance to requirement is easy. We are also building simula-
tors directly in the domain of input activity diagrams whereby one can see the
simulation graphically.

5.1 Code Generation

There are two orthogonal levels of semantics, both indispensable: the intuitive
level, where semantics must be natural and easy to understand, and the formal
level, where the semantics is rigorously defined and fully non-ambiguous. Having
formal semantics for the languages also makes code generators much easier to
develop and verify. The translation process from Activity Diagrams to High
Level Language (HLL) code like C is based upon sound proven algorithms that
the Esterel code generators directly implement. By providing a formal semantics
based on the synchronous paradigm and Esterel, it is easy to build correct code

Validated Code Generation for Activity Diagrams 519

C

PrintClient

Create

Clean

PrintServer

Print

(file)
ReceiveSend

(file)

Fig. 10. Activities with communi-
cation

click_I_I1()
I1 click() O1

click_O_O1()

Input/Output Handling Interface Functions

Fig. 11. Activity to Code Mapping

by construction, using Esterel-C/Java code generators. We assume Esterel-C
code generator for further discussion.

For actual execution of the code , the generated code must also be linked
with some extra layer of code that realizes the interface with the outside world
which detects input events, read data and realizes output events and send data.If
for example the module click should react to an input event, composed for
example of one input tokens I1 as shown in Fig. 11. The sequence will include
call to one automatically generated input C function click I I1() . This should
be followed by call to the reaction function by executing the C code click(),
followed by a call to output C function click O O1().

The automatic code building process is achieved using the rules described
above

1. Model the flow as an activity diagram model
2. Transform the model into the Esterel model following the rules as described

above. These can be automated by encoding them in a model transforming
algorithm similar to [4, 5].

3. Describe interfaces as required by the Esterel modules regarding inputs and
outputs.

4. The activities to be performed in the software exec tasks are to be encoded
in the host language and operating systems.

6 Verification

The above model captures the operational semantics of activity diagrams. How-
ever it is not amenable to formal verification using model checking due to pres-
ence of asynchronous tasks invoked by the exec statements. For the purpose
of verification, it is required to do a control abstraction of the Esterel models
whereby we only retain the labels where the task is to be created. The derived
model is thus converted into a pure Esterel program and one can perform a
constructive causality analysis using the Esterel compiler option of causal. This

520 A.K. Bhattacharjee and R.K. Shyamasundar

Fig. 12. Verification Screen Fig. 13. Output of Verification

model can then be converted into an automaton in BLIF (Berkley Logical In-
terchange Format) format, which is accepted by the Esterel model checker xeve.

As an example, let us consider the activity diagram given in Fig. 6 with the
following very simple safety property: when both B1 and B2 activities are going
on activity A cannot be started. It is to be noted here that B1 and B2 are two
incarnations of the activity B. This is assuming that there is no queuing of input.
This could be verified by xeve. The screen shots taken from xeve are included
here in Figs.12,13 for reference.

7 Conclusion and Future Work

We have explored the specification of operational semantics for the Activity Di-
agrams of UML 2.0 in a synchronous style. The semantics is good for simulation,
code generation and verification. Our initial experience shows that verification
of Activity Diagrams in this approach can be applied to moderately large exam-
ples. Further study is in progress. All the constructs can be expressed uniformly
in the constructs of Esterel. In this approach the external action done in the
activitynode can be easily modeled as an external task in the Esterel language.
The exception handling in Petri Nets as shown in [8] is rather difficult which
can be modeled easily in our framework. Presently, we are building a translator
which can translate the activity diagrams into Esterel models. We need to test
the effectiveness of the Esterel code generators in the context of real-life activity
diagrams.

Acknowledgment

The first author wishes to acknowledge the travel grant made by DST, Govern-
ment of India under the ITPAR proposal for visiting the University of Trento,
Italy during which most part of the work was carried out. The first author also
wishes to acknowledge the encouragement and institutional support received
from Mr. S.D. Dhodapkar, Head, Software Reliability Section, BARC during
the work, without which this would not have been possible.

Validated Code Generation for Activity Diagrams 521

References

1. Rajan Basant and Shyamasundar R.K., An Implementation of Communicating Re-
active Processes IASTED - PDCN’97, Int. Conf. on Parallel and Distributed Com-
puting and Networks, Singapore, 1997

2. Berry G, Gonthier G., The Esterel synchronous programming languages: Design,
semantics,implementation., Science of Computer Programming, 19(2):87-152, 1992

3. Berry G., Ramesh S., Shyamasundar R.K. :Communicating Reactive Processes, 20th
ACM Symposium on Principles of Programming Languages, 1993

4. Bhattacharjee A.K., Dhodapkar S.D., Seshia S., Shyamasundar R.K. PERTS: an
environment for specification and verification of reactive systems , Reliability Engi-
neering & Systems Safety Journal, 71(2001), Elsevier, UK, 2001.

5. Seshia S., Shyamasundar R.K., Bhattacharjee A.K., Dhodapkar S.D. A Translation
of Statecharts to Esterel Lecture Notes in Computer Science, Vol 1698, Springer,
1999

6. OMG: Unified Modeling Language : Superstructure, Version 2.0, Revised Final
Adopted Specification, October 8, 2004, Source: www.omg.org

7. Eshuis Rik, Semantics and Verification of Activity Charts, Ph.D Thesis, University
of Twente, 2002

8. Harald Storrle, Semantics of UML 2.0 Activities,German Software Engineering Con-
ference, 2005.

Data Mining Track Chair’s Message

Mukesh Mohania

IBM India Research Lab., India

Abstract. The unprecedented growth of electronic data and ever in-
creasing user dependence on electronic data in today’s world suggests
that data should be regarded as one of the most important assets of the
users. Within the last few years Data Mining and Knowledge Discov-
ery technology has established itself as a key technology for enterprises
that wish to improve the quality of the results obtained from data anal-
ysis, decision support, and the automatic extraction of knowledge from
data. The Data Mining Track focuses on the logical and physical design
of knowledge discovery systems, particularly, on data classification and
clustering, association rules, data mining techniques, data analysis and
discovery, and data mining applications.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, p. 522, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 523 – 535, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Approach to Find Embedded Clusters Using Density
Based Techniques

S. Roy and D.K. Bhattacharyya

Dept of Computer Science & Information Technology,
Tezpur University, Napaam 784 028, Assam, India

dkb@tezu.ernet.in, swarup@india.com

Abstract. This paper presents an efficient clustering technique which can
identify any embedded and nested cluster over any variable density space. The
proposed algorithm is basically an enhanced version of DBSCAN [4] and
OPTICS [7]. Experimental results are reported to establish that the proposed
clustering technique outperforms both DBSCAN and OPTICS in terms of
complex cluster detection.

Keywords: Variable density, embedded cluster, core-distance, cluster, core
neighborhood, unsupervised.

1 Introduction

Clustering is the process of grouping data into classes or clusters so that objects
within a cluster have higher similarity, but very dissimilar to objects in other clusters
[1]. From a machine learning perspective, clusters correspond to hidden patterns and
the search for clusters is a unsupervised learning. From a practical perspective,
clustering plays an outstanding role in data mining applications such as scientific data
exploration, information retrieval and text mining, spatial database applications, Web
analysis, CRM, marketing, medical diagnostics, computational biology, and many
others.

Cluster analysis has been considered as a difficult problem [2] because of many
factors such as effective similarity measures, criterion functions, initial conditions,
high dimensionality and different types of attributes, come into play in devising a well
tuned clustering technique for a given clustering problem. A clustering algorithm has
to be capable to identify any irregular and intrinsic cluster shapes over variable
density space with outliers, as can be found in Figure 1.

Several good clustering algorithms have been proposed in the past decade ([1],[2]).
DBSCAN is one of them, which can efficiently detect any clusters of arbitrary or
hollow structure in presence of outliers or noise. However, a major deficiency of this
algorithm is that it can not detect nested clusters over variable density space. Another
major drawback of DBSCAN is that the results produced by DBSCAN are highly
dependent on input parameters. Another successful successor of DBSCAN is
OPTICS. It is also a density based clustering technique, which can work over variable
density space successfully. However with the interactive version of OPTICS, a similar
problem is encountered as we found in case of DBSCAN, it requires an additional

524 S. Roy and D.K. Bhattacharyya

(a) (b) (c)

Fig. 1. Irregular shaped clusters

parameters i.e. . Since OPTICS provides an augmented ordering, it requires an
additional cost to classify the objects. From our experiments, it has been observed that
without a proper tuning of parameters it is very difficult to obtain qualitative clusters
with OPTICS (Interactive). This paper presents an enhanced version of DBSCAN and
OPTICS, which can detect any embedded cluster structures efficiently along with
other constraints as mentioned above.

2 Related Works

Overtime, a number of clustering algorithms have been developed. Some of these are
evolutionary, some are enhancements of some previously developed work and some
others are revolutionary, introducing new concepts and methods. Major clustering
techniques can be broadly classified into partitional, hierarchical, density based, grid
based and model based. In this section, a selective review of some of the major
techniques has been reported.

Partitioning methods like k-means [9] or k-modes [10] are most commonly used
clustering algorithms. All the partitioning approaches have a similar clustering quality
and vulnerable towards outliers. It cannot detect clusters of concave or non-globular
shapes. Moreover, it requires number of clusters i.e. k as input parameter. The Single
Link agglomerative clustering [11] is a suitable method for capturing clusters with
non-globular shapes and nested structure, but this approach is very sensitive to noise
and cannot handle clusters of varying density. On the other hand, it requires a post
processing to achieve natural clusters. Other agglomerative clustering algorithms,
e.g., complete link and group average, are capable of handling noise effectively, but
sometimes they have a problem of finding globular clusters. CURE [8] is a bottom-up
hierarchical clustering algorithm, which employs a method of choosing a well-formed
group of points to identify the distances among clusters, instead of using a centroid-
based approach or an all-points approach. In fact, CURE begins by choosing a
constant number, c of well scattered points from a cluster. These points are used to
identify the shape and size of the cluster. The next step of the algorithm shrinks the
selected points towards the centroid of the cluster using some predetermined fraction.
A k-d tree is used to store the representative points for the clusters. By definition,
clusters are represented minimally, using DNF and minimal bounding rectangles.
Here, emphasis is given on finding the clusters, not on the accuracy of the shapes of
the clusters. CHAMELEON [5] combines a graph partitioning algorithm with a
hierarchical clustering scheme that dynamically creates clusters. The first step of the
algorithm partitions the data using a method based on a k-nearest neighbor approach

 An Approach to Find Embedded Clusters Using Density Based Techniques 525

to graph partitioning. In the graph, the density of a region is stored as the weight of
the connecting edge. The data is divided into a large number of small sub-clusters.
The first step uses a multi-level graph partitioning algorithm. The partitioning
algorithm used by CHAMELEON produces high quality partitions with a minimum
number of edge cuts. The second step uses an agglomerative, or bottom-up
hierarchical clustering algorithm to combine the sub-clusters and find the real
clusters. CHAMELEON has been found to be very effective in clustering convex
shapes, but can not handle outliers. WaveCluster[6] follows a grid-based approach. It
maps the data onto a multi-dimensional grid and applies a wavelet transformation to
the feature space instead of the objects themselves. Initially, it assigns the data to
units based on their feature values. The number or size of these units affects the time
required for clustering and the quality of the output. Then it identifies the dense areas
in the transformed domain by searching for the connected components. If the feature
space is examined from a signal processing perspective, then a group of objects in the
feature space forms an n-dimensional signal. Rapid change in the distribution of
objects, i.e., the borders of clusters, corresponds to the high frequency parts of be used
to find areas of low and high frequency, and thus identifies the clusters. Wavelet
transformation breaks a signal into its different frequency sub-bands, creating a
representation that shows multi-resolutions, and therefore provides for efficient
identification of clusters. Areas with low frequency and low amplitude are outside the
clusters. With a large number of objects, signal processing techniques can be used to
find areas of low and high frequency, and thus identify the clusters. WaveCluster has
several significant positive contributions. It is not affected by outliers, and is not
sensitive to the order of input. WaveCluster’s main advantage, apart from its speedy
handling of large datasets, is its ability to find clusters of arbitrary and complex
shapes, including concave and nested clusters. However, one disadvantage of it is that
the clustering results are highly sensitive to parameters settings. Next, we discuss two
popular and efficient density based clustering algorithms, most relevant to our work,
in detail.

3 Density Based Approach

The idea behind density-based approach for clustering is that within each cluster the
typical density of points is considerably higher than outside of the cluster.
Furthermore, the density within areas of noise is lower than the density in any of the
clusters. In addition, some other definitions [5] are also associated with density based
approach.

• The neighborhood within a radius of a given object is called the –neighborhood

of the object.
• If the –neighborhood of an object contains at least a minimum number, MinPts, of

objects, then the object is called a core object.
• Given a set of objects, D, we say that an object p is directly density-reachable from

object q if p is within the –neighborhood of q and q is a core object.

526 S. Roy and D.K. Bhattacharyya

• An object p is density-reachable from object q with respect to and MinPts in a set
D, if there is a chain of objects p1,….pn,p1=q and pn=p such that pi+1 is directly
density reachable from pi with respect to and MinPts.

• An object p is density-connected to object q w.r.t. and MinPts in a set of objects,
D, if there is an object o∈D such that both p and q are density-reachable from o
w.r.t. and MinPts.

• Density-based cluster is a set of density-connected objects that is maximal with
respect to density-reachability. Every object not contained in any cluster is
considered to be a noise.

3.1 DBSCAN [4]

To find a cluster, DBSCAN starts with an arbitrary point p and retrieves all points
density-reachable from p wrt. and MinPts. If p is a core point, this procedure yields a
cluster wrt. and MinPts. If p is a border point, no points are density-reachable from p
and DBSCAN visits the next point of the database. DBSCAN is suitable for any large
spatial domain with global density. However, in case of variable density space,
DBSCAN suffers. Since it uses global parameters, i.e. and MinPts, DBSCAN may
merge two clusters into one cluster, if the densities of those clusters are different and
they are “closed” to each other. Let the distance between two sets of points S1 and S2
be defined as dist (S1, S2) = min {dist(p,q) | p∈S1, q∈S2}. Then, two sets of points
having at least the density of the thinnest cluster will be separated from each other only
if the distance between the two sets is larger than . Consequently, a recursive call of
DBSCAN may be necessary for the detected clusters with a higher value for MinPts.

3.1.1 Analysis of DBSCAN
Usually, the complexity of a neighbourhood query processing is O(n) and with the use
of a spatial index such as a R*-tree, it is O(logmn), where n is the size of the dataset
and m is the number of entries in a page of R*-tree. Similarly, the complexity of the
DBSCAN algorithm becomes O(nlogmn) if a spatial index is used, otherwise it is
O(n2). The algorithm can handle large amounts of data. DBSCAN is capable to handle
noise efficiently and can identify all shapes of clusters; however, it can not identify
complex cluster structures over variable density space.

3.2 OPTICS [7]

Another well known density based clustering algorithm is OPTICS (Ordering Points
to Identify the Clustering Structure), which can address the issues of variable density
cluster successfully. OPTICS creates an augmented ordering of the points in the
database according to its densities. In addition to those common definitions used by
other density based approaches, it includes the following concepts:

• The core distance of an object p is the smallest value that makes p a core object.
If p is not a core object, the core distance of p is undefined.

• The reachability distance of an object q w.r.t. another object p is the greater value
of the two distance measures, i.e. the core distance of p and the Euclidean distance
between p and q. If p is not a core object; the reachability distance between p and q
is undefined.

 An Approach to Find Embedded Clusters Using Density Based Techniques 527

The algorithm creates an ordering of the objects in a database based on reachability
distance, additionally storing the core distance and a suitable reachability distance for
each object. Two algorithms were proposed in [7] to extract clusters interactively as
well as automatically.

3.2.1 Analysis of OPTICS
The OPTICS algorithm does not produce a clustering of a data set explicitly, but it is
basically a preprocessing step for other clustering algorithms like DBSCAN. In
contrast with the DBSCAN method, OPTICS provide a solution to the global density
issue and varying density by giving every point object the augmented cluster-ordering
containing information which is equivalent to the density-based clustering that
corresponds to a broad range of parameter settings. The visualization technique
proposed in [7] paper provides a good representation of the clustering structure, thus
it can be used as a tool to get insight into the distribution of a data set. However, some
limitations exist in this algorithm. The visualization technique of this algorithm
requires proper values in the parameter settings in order to get good results. The
experiments have been done to get a range of values that are considered as good
values, but the usability of values may not be applicable to all types of data sets.

Our experiments reveal that interactive version of OPTICS can not detect
embedded cluster structures even after several parameter settings. Apart from it, it
requires O(nlogn) complexity only for ordering the dense units, if a spatial index is
used; further, it requires O(n) time to cluster the ordered data sets. So, overall
complexity will be at least O(nlogn)+O(n) to extract the clusters.

4 Better Approach to Find Embedded Clusters

4.1 Motivation

Databases like gene expression databases, MR Image database and other real-data sets
have the pattern of embedded or nested cluster structures. Moreover, they may have
variable density. Since DBSCAN works with global density parameters, it can not
detect underlying dense structure of varying density.If a low value for is set, it will
detect several small clusters, which may not have significance in the real sense.
Again, a larger value for may lead to ignorance of some useful clusters. So, with a
single global parameter setting, DBSCAN is unable to detect the variable density
clusters, as can be found in Figure 2.

(a) (b)

Fig. 2. Nested and Varying density clusters

528 S. Roy and D.K. Bhattacharyya

On the other hand, in case of OPTICS, it is capable to detect those irregularly
shaped variable density clusters, as shown in Figure 1(a), 1(b) and 2(b); however, it
fails to detect those nested clusters, as can be found in Figure 1(c) & 2(a). In case of
Figure 2(a), with a low ’ setting, it can detect the interior two clusters with the outer
region as noise and if a high value for ’ is set, it gives the similar results as
DBSCAN. Moreover, it requires a prior ordering of objects in terms of reachability
distance, which incurs additional cost. Thus, an algorithm which can detect embedded
cluster structures as well as clusters of all shapes, as discussed in Section 1 in
presence of outliers is a current need.

4.2 Our Contribution

We present an integrated clustering approach, where both the density based ordering
and clustering based on ordering, are integrated. Our approach can effectively address
the previously mentioned clustering challenges. In addition, it can detect embedded or
intrinsic clusters. It is basically an extension of those popular density based clustering
algorithms, such as DBSCAN and OPTICS. It extends the concept of core distance
of OPTICS and introduced the concept core neighborhood which enables to handle
the problem of global density parameter setting, suffered by DBSCAN. It also handles
the problems with varying density clusters as well as embedded clusters. Furthermore,
like other well known density based approaches, it also gives the number of clusters
naturally, in presence of noise.

4.3 Terminology Used

Here, we redefine some of the concepts used in DBSCAN in terms of our
requirements. Concept of core neighbor is an extension of the concept of core
distance used in OPTICS.

4.3.1 Definition: (Core Neighbor): A point p is a core neighbor of a point q if
 1) core-distance(q) <> UNDEFINED, and
 2) p resides within the core distance of q.

All the points within the core distance of q form the core neighborhood of q.

4.3.2 Definition: (Directly Core Density Reachable): A point p is directly core
density-reachable from a point q w.r.t. core-distance, MinPts if

 1) p∈ Ncore-dist (q);
 2) core-distance(q) <> UNDEFINED (core point condition) ; and
 3) Diff(core-distance(p), core-distance(q)) , where is the pre-

defined
 tolerance factor.

4.3.3 Definition: (Core Density-reachable): A point p is Core density reachable
from a point q wrt. core-distance and MinPts if there is a chain of points p1, ..., pn,
p1=q, pn= p such that pi+1 is directly core density-reachable from pi.

4.3.4 Definition: (Core Density Connected): A point p is Core density connected
to a point q wrt. core-distance and MinPts if there is a point o such that both, p and q
are core density-reachable from o.

 An Approach to Find Embedded Clusters Using Density Based Techniques 529

4.3.5 Definition: (Cluster and Noise): Let D be a database of points. A cluster C
wrt. core-distance and MinPts is a non-empty subset of D satisfying the following
conditions:

1) ∀p, q: if p∈C and q is density-reachable from p wrt. core-distance and
MinPts, and diff(core-distance(p), core-distance(q)) then q∈C, where
is the pre-defined tolarance factor.

2) ∀p, q ∈C: p is Core density-connected to q wrt. core-distance and MinPts.
An object is noise if its core distance is greater than global parameter .

4.4 Finding Clusters

Intuitively, all the core neighbors of a point having core distance difference within ,
form a uniform dense region. In the Figure 3 the point P is a core object w.r.t. MinPts

= 3 and core distance of P is . The must be less than
equal to (the user defined radius). The points within the
core distance are the core neighbors of P. OPTICS use
that core distance and reachability distance to order the
points. On the other hand DBSCAN expands clusters by
expanding the points within -neighbour -hood. From our
observation we find that core distance is very much
effective in detecting density variations. Variation in core
distance implies a variation in density. Unlike OPTICS
additional ordering is not essential to detect clusters.

Cluster can easily be extracted same way as by DBSCAN, with a difference of
expanding the -neighbors instead of -neighbors. Our approach integrates these two
approaches. It expands the core neighbor of a core object say P instead of expanding
-neighbors. Iteratively the point Q is also expanded same way. If the core distance of

P and Q are within a tolerance factor then both of them are considered as belonging
to the same cluster. If core distance of a point is greater than then it is a noise point.
During expansion of Q, P becomes the core neighbor of Q. But if P is processed
earlier than Q and it is already assigned a cluster id, then P is ignored.

5 The Algorithm

The algorithm proceeds as DBSCAN and OPTICS by expanding each core-object to
get cluster structure. It continues to scan the datasets until all the objects are not
processed. Each core object begins to expand all its neighbors of it, with respect to
generating distance i.e. core distance ().

If the core distances of two objects do not differ by a pre-defined variance factor,
say , we consider them belonging to the same cluster or their density is same.

The main module of the algorithm is illustrated in Figure 4. It starts with an initial
core-distance of an arbitrary object from the data sets. GetCoreDist computes the core
distance of a unclassified object with respect to MinPts and . If the core distance
isundefined i.e. if core distance is greater then , then the object is marked as noise.
Otherwise, it will go for expanding the cluster with its neighbor objects within its core
neighbourhood. Assign a new cluster id to the candidate object and mark all the
neighbors of it with the same id, if it is not already assigned an id. Next, in an iterative

Fig. 3. Cluster expansion

å‘

å å‘

P
Q

MinPts=3

530 S. Roy and D.K. Bhattacharyya

Fig. 4. Module EnDBSCAN

manner it expands for each of the objects in the neighborhood. Figure 5 illustrates
the sub module Expand Cluster. We consider the core distance of the starting object
of a new cluster as the initial core distance; which is termed here as previous core
distance. Two objects are in the same cluster if the difference between previous core
distance and current candidate object’s core distance is not more than a factor .
Otherwise, the candidate is considered to belonging to a different cluster and ignored
that objects i.e. it will not expand that object. The underlying idea behind is that such
a situation generally indicates a density variation, and the current candidate object is
considered as belonging to a different cluster. Such a decision making may lead to
some amount of repetition works on object processing. However, based on
observation, it has been found that such a situation usually occurs only in the
boundary of two different dense regions and the number of objects to be processed in
repetition is also negligibly small. Thus, it can be easily handled by any trivial
memory based technique (by storing core-distance and core neighbor of the rejected
object).

5.2 Complexity Analysis

Because of the structural equivalence of the proposed EnDBSCAN to both DBSCAN
and OPTICS, it has the same run-time complexity as that of DBSCAN and OPTICS
that is, O(nlogn), if a spatial index like R* tree is used. However, EnDBSCAN
requires to carry out some amount of repetition work in the boundary of two dense
regions, but the number of points to be processed repeatedly is significantly very less
when compared with the total number of points, so it can be neglected.

EnDBSCAN (SetOfPoints, , MinPts) // SetOfPoints is
UNCLASSIFIED

FOR i FROM 1 TO NoOfObjects DO

Point: = SetOfPoints.get (i);
IF Point already not UNCLASSIFIED THEN

CORE_DIST:=GetCoreDist (Point, MinPts,);

IF CORE_DIST=UNDEFINED
 Mark Point as Noise;
ELSE

Expand Cluster (Point, CORE_DIST);
END IF

END IF
END FOR
END; // EnDBSCAN

 An Approach to Find Embedded Clusters Using Density Based Techniques 531

Fig. 5. Cluster Expansion Module

6 Experiments

To carry out an experimental study on the proposed algorithm and to study its
performances with its other counterparts, we developed a Java based user interface
for easy synthetic data set generation as well as for visualizing the test results. We
used a PIV Server with 128 MB RAM and the language used for coding is Java 1.3
in Windows Xp. We used five sets of datasets, i.e. the CHAMELEON t7.10k.dat [5]
dataset and four other synthetic data sets, as shown in Figure 6 & 7 respectively. In
case of t7.10k.dat dataset, it has been observed that all the three algorithms identify
the desired clusters correctly. However, this dataset does not contain any nested
cluster structure.

Expand Cluster (Point, Prev_Core)

IF Point already CLASSIFIED
 RETURN;
END IF

CORE_DIST:=GetCoreDist (Point, MinPts,);

IF CORE_DIST= =UNDEFINED THEN
 Mark Point as Noise;
 RETURN;
END IF

IF diff(CORE_DIST-Prev_Core) >
 RETURN;
END IF

Mark the Point as CLASSIFIED;
Neighb:=GetNeighbour(Point,CORE_DIST);

IF Point not assigned ClusterId THEN
 Assign the Point with nextId ();
END IF

Mark all the objects of Neighb (core neighborhood),which

are not already classified ,with Point.ClusterId.

FOR each NewPoint in Neighb DO
 Expand Cluster (NewPoint, Prev_Core);
END FOR

 END;// End Expand Cluster

532 S. Roy and D.K. Bhattacharyya

Fig. 6. Results from t7.10K.dat

Next we tested the algorithm in light of synthetic datasets (Figure 7) and compared
the results. It has been observed that our approach outperforms DBSCAN and
OPTICS (interactive) in terms of nested cluster identifications. EnDBSCAN has been
able to detect variable density clusters as well as nested or embedded cluster
structures successfully, whereas the other two counterparts fail, even after multiple
parameter settings.

DS1 DS2 DS3 DS4

Fig. 7. Synthetic Data

In case of test dataset DS1, both OPTICS (interactive) and EnDBSCAN are found
successful (Figure 8) in detecting five natural clusters, where as DBSCAN fails to
do so.

Fig. 8. Results from DS1

In case of DS2, DBSCAN can only detect a single cluster. In case of OPTICS, for a
smaller value of , it can only detect the interior cluster pattern and rest as noise;
otherwise it works same as DBSCAN. On the other hand, EnDBSCAN can
successfully detect both the natural clusters.

In case of DS3 (Figure 10), both DBSCAN and OPTICS fail to give the proper
results. OPTICS gives two interior clusters and rest as noise. On the other hand,
EnDBSCAN can detect all the three natural clusters. However, due to the order

DBSCAN for
MinPts=3 & =7

OPTICS MinPts =7
& =12 =8

EnDBSCAN for
MinPts =9 =13

DBSCAN for

(MinPt=5, =15)

OPTICS (Int.) for

(MinPt=5, =10,
 ’=5)

EnDBSCAN for

(MinPt=5, =15)

 An Approach to Find Embedded Clusters Using Density Based Techniques 533

Fig. 9. Results from DS2

dependency nature of DBSCAN, it also results in overlapping of a boundary point
between two different dense regions. In such case, generally the boundary point is
assigned to that cluster which is scanned first. In case of DS4 also, similar results
found not included due to space limitation).

Fig. 10. Results from DS3

Based on our exhaustive experimental study it has been observed that for a
tolerance factor i.e. =2, the clustering results of the proposed algorithm can be found
to be more effective. So, rather than considering it as an input parameter, we prefer to
consider it as a constant. However, may need to be tuned based on the distribution
of data for different datasets. We reported execution time needed by EnDBSCAN in
comparison with other counterparts, in the following figure. We implemented these
algorithms without using any spatial indexing techniques. We generate data in such a
way that density of data increases with the increase in size of the data.

Data Size ε ε′ MinPts DBSCAN OPTICS EnDBSCAN

5000 8 6 3 7 10 15

8000 8 6 6 23 31 38

10000 8 6 7 35 48 56

15000 8 6 15 143 128 132

20000 8 6 20 271 202 226

25000 8 6 22 562 390 408

30000 8 6 25 946 609 654

OPTICS (Int)
MinPt=8, =30,
’=10

DBSCAN
MinPt=8, =30

EnDBSCAN
MinPt=8, =30

DBSCAN for
MinPt=5, =15

OPTICS (Int)
MinPt=5, =15, ’=7

EnDBSCAN
MinPt=5, =15

534 S. Roy and D.K. Bhattacharyya

From the graph it can be seen that
when the data are sparse DBSCAN
performs better than other two. But the
scenario reversed when data become
dense. In such case our’s performs well
over DBSCAN. However, from
execution time point of view,
performance of OPTICS is superior in
comparison to EnDBSCAN, though
OPTICS can not detect embedded
cluster structure.

6.1 Clustering Effectiveness Comparison

A detailed comparative study among the three algorithms (i.e. EnDBSCAN, DBSCAN &
OPTICS (Int.) was carried out in light of those real and synthetic datasets (as discussed
in the previous sub-section). Table 1 presents the same in terms of six crucial factors.
As can be seen from the column 1 of the table that like DBSCAN, the proposed
algorithm also requires less number of input parameters than OPTICS. Similarly,
column 5 depicts that embedded clusters can be detected only by the proposed
algorithm. Also, from the complexity point of view, column 6 clearly shows that the
performance of EnDBSCAN is similar with DBSCAN when a spatial index is used.
However, OPTICS requires an additional complexity O(n) (at least) to classify those
points after ordering, apart from O(nlogn), when a spatial index is used. The rest other
columns establish that in terms of the other quality parameters, the performance of the
proposed algorithm is equally good with its other two counterparts.

Table 1. Comparison of EnDBSCAN with DBSCAN and OPTICS (Int)

7 Conclusions

This paper presents an enhanced version of DBSCAN and OPTICS (Int.). The
proposed enhanced version can detect any embedded cluster structure over spatial
domain successfully. Another significant advantage of EnDBSCAN is that it requires
less input parameters as well as less complexity than OPTICS.

0
200
400
600
800

1000

50
00

80
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

Data Size

T
im

e
in

 S
ec

o
n

d
s

DBSCAN

OPTICS

EnDBSCAN

Fig. 11. Scalability Curve

Algorithms Input
Parameters
 (1)

Outlier.
Handling
 (2)

Scalability

 (3)

Varying
Density
 (4)

Embed.
Cluster
 (5)

Complexity

 (6)

DBSCAN MinPts, å Yes Yes No No O(n log n)

OPTICS(Int) MinPts, å ,
å’

Yes Yes Yes No O(n log n) +
O (n)

EnDBSCAN MinPts, å Yes Yes Yes Yes O(n log n)

 An Approach to Find Embedded Clusters Using Density Based Techniques 535

References

[1] Han & Kamber, Data Mining: Concepts & Technques, Morgan Kaufmann, 2001.
[2] Kotsiantis & Pintelas, Recent Advances in clustering: A Brief Survey, www.math.upatras.gr/

~esdlab/en/members/ kotsiantis
[3] Jiang, Tang & Zhang, Cluster Analysis for Gene Expression Data: A Survey. IEEE Trans.

KDE, 2004.
[4] Ester, Kriegel, Sander and Xu. 1996, A Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise in KDD96, Portland, pp 226-231.
[5] Karypis, Han & Kumar, CHAMELEON: A hierarchical clustering algorithm using

dynamic modeling. IEEE Computer, 32(8), pp 68-75, 1999
[6] Sheikholeslami, Chatterjee and Zhang. Wavecluster:A muti-resolution clustering

approach for very large spatial database in the SIGMOD’98 Seattle, 1998.
[7] Ankerst, Breuing, Kriegel and Sander. OPTICS: Ordering points to identify the clustering

structure in the ACM-SIGMOD’99, pp 49-60, 1999.
[8] Guha, Rastogi, and Shim, ‘CURE: An Efficient Clustering Algorithm for Large Datasets

in the ACM SIGMOD Conf., 1998.
[9] McQueen, ‘Some Methods for Classifications and Analysis of Multivariate

Observations’, in the Sympos. on Math, Statis. and Probabilty’, pp 281-197, 1967
[10] Z Huang, ‘A Fast Clustering Algorithm to cluster very large categorical datasets in Data

Mining’, SIGMOD’97.
[11] Kaufman and Rousseeuw.Finding Groups in Data: An Introduction to Cluster Analysis.

New York: John Wiley & Sons, 1990.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 536 – 546, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using Sub-sequence Information with kNN for
Classification of Sequential Data

N. Pradeep Kumar1,2, M. Venkateswara Rao1,2, P. Radha Krishna1, and Raju S. Bapi2

1 Institute for Development and Research in Banking Technology IDRBT,
Castle Hills, Masab Tank, Hyderabad, India-500057
Ph No: 91-40-23534981, Fax No: 91-40-23535157

2 University of Hyderabad, Gachibowli, Hyderabad, India-500046
{pradeepkumar, prkrishna}@idrbt.ac.in,

mvrao@mtech.idrbt.ac.in, bapics@uohyd.ernet.in

Abstract. With the enormous growth of data, which exhibit sequentiality, it has
become important to investigate the impact of embedded sequential information
within the data. Sequential data are growing enormously, hence an efficient
classification of sequential data is needed. k-Nearest Neighbor (kNN) has been
used and proved to be an efficient classification technique for two-class prob-
lems. This paper uses sliding window approach to extract sub-sequences of
various lengths and classification using kNN. We conducted experiments on
DARPA 98 IDS dataset using various distance/similarity measures such as Jac-
card similarity, Cosine similarity, Euclidian distance and Binary Weighted Co-
sine (BWC) measure. Our results demonstrate that sub-sequence information
enhances kNN classification accuracy for sequential data, irrespective of the
distance/similarity metric used.

Keywords: Sequence mining, k-Nearest Neighbor Classification, Similar-
ity/Distance metric, Intrusion detection.

1 Introduction

Data are very vital for a commercial organization. These data are sequential or non-
sequential in nature. Sequence mining helps us in discovering formal relations in
sequence data. Sequence pattern mining is the mining of frequently occurring patterns
related to time or other sequences [7, 15]. An example of the rule that sequence
mining algorithm would discover is -- “A user who has visited rediff website is likely
to visit yahoo website within next five page visits.” Sequence mining plays a vital
role in domains such as telecommunication records, protein classification, signal
processing and intrusion detection. It is important to note that datasets in these
problems need not necessarily have inherent temporality [7, 15].

Studies on sequential pattern mining mostly concentrate on symbolic patterns [1, 10,
17]. As in symbolic patterns, numerical curve patterns usually belong to the scope of
trend analysis and prediction in statistical time series analysis. Many other parameters
also influence the results of sequential pattern mining. These parameters include
duration of time sequence (T), event folding window (w) and time interval between
two events (int). If we assign w as the whole duration T, we get time independent

 Using Sub-sequence Information with kNN for Classification of Sequential Data 537

frequent patterns. An example of such a rule is “ In 1999, customers who bought PCs
also bought digital cameras”. If w is set to be 1, that is, no event sequence folding
occurs, then all events are considered to be discrete time events. The rule of the type
“Customers who bought hard disk and then memory chip are likely to buy CD-Writer
later on” is example of such a case. If w were set to be something between 1 and T,
events occurring between sliding windows of specified length would be considered. An
example rule is “Sale of PC in the month of April 1999 is maximum”.

Sequential data are growing at a rapid pace. A pre-defined collection of historical
data with their observed nature helps in determining the nature of newly arriving data
stream and hence will be useful in classification of the new data stream. In data
mining, classification algorithms are popularly used for exploring the relationships
among various object features at various conditions. Sequence data sets are similar in
nature except that they have an additional temporal dimension [22].

Classification algorithms help in predicting future trends as well as extracting a
model of important data classes. Many classification algorithms have been proposed
by researchers in machine learning [21], expert systems [20], statistics [8].
Classification algorithms have been successfully applied to the problems, where the
dependent variable (class variable) depends on non-sequential independent
(explanatory) variables [3]. Typical classification algorithms are Support Vector
Machines, Decision Trees, Bayesian Classification, Neural Networks, k-Nearest
Neighbor (kNN) and Association Classification. To deal with the sequential
information, sequential data are transformed into non-sequential variables. This leads
to a loss of sequential information of the data. Although traditional classification is
robust and efficient for modeling non-sequential data, they fail to capture sequential
information of the dataset.

Intrusion detection is the process of monitoring and analyzing the events occurring
in a computer system in order to detect signs of security problems [2]. Computer
security can be achieved by maintaining audit data. Cryptographic techniques,
authentication means and firewalls have gained importance with the advent of new
technologies. With the ever-increasing size of audit data logs, it becomes crucial for
network administrators and security analysts to use some efficient Intrusion Detection
System (IDS), to reduce the monitoring activity. Data mining techniques are useful in
providing important contributions to the field of intrusion detection.

IDSs based on examining sequences of system calls often define normal behavior
of an application by sliding a window of fixed size across a sequence of traces of
system calls. System call traces are normally produced with programs like strace on
Linux systems and truss on Solaris systems. Several methods have been proposed for
storing system calls traces’ information and to use these for detecting anomalies in an
IDS. Forrest et al. [5, 9] stored normal behavior by sliding a window of fixed size L
across sequence of system call traces and recorded which system call followed the
system call in position 0 at offsets 1 through L-1. Liao et al. [12] applied kNN
classifier with Cosine similarity measure considering frequencies of system calls with
sliding window size w =1. A similar work with modified similarity measure using a
combination of Cosine as well Jaccard has also been carried out in [18].

The central theme of this paper is to investigate that vital information stored in sub-
sequences, plays any role in building a classifier. In this paper, we combine sequence
analysis problem with kNN classification algorithm, to design an efficient classifier

538 N.P. Kumar et al.

for sequential data. Sequence analysis can be categorized into two types, depending
on the nature of the treatment. Either we can consider the whole sequence as one or
sub-sequences of different sizes. Our hypothesis is that sequence or order of
information plays a role in sequence classification. We extracted sequence
information from sub-sequences and used this information for building various
distance/similarity metrics. With the appropriate distance/similarity metric, a new
session is classified using kNN classifier. In order to evaluate the efficiency and
behavior of the classifier with the encoded vector measures, Receiver Operating
Characteristics (ROC) curve is used. Experiments are conducted on DARPA 98 IDS
[13] dataset to show the viability of our model.

Like other classification algorithms, kNN classification algorithm does not make a
classifier in advance. Hence, it is suitable for classification of data streams.
Whenever a new data stream comes, kNN finds the k near neighbors to new data
stream from training data set using some distance/similarity metric [4, 6]. kNN is the
best choice for making a good classifier, when simplicity and accuracy is important
issues [11].

The rest of the paper is organized as follows - Section 2 gives a brief description of
the nearest neighbor classification algorithm. In section 3, we briefly discuss about
the distance/similarity measures used in the experiments. In section 4, we outline our
proposed approach. The Section 5 provides the experimental results on DARPA 98
IDS dataset. Finally, we conclude in section 6.

2 Nearest Neighbor Classification

kNN classifier are based on learning by analogy. KNN classification algorithm
assumes that all instances correspond to points in an n-dimensional space. Nearest
neighbors of an instance are described by a distance/similarity measure. When a new
sample comes, a kNN classifier searches the training dataset for the k closest sample
to the new sample using distance/similarity measure for determining the nature of
new sample. These k samples are known as the k nearest neighbors of the new
sample. The new sample is assigned the most common class of its k nearest
neighbors. Nearest neighbor algorithm can be summarized as follows:

Begin
 Training

 Construct Training sample T from the given dataset D.
Classification
Given a new sample s to be classified,

 Let I1… Ik denote the k instances from T that are nearest to new sample s
 Return the class from k nearest neighbor samples.
 Returned class is the class of new sample.
End
 In the nearest neighbor model, choice of a suitable distance function and the value
of the members of nearest neighbors (k) are very crucial. The k represents the
complexity of nearest neighbor model. The model is less adaptive with higher k
values [7].

 Using Sub-sequence Information with kNN for Classification of Sequential Data 539

3 Distance/Similarity Measures

Distance/similarity measure plays an important role in classifying or grouping
observations in homogeneous groups. In other words, a distance/similarity measure
establishes the relationship between the rows of the data matrix. Preliminary
information for identifying homogeneous groups is provided by the distance/similarity
measure. Between any pair of observations xi and xj function of the corresponding row
vector in the data matrix is given by:

Dij = f (xi , xj) where i,j = 1, 2, 3,…,n

For an accurate classifier, it is important to formulate a metric to determine whether
an event is deemed normal or anomalous. In this section, we briefly discuss various
measures such as Jaccard similarity measure, Cosine similarity measure, Euclidian
distance measure and BWC measure. We used sub-sequence information with these
different measures in kNN classifier for cross comparison purpose.

3.1 Jaccard Similarity Function

Jaccard similarity function is used for measuring similarity between binary values
[19]. It is defined as the degree of commonality between two sets. It is measured as a
ratio of number of common attributes of X AND Y to the number of elements
possessed by X OR Y. If X and Y are two distinct sets then the similarity between X
and Y is:

S(X,Y) =
| |

| |

X Y

X Y

∩
∪

Consider two sets X = M, N, P, Q, R, M, S, Q and Y = P, M, N, Q, M, P, P .
X ∩ Y is given as M, N, P, Q and X ∪ Y is M, N, P, Q, R, S . Thus, the similarity
between X and Y is 0.66.

3.2 Cosine Similarity

Cosine similarity is a common vector based similarity measure. Cosine similarity
measure is commonly used in text databases [16]. Cosine similarity metric calculates
the angle of difference in direction of two vectors, irrespective of their lengths. Cosine
similarity between two vectors X and Y is given by:

S(X,Y) =
| || |

X Y

X Y

•

Direct application of Cosine similarity measure is not possible across sets. Sets are
first converted into n-dimensional vector space. Over these transformed vectors Co-
sine similarity measure is applied to find the angular similarity. For two sets,
X = M, N, P, Q, R, M, S, Q and Y = P, M, N, Q, M, P, P the equivalent trans-
formed frequency vector is Xv = < 2,1,1,2,1,1> and Yv = < 2,1,3,1,0,0 >. The Cosine
similarity of the transformed vector is 0.745.

540 N.P. Kumar et al.

3.3 Euclidean Distance

Euclidean distance is a widely used distance measure for vector spaces [16]. For two
vectors X and Y in an n- dimensional Euclidean space, it is defined as the square root
of the sum of difference of the corresponding dimensions of the vector.
Mathematically, it is given as

D(X,Y) =

1/ 2

2

1
()s s

n

s
X Y

=
−

Similar, to the Cosine similarity metric, application of Euclidean measure on sets is
not possible. Similar approach as used in Cosine similarity measure to transform sets
into vector is applicable here also. For two sets,
X = M, N, P, Q, R, M, S, Q and Y = P, M, N, Q, M, P, P the equivalent
transformed frequency vector is Xv = < 2,1,1,2,1,1> and Yv = < 2,1,3,1,0,0 >. The
Euclidean measure of the transformed vector is 2.64.

3.4 Binary Weighted Cosine (BWC) Metric

Rawat et.al.[18] proposed BWC similarity measure for measuring similarity across
sequences of system calls. They showed the effectiveness of the proposed measure on
IDS. They applied kNN classification algorithm with BWC metric measure to
enhance the capability of the classifier. BWC similarity measure considers both the
number of shared elements between two sets as well as frequencies of those elements
in traces. The similarity measure between two sequences X and Y is given by

S (X, Y)=
| || |

X Y

X Y

•
*

| |

| |

X Y

X Y

∩
∪

BWC measure is derived from Cosine similarity as well as Jaccard similarity
measure. Since the Cosine similarity measure is a contributing component in a BWC
similarity measure hence, BWC similarity measure is also a vector based similarity
measure. The transformation step is same as carried out in Cosine similarity measure
or Euclidean measure for sets. For two sets, X = M, N, P, Q, R, M, S, Q and
Y = P, M, N, Q, M, P, P the Cosine similarity is given as 0.745 and Jaccard similar-
ity as 0.66. Hence, the computed BWC similarity measure comes out to be 0.49.

4 Proposed Methodology

This section illustrates the methodology for extracting sequential information from the
sets, thus making it applicable to be used by various vector based distance/similarity
metrics. We considered sub-sequences of fixed sizes: 1,2,3… This fixed size sub-
sequence is called window. This window is slided over the traces of system calls to find
the unique sub-sequences of fixed length s over the whole dataset. A frequency count of
each sub-sequence is recorded. Consider a sequence, which consists of traces of system
calls.

 Using Sub-sequence Information with kNN for Classification of Sequential Data 541

execve open mmap open mmap mmap mmap mmap mmap open mmap exit

Sliding window of size 3

execve open mmap open mmap mmap mmap mmap mmap open mmap exit

Total length of sequence is 12 with the sliding window size w (=3) we will have

total sub-sequences of size 3 as 12 –3 + 1= 10. These 10 sub-sequences of size 3 are

execve open mmap open mmap open mmap open mmap open mmap mmap
mmap mmap mmap mmap mmap mmap mmap mmap mmap mmap mmap open
mmap open mmap open mmap exit

From among these 10 generated sliding window-sized sub-sequences unique sub-
sequences with their frequencies are as follows:

execve open mmap 1 mmap open mmap 2
 open mmap open 1 mmap mmap open 1
open mmap mmap 1 open mmap exit 1
mmap mmap mmap 3

With these encoded frequencies for sub-sequences, we can apply any vector based

distance/similarity measure, thus incorporating the sequential information with vector
space. The traditional classification algorithm – the kNN classification algorithm [4, 7]
with suitable distance/similarity metric can be used to build an efficient classifier.

Our proposed methodology consists of two phases namely training and testing
phase. Dataset D consists of m sessions. Each session is of variable length. Initially in
training phase, all the unique sub-sequences of size s are extracted from the whole
dataset. Let n be the number of unique sub-sequences of size w, generated from the
dataset D. A matrix C of size m × n is constructed where Cij is given by count of jth

unique sub-sequence in the ith session. A distance/similarity metric is constructed by
applying distance/similarity measure over the C matrix. The model is trained with the
dataset consisting of normal sessions.

In testing phase, whenever a new process P comes to the classifier, it looks for the
presence of any new sub-sequence of size s. If a new sub-sequence is found, the new
process is marked as abnormal. When there is no new sub-sequence in new process P,
calculate the similarity of new process with all the sessions. If similarity between any
session in training set and new process is equal to 1, mark it as normal. In other case,
pick the k highest values of similarity between new process P and training dataset.
From this k maximum values, calculate the average similarity for k-nearest neighbors.
If the average similarity value is greater than user defined threshold value (τ) mark
the new process P as normal, else mark P as abnormal.

5 Experimental Results

Experiments were conducted using k-Nearest Neighbor classifier with Jaccard
similarity function, Cosine similarity measure, Euclidean distance and BWC metric.

542 N.P. Kumar et al.

Each distance/similarity metric was individually experimented with kNN classifier on
DARPA 98 IDS dataset.

DARPA 98 IDS dataset consists of TCPDUMP and BSM audit data. The network
traffic of an Air Force Local Area Network was simulated to collect TCPDUMP and
BSM audit data [13]. The audit logs contain seven weeks of training data and two
weeks of testing data. There were 38 types of network-based attacks and several real-
istic intrusion scenarios conducted in the midst of normal background data. Detailed
discussion of DARPA dataset is given at [12]. For experimental purpose, 605 unique
processes were used as a training dataset, which were free from all types of attacks.
Testing was conducted on 5285 normal processes. In order to test the detection capa-
bility of proposed approach, we incorporate 55 intrusive sessions into our test data.
For kNN classification experiments, k=5 was considered. With various discussed
distance/similarity measures in the above section (Jaccard similarity measure, Cosine
similarity measure, Euclidean distance measure and BWC similarity measure) at dif-
ferent sub-sequence lengths (sliding window size) L=1,3,5 experiments were carried
out. Here, L=1 means that no sequential information is captured whereas, for L > 1
some amount of order information across elements of the data is preserved.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.005 0.01 0.015
False Positive Rate

De
tec

tio
n R

ate

sub-seq L=1 sub-seq L =3 sub-seq L =5

Fig. 1. ROC curve for Jaccard similarity metric using kNN classification for k =5

To analyze the efficiency of classifier, ROC curve is used. The ROC curve is an
interesting tool to analyze two-class problems [14]. ROC curve is very useful where
situations detection of rarely occurring event is done. ROC curve depicts the relationship
between False Positive Rate (FPR) and Detection Rate (DR) at various threshold values.
DR is the ratio of the number of intrusive sessions (abnormal) detected correctly to the
total number of intrusive sessions. The FPR is defined as the number of normal processes
detected as abnormal, divided by the total number of normal processes. ROC curve gives
an idea of the trade off between FPR and DR achieved by classifier. An ideal ROC curve
would be parallel to FPR axis at DR equal to 1.

 Using Sub-sequence Information with kNN for Classification of Sequential Data 543

0
0.2
0.4
0.6
0.8

1
1.2

0 0.1 0.2 0.3 0.

False Positive Rate

4

De
tec

tio
n R

ate

Sub-seq L=1 Sub-seq L=3 Sub-seq L=5

Fig. 2. ROC curve for Cosine similarity metric using kNN classification for k =5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15

De
tec

tio
n R

ate

sub-seq L=1 sub-seq L=3 Sub-seq L=5

False Positive Rate

Fig. 3. ROC curve for Euclidian distance metric using kNN classification for k =5

Corresponding ROC curves for Jaccard similarity measure, Cosine similarity
measure, Euclidean distance measure and BWC measure are shown in fig 1, 2, 3 and
4 respectively. It can be observed from fig 1,2,3 and 4 that as the sliding window size
increases from L =1 to L = 5, high DR (close to ideal value of 1) is observed with all
the distance/similarity metrics.

Rate of increase in false positive is less for Jaccard similarity measure (0.005-
0.015) as compared to different distance/similarity metrics such as Cosine similarity
(0.1-0.4), Euclidian distance (0.05-0.15) and BWC similarity (0.1-0.7). Table 1
depicts the factor (FPR or Threshold value) that was traded off in order to achieve
high DR. For example, in the case of Jaccard similarity measure, FPR was traded off
for threshold values (highlighted in bold face) in order to achieve high DR.

544 N.P. Kumar et al.

Sub-seq L=1 Sub-seq L=3 Sub-seq L=5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

False Positive Rate

De
tec

tio
n R

ate

Fig. 4. ROC curve for BWC similarity metric using kNN classification for k =5

Table 1. Results for different distance/similarity metric

 Jaccard
similarity
measure

Cosine
similarity
measure

Euclidian
distance
measure

BWC similarity
measure

 τ FPR τ FPR τ FPR τ FPR
L =1 0.94 0.0056 0.99 0.29 0.99 0.12 0.89 0.096
L =3 0.95 0.011 0.99 0.12 0.99 0.07 0.7 0.28
L =5 0.89 0.0105 0.75 0.03 0.99 0.06 0.65 0.30

Thus, our results support the hypothesis that classification accuracy of sequential
data can be improved by incorporating the order information embedded in sequences.
We also performed experiments with different k values for nearest neighbor classifier
with all the four measures.

Table 2. False positive rate at maximum attained detection rate for different sub-sequence
length for different distance/similarity measure at k =7

 L = 1 L = 3 L =5
Jaccard similarity 0.0058 0.0102 0.0105
Euclidian distance 0.94 0.0047 0.0085
Cosine distance 0.3286 0.1799 0.0387
BWC measure 0.0885 0.0783 0.0787

We present the false positive rate at maximum attained detection rate for different
sub-sequence lengths L = 1, 3, 5 with all the distance/similarity measures in table 2
for k =7. It can be observed that, as per the trend, the FPR is increasing with the
increasing sub-sequence lengths for all the four measures. We also performed
experiments with k =10 and the trend is also found to be consistent (Results are not
included here).

 Using Sub-sequence Information with kNN for Classification of Sequential Data 545

6 Conclusion

Using Intrusion Detection as an example domain, we demonstrated in this paper the
usefulness of utilizing sub-sequence information for kNN classification of sequential
data. We presented results on DARPA 98 IDS dataset wherein we systematically
varied the length of the sliding window from 1 to 5 and used various distance
/similarity measures such as Jaccard similarity, Cosine similarity, Euclidian distance
and BWC similarity measure. As the sub-sequence information is increased, the high
DR is achieved with all the four measures. Our results show that if order information
is made available, a traditional classifier such as kNN can be adapted for sequence
classification problem. We are currently working on design of new similarity
measure, for capturing complete sequential information. Although the current paper
presented results in the domain of information security, we feel this methodology can
be adopted for the domains such as web mining, text mining and bio-informatics.

References

1. Agrawal, R., Faloutsos, C. and Swami, A.: Efficient similarity search in sequence
databases. In proceedings of the 4th Int'l Conference on Foundations of Data Organization
and Algorithms. Chicago, IL, 1993. pp 69-84.

2. Bace, R.: Intrusion Detection. Macmillan Technical Publishing, 2000.
3. Buckinx, W., Moons, E., Van den Poel, D. and Wets, G: Customer-Adapted Coupon

Targeting Using Feature Selection, Expert Systems with Applications 26, No. 4 2004,
509-518.

4. Dasarathy, B.V.: Nearest-Neighbor Classification Techniques, IEEE Computer Society
Press, Los Alomitos, CA, 1991.

5. Forrest S, Hofmeyr S A, Somayaji A and Longstaff T.A.: A Sense of self for UNIX
process. In Proceedings of the IEEE Symposium on Security and Privacy, pages 120-128,
Los Alamitos, CA, 1996. IEEE Comuputer Socity Press.

6. Gludici, P: Applied Data Mining , Statistical methods for business and industry, Wiely
publication, 2003.

7. Han, Jiawei., Kamber, Micheline.: Data Mining , Concepts and Techniques, Morgan
Kaufmann Publishers, 2001.

8. Hastie, T., Tibshirani, R. and Friedman, J. H.: The Elements of Statistical Learning, Data
Mining, Inference, and Prediction, Springer, 2001.

9. Hofmeyr S A, Forrest S, and Somayaji A.: Intrusion Detection Using Sequences of System
calls. Journal of Computer Security, 1998, 6:151-180.

10. Keogh, E., Chakrabarti, K., Pazzani, M. and Mehrotra, S.: Locally adaptive dimensionality
reduction for indexing large time series databases. In proceedings of ACM SIGMOD
Conference on Management of Data. Santa Barbara, CA, 2003. pp 151-162.

11. Khan, M., Ding, Q. and Perrizo, W.: k-Nearest Neighbor Classification on Spatial Data
Streams Using P-Trees, In the Proceedings of the 6th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining, 2002.

12. Liao, Y., Rao Vemuri, V.: Using Text Categorization Techniques for Intrusion Detection.
USENIX Security Symposium 2002: 51-59.

13. MIT Lincoln Laboratory, http://www.ll.mit.edu/IST/ideval/.

546 N.P. Kumar et al.

14. Marques de sa, J.P: Pattern recognition: concepts, methods and applications, Springer-
Verlag 2001.

15. Pujari, A.K.: Data Mining Techniques, Universities Press INDIA, 2001.
16. Qian, G, Sural, S., Gu, Y., Pramanik, S.: Similarity between Euclidean and cosine angle

distance for nearest neighbor queries. SAC 2004: 1232-1237
17. Ratanamahatana, C. A. and Keogh. E..: Making Time-series Classification More Accurate

Using Learned Constraints. In proceedings of SIAM International Conference on Data
Mining (SDM '04), Lake Buena Vista, Florida, 2004. pp. 11-22.

18. Rawat, S. Pujari, A.K., Gulati, V.P.,and Vemuri, V. Rao.: Intrusion Detection using Text
Processing Techniques with a Binary-Weighted Cosine Metric. International Journal of
Information Security, Springer-Verlag, Submitted 2004.

19. Sams String Metrics, http://www.dcs.shef.ac.uk/~sam/stringmetrics.html
20. Sholom M. Weiss and Casimir A. Kulikowski: Computer Systems That Learn:

Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and
Expert Systems (Machine Learning Series), Morgan Kaufmann Publishers Inc. San
Francisco, CA, USA , 1991.

21. Tom M. Mitchell.: Machine learning, Mc Graw Hill 1997.
22. Wang, Jason T.L.; Zaki, Mohammed J.; Toivonen, Hannu T.T.; Shasha, Dennis: Data

mining in bioinformatics, Springer-Verlag 2005

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 547 – 552, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Distance-Based Outliers in Sequences

Girish Keshav Palshikar

Tata Research Development and Design Centre (TRDDC),
54B Hadapsar Industrial Estate Pune 411013, India

GK.Palshikar@tcs.com

Abstract. Automatically finding interesting, novel or surprising patterns in
time series data is useful in several applications, such as fault diagnosis and
fraud detection. In this paper, we extend the notion of distance-based outliers to
time series data and propose two algorithms to detect both global and local
outliers in time series data. We illustrate these algorithms on some real datasets.

Keywords: Novelty detection, Outlier detection, Time series, Sequence
mining.

1 Introduction

Analyzing a sequence of values is an important task in many practical applications.
For example, the sequence of observed values of the parameters of a chemical process
is analyzed to understand output quality and for process diagnosis. Telemetry data
sent by a system onboard a satellite is analyzed to evaluate the system's health. The
trades performed by a trader in a stock exchange can be analyzed to understand
his/her financial performance in the market.

In such applications, the sequence to be analyzed consists of an ordered list of
records (points). If each record consists of a single field then the sequence is
univariate; otherwise it is multivariate. The ordering of records within a sequence is
often based on a timestamp, in which case the sequence can be considered as a time
series. An important question during the analysis of the sequence is: how do we
identify interesting, novel or anomalous subsequences in the sequence? Note that
identifying such subsequences is different from identifying single outlier points. We
now need to define the meaning of terms such as interesting or anomalous. In the
simplest case, extreme (high or low) values occurring in the sequence can be found
out using standard statistical techniques for outlier detection in a time-series.
However, in practice, we are often interested in more complex kinds of interesting or
anomalous regions in the sequence. For example, (1) contiguous subsequences; or (2)
noncontiguous subsequence (list of points not necessarily contiguous) etc. In this
paper, we focus on the problem of automatically identifying contiguous subsequences
of a given sequence, which are interesting or anomalous in a well-defined sense.

2 Related Work

Basic statistical techniques for outlier detection, including in time series data, are
discussed in [1]. The notion of distance-based outliers in (non time series) datasets was

548 G.K. Palshikar

proposed in [4]. A related notion was proposed in [6]. This paper extends the approach
in [4] to time series data. Several other techniques for novelty detection have been
proposed [2], [7], [3], [5] for identifying interesting subsequences in a time series. See
also H. Geirsson et al [http://hraun.vedur.is/ja/skyrslur/contgps/ node8.html].

3 Distance-Based Outliers Detection in Sequences

3.1 Outlier Subsequence

An n-sequence (or a sequence of length n) is an ordered finite sequence s = <s0, s1, …,
sn-1> of n 1 elements. Elements of a multivariate (or multidimensional) sequence are
tuples (or vectors). An m-sequence <x0, x1, …, xm-1> is a (contiguous) subsequence of
another sequence s = <s0, s1, …, sn-1> if x0 = si, x1 = si+1, ..., xm-1 = si+m-1, for some 0 i

 n – m i.e., a subsequence is a contiguous part of the original sequence; e.g., <2, 8,
5> is a subsequence of sequence <8,7,2,8,5,4,4>. We consider the problem of
detection of interesting or anomalous subsequences in a given single sequence. For
this, we adapt the notion of a distance-based outlier in a set of points, proposed in [4],
to distance-based outlier subsequence of a given sequence.

Let d(xi, xj) denote the function to compute the distance between two elements xi
and xj of a sequence; e.g., d could be Euclidean, Mahanttan or general Minkowski
distance. There are several ways in which the distance d(α, β) between two m-
sequences α = <x0, x1, …, xm-1> and β = <y0, y1, …, ym-1> can be computed. For
example, the Minkowski distance is defined as

p
mm

pppd),(...),(),(),(111100 −−+++= yxdyxdyxdβα

For example, for α = <7, 2, 3>, β = <3, 0, 5>, d(x2, y2) = d(2, 0) = 2, whereas
d(α, β) = [(7 – 3)2 + (2 – 0)2 + (3 – 5)2]1/2 = 4.9. When each xi and yi is either 0 or 1,
p = 1 and when d(x, y) = XOR(x, y), the above distance d reduces to usual Hamming
distance between two Boolean m-sequences.

3.2 Algorithm 1

We now adapt Knorr's notion of distance-based outliers in a set of points to distance-
based outlier m-subsequences of a given sequence. Let s = <s0, s1, …, sn-1> be a given
n-sequence. Let m 1 be a given integer. Let Ω(s, m) denote the set of all possible m-
subsequences of s; e.g., Ω(<8,7,2,8,5,4,4>,4) = {<8,7,2,8>, <7,2,8,5>, <2,8,5,4>,
<8,5,4,4>}. Clearly, Ω(s, m) = n – m + 1. Knorr [4] proposed a distance-based
definition of an outlier in a given set S of points: a point x ∈ S is an outlier if at least
p% points in S are at a distance > D from x, where p and D are user specified positive
real numbers. We propose a simple generalization of this definition to adapt it for
outlier subsequences of a given sequence.

Definition 1. Let s = <s0, s1, …, sn-1> be a given n-sequence. Let m be a given integer
such that 0 m n-1. Let 0 p 1 and D 0 be two given real numbers. An

 Distance-Based Outliers in Sequences 549

m-subsequence a = <x0, x1, …, xm-1> of s is a (p, m, D)-outlier in s if at least p% of
the m-subsequences in Ω(s, m) are at a distance > D from a.

Consider a 19-sequence s = <2, 5, 6, 2, 3, 1, 2, 9, 9, 9, 1, 2, 2, 1, 3, 1, 0, 2, 1>. For
m = 3, Ω(s, m) contains 19 – 3 + 1 = 17 3-subsequences. Suppose D = 10.0 and p =
60%. For the 3-subsequence <2, 3, 1> starting at 4th position, there is only 1
subsequence in Ω(s, m) at a distance > 10.0 (using Euclidean distance); thus the
fraction of 3-subsequences at a distance > 10.0 from this subsequence is 1/17 = 5.9%.
Since 5.9 < 60.0, this 3-subsequence is not an outlier. For the subsequence <9, 9, 9>,
there are 11 subsequences (i.e., 11/17 = 64.7%) which are at a distance > 10.0 from it.
Thus this 3-subsequence is an outlier, for the given values of p and D.

Knorr [4] contains an algorithm to find a set of distance-based outliers from a
given set of points. We present below a simple generalization of the core of Knorr's
algorithm to detect outlier m-subsequences of a given sequence.

// Modified Knorr's algorithm for distance-based outlier m-
// subsequences; m 1. 0 p 1 = fraction of m-subsequences
// at distance > D from an outlier; D = a distance value
algorithm knorr_seq
input sequence s of n elements;
input m, p, D;
M := n – m + 1; // no. of m-subsequences of s
for (i = 0; i <= (n - m);) {
 for (j = 0, count = 0; j <= n - m; j++) {
 d := d(<si,si+1,...,si+m-1>, <sj,sj+1,...,sj+m-1>);

 if (d > D) then count++; end if;
 } // end for
 if (count/total > p) then {
 printf(“Outlier sub-sequence from %d to %d\n”,i,i+m-1);
 i = i + m;
 } else i++; end if;

} // end for

Essentially, the algorithm compares every candidate m-subsequence a = <si, si+1, ...,

si+m-1> with every other m-subsequence b = <sj, sj+1, ..., sj+m-1>, incrementing count if
d(a, b) > D. Thus, for every candidate m-subsequence of the given sequence, the
algorithm counts the number of m-subsequence that are at a distance > D from it. If
this number exceeds the specified limit, that m-subsequence is declared as an outlier.
The user has to provide values for the parameters p, D and m. Our implementation
offers a choice of various distance measures to the user (e.g., Manhattan, Euclidean,
etc.). Clearly, the complexity of the algorithm is O(n2) where n = size of the given
sequence. For correctness, we state the following without proof:

Proposition 2. Every m-subsequence declared as an outlier by the algorithm
knorr_seq satisfies Definition 1. Conversely, every m-subsequence that satisfies
Definition 1 is declared as an outlier by the algorithm, provided no subsequence
overlapping with it has already been declared an outlier.

This algorithm will not generate overlapping outlier subsequences, due to the jump in
the value of i (statement i = i + m) after an outlier sub-sequence is found. Fig. 1

550 G.K. Palshikar

shows the daily quantity of a commodity traded on a stock exchange for 52 days. The
above algorithm, called with m = 4, p = 0.40 (40%), D = 150000.0 and using
Euclidean distance, reports the following two 4-subsequences as outliers: 43 … 46
and 47 … 50. This is reasonable, since the volume is drastically different in these
periods compared to the other days.

Fig. 1. Daily trading volume for a period of 52 days

3.2 Algorithm 2

Consider the time series in Fig. 2. The subsequence from 100 to 124, consisting of
two cycles that are much shorter than their neighbours, is naturally an interesting.
However, it is difficult to find it as an outlier using the above algorithm, since the
values in this region occur as part of many other cycles. This is an example of a local
outlier, which is an outlier only in relation to a few of its immediate (left and right)
neighbouring subsequences. In contrast, Definition 1 considered the entire sequence
and hence the resulting outliers can be called global outliers.

Definition 3. Let s be a given sequence. Let α = <si, si+1, …, sj> be a given
subsequence of s. Let 0 m n-1, k 1 be given integers. The set ΨL(m, k, α) of k
left neighbours of α contains the following k m-subsequences {<si-m-k+1,…,si-1>,…,<si-

m, si-k>}. The set ΨR(m, k, α) of k right neighbours of α contains the following k m-
subsequences {<sj+1,…,sj+m>,…,<sj+k, sj+k+m>}. We define the set of neighbours of α
as Ψ(m, k, α) = ΨL(m, k, α) ∪ ΨR(m, k, α).

For s = <3,5,4,6,8,9,5,5,4,6,3,5,6,2,5>, α = <5,5,4>, m = 3, k = 4, the set of 4 left
neighbours of α is ΨL(3, 4, α) = {<6,8,9>, <4,6,8>, <5,4,6>, <3,5,4>}; the set of 4
right neighbours of α is ΨR(3, 4, α) = {<6,3,5>, <3,5,6>, <5,6,2>, <6,2,5>}.

Definition 4. Let s be a given sequence. Let 0 m n-1, k 1 be given integers. Let
0 p 1 and D 0 be two given real numbers. An m-subsequence a of s is a (p, m,
D, k)-left-local-outlier (or, simply left outlier) in s if at least p% of the m-
subsequences in ΨL(m, k, a) are at a distance > D from a. Right outlier and local
outlier are defined similarly using ΨR(m, k, a) and Ψ(m, k, a).

 Distance-Based Outliers in Sequences 551

Fig. 2. Average number of sunspots per year

We now modify the algorithm to detect left local outliers in a given sequence;
algorithms to detect right outliers and local outliers are similar. The algorithm counts
how many of the k left neighbours of a particular candidate m-subsequence a are at a
distance > D from it. If this number is > M, where M is given by the user, then it
declares a as a left outlier. Our implementation offers a choice of various distance
measures to the user (e.g., Manhattan, Euclidean etc.). The complexity of the
algorithm is O(k*n) where n = size of the given sequence and k = the no. of
neighbours to be checked on the left side. For correctness, we state the following
without proof:

Proposition 5. Every m-subsequence declared as a left outlier by the algorithm
knorr_seq2 satisfies Definition 4. Conversely, every m-subsequence that satisfies
Definition 4 is declared as a left outlier by the algorithm, provided no subsequence
overlapping with it has already been declared a left outlier.

algorithm knorr_seq2
input sequence s of n elements;
input m, k, M, D;
for (i = 0; i <= (ps->N - m);) {
 for (j=i-m-k+1,count=0; j >= 0 && j+m-1 < i; j++) {
 d := d(<si,si+1,...,si+m-1>, <sj,sj+1,...,sj+m-1>);
 if (d > D) then count++; endif;
 } // end for
 if (count > M) then {
 printf("Left outlier: start=%d end=%d\n",i,i+m-1);
 i = i + m;
 } else
 i++;
} // end for

We have also extended the approach to detect inliers, such as those in Fig. 2.

4 Conclusions and Further Work

We proposed an extension of the distance-based outlier detection approach of [4] to
detect interesting subsequences of a given sequence. The essential idea is that

552 G.K. Palshikar

interesting subsequences can be modeled as outliers in the distance-based framework.
We presented two algorithms to detect both global and local outliers in a given time-
series data. An implementation provides a choice of several variants of these
algorithms, along with different types of distance (or similarity) measures. We
demonstrated the use of these algorithms to detect some interesting subsequences in
some example datasets. The first limitation of this approach is that the user has to
provide values for 3-4 parameters, which requires some experimentation. We are
looking at the use of machine-learning algorithms for automatically learning values
for these parameters, from a given set of already known interesting subsequences.
Also, the quadratic complexity makes the algorithms too slow for large time series
datasets. We are looking at the use of some well known index structures to improve
the efficiency. Though, in principle, our techniques should work well even with
multidimensional time series, we need to validate this on real-life time series. We are
conducting several experiments to compare our results with those reported by other
well-known algorithms for novelty detection in time series.

Acknowledgements

I would like to thank Prof. Mathai Joseph for his support and colleagues in TRDDC
for useful discussions and help. Sincere thanks to Dr. Manasee Palshikar for
providing the foundation for all my research work.

References

1. V. Barnett, T. Lewis, Outliers in Statistical Data, John Wiley and Sons, 1994.
2. D. Dasgupta, S. Forrest, “Novelty Detection in Time Series Data using Ideas from

Immunology”, Proc. 5th Conf. Intelligent Systems, 1996.
3. E. Keogh, S. Lonardi, B. Chiu, “Finding Surprising Patterns in a Time Series Database in

Linear Time and Space”, Proc. 8th ACM Int. Conf. Knowledge Discovery and Data Mining,
ACM Press, pp. 550 – 556, 2002.

4. E. M. Knorr, R. T. Ng, “Algorithms for Mining Distance-based Outliers in Large Datasets”,
Proc. VLDB Conf., 1998, pp. 392 – 403.

5. J. Ma, S. Perkins, “Online Novelty Detection on Temporal Sequences”, Proc. Int. Conf.
Know. Discovery Data Mining, Springer-Verlag, pp. 275 – 295, 2003.

6. S. Ramaswamy, R. Rastogi, K. Shim, “Efficient Algorithms for Mining Outliers from Large
Datasets”, Proc. SIGMOD2000, ACM Press, pp. 162-172, 2000.

7. C. Shahabi, X. Tian, W. Zhao, “TSA-Tree: A Wavelet based Approach to Improve the
Efficiency of Multilevel Surprise and Trend Queries”, Proc. 12th Int. Conf. Scientific
Statistical Database Management, pp. 55 – 68, 2000.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 553 – 560, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Capturing Market Intelligence from Customer Feedback
E-mails Using Self-enhancing Boltzmann Machine-Based

Network of Knowledge Maps

N. Pradeep Kumar and Tapati Bandopadhyay

Faculty Member, ICFAI Business School, Gurgaon-122016, Haryana, India
{pkgarg, tapati}@ibsdel.org

Abstract. With the proliferation of the Web, capture of market intelligence data
has become more difficult in reality from the system’s point of view, as data
sources on the web are voluminous, heterogeneous in terms of structures and
semantics, and some part of it may be irrelevant to a specific organizations’
marketing decision making context, which is the primary premises of market in-
telligence (MI) systems. To address these requirements of MI, we are proposing
a method for creating an MI network using customer feedback messages and e-
mails as inputs. We have proposed the use of knowledge map (KM) method for
representing textual and unstructured resources as a network using KMs and
clustering and then incrementally enhance itself as the new customer e-mails
keep coming. At last, we have proposed a self-enhancing network using
Bolzmann Machines concept where the new messages are treated as new hy-
potheses, and they get absorbed into the MI network based on their similarity
values.

1 Introduction

1.1 Market Intelligence

Market Intelligence is a specific functional form of Business Intelligence or BI. A
definition [10] on Business Intelligence says that it is a systematic and ethical pro-
gram for gathering, analyzing, and managing external information that can affect a
company's plans, decisions, and operations. It is also defined as the result of "acquisi-
tion, interpretation, collation, assessment, and exploitation of information" [5] in the
business domain. According to the report of Nucleus, a market research firm on IT, in
their research about Top 10 IT predictions for 2005, [10] on BI has emerged as the
first among the maximum sought-after solutions. Amongst various Business Intelli-
gence elements, Market Intelligence is one of the most significantly and practically
applied concept or tool. Gathering market intelligence (MI) is one of the critical op-
erational tactics for the marketing-strategic success of an enterprise. A study found
that the world produces between 635,000 and 2.12 million terabytes of unique infor-
mation per year, most of which has been stored in computer hard drives or servers [5].
Among these huge, heterogonous and unstructured data domain, one of the crucial
and valuable source of Market Intelligence for any company is the on-line customer

554 N.P. Kumar and T. Bandopadhyay

feedback system. Gathering customer feedback online through e-mails or form-based
interfaces is one of the most common activities that companies are engaged in doing
on the net, because it gives the customer the flexibility to communicate in an asyn-
chronous domain (which is not the case with the telephone calls) and also gives them
a platform to communicate in writing which is a more convenient way as perceived
by people for putting the problems or thoughts in a more structured fashion.

This customer feedback information – either in the form of e-mails or some struc-
tured textual form-based inputs, is a precious source of MI for any organization. In
this paper, we are thereby proposing a method for collecting market intelligence from
customer e-mails using Knowledge Maps as the Knowledge extraction and descrip-
tion mechanism, and incorporating a self-enhancing MI network. In contrast with
traditional knowledge portal methods where document-level technologies are quite
popular, our design uses the Knowledge Map method for extraction and collection of
Market Intelligence data, based on the concept developed and presented by the author
[3]. Consequently, we present the process of extracting market intelligence using
knowledge maps, which is generated by an information synthesis process and can
provide semantic services through various application interfaces and analytical or fil-
ter or enterprise-data search engines.

1.2 Collecting Market Intelligence: Sources and Tools

Generally, MI research and system development efforts have focused on storage and
data mining technologies. Data warehousing and on-line analytical processing (OLAP)
have typically been used to solve data extraction, transformation, data cleaning, storage,
and mining issues. Previous efforts have used document-based technologies and
supported document-level functions such as full text search, document classification,
and so on. Business practitioners have developed automated tools to support better
understanding and processing of information. In recent years, business intelligence tools
have become important for analysis of information on the Web [4]. Researchers have
also developed advanced analysis and visualization techniques to summarize and
present vast amount of information. It is [4] found that the global interest in intelligence
technology has increased significantly during the years of early twenty-first century.
Automated search capability in many tools has been shown to lead to information over-
load.[5] Despite recent Improvements in analysis capability [4], there is still a long way
to go to assist qualitative analysis effectively. Most tools that claim to do analysis
simply provide different views of collection of information {e.g. comparison between
different products or companies). Various [9] display formats were identified for
handling multi-dimensional data e.g. hierarchical displays- an effective information
access tool for browsing, network displays, scatter displays.. Regarding document
visualization, it primarily concerns the task of getting insight into information obtained
from one or more documents. Most processes of document visualization involve three
stages i.e. document analysis, algorithms, and visualization. Web content mining treats
a web document as a vector of weights of key terms [1]. He et al. [6] proposed an
unsupervised clustering method that was shown to identify relevant topics effectively.
The clustering method employed a graph-partitioning method based on a normalized cut
criterion. This method we are using in this paper to extract intelligence from customer
e-mails for creating an MI network using Knowledge maps.

 Capturing MI from Customer Feedback E-mails 555

1.3 MI Network Creation with Customer E-mails as Inputs

Aside from the document level operations, an effective Market Intelligence collection
system should combine extraction technology with semantics, and should generate a
network structure to store knowledge. In this section, we present these requirements
of an effective market intelligence collection system using customer feedback e-mails
as inputs. Towards this end, we first introduce the concept of Bolzmann machine as
an effective self-enhancing network to dynamically and incrementally capture MI
from e-mail inputs. Then we explain the process of creating high-dimensional
KMs(Knowledge Maps) from an existing e-mail repository, using similarity-based
clustering and graph partitioning methods, at say Time T0 when an organization starts
building it’s MI network. The high-dimensional KM network is then decomposed
into 2-D network using MDS or Multi-Dimensional Scaling. This network then ac-
cepts periodic incremental inputs from new e-mails from customers and gets self-
enhanced by the Bolzmann machine concept application.

1.4 Bolzmann Machine

Bolzmann machines are variations on the basic concepts of Hopfield Networks, [11]
which was initially proposed in the field of artificial intelligence, as a theory of mem-
ory supporting distributed representations (memory as a pattern of activations across a
set of processing elements), distributed and asynchronous control, content-
addressable memory and fault-tolerance. Pairs of units in a Hopfield network are con-
nected by symmetric weights and the units update their states asynchronously by
looking at their local connections to the other units. The Hopfield network works
well as content-addressable memories. They can also be used for constraint-
satisfaction problems where each unit can be thought as a ‘hypothesis’. [11] Then the
network can try to reach a state of equilibrium by adjusting weights as follow:

1. Place positive weights on connections between pair of units representing compati-
ble or mutually supporting hypotheses

2. Place negative weights on connections between pairs of units representing incom-
patible or in-conflict hypotheses.

By definition, Hopfield networks settle on a number of local minimum, which is
workable in case of content-addressable memory, but for hypotheses-based situations,
a global equilibrium is to be reached. Towards this end, the concepts of Hopfield net-
works were combined with that of simulated annealing- another AI algorithm for
searching and constraint satisfaction, and this effort produced the idea of Bolzmann
machines.

This concept can be exploited very effectively in case of creating and arranging an
organizational memory. The paper focuses primarily on the knowledge extraction as-
pect to build an organizational memory, initially from start-up, and then incremen-
tally. For starting up, we propose the creation of a knowledge map network where
every node can represent a hypothesis. During the initial build-up phase, the hypothe-
ses are tested on-build-process and are located as nodes in the knowledge map net-
work. This way the first organizational memory gets built up. Once it gets production
released, the incremental building starts with the Bolzmann machine concepts.

556 N.P. Kumar and T. Bandopadhyay

2 Creation of Initial MI Network Using Knowledge Map

In this paper, we are taking the form-based text inputs and e-mail messages from cus-
tomers as the primary knowledge resources to build up an MI network. Treating them
as unstructured documents, we can use co-occurrence analysis to find the similarities
and then consequently the dissimilarities between the messages/ text contents. Mes-
sage bodies which are very similar in terms of their contents i.e. many of the identi-
fied key-terms (i.e. Terms excluding the general terms like pro-nouns, prepositions,
conjunctions etc.)are same, can be clubbed up together to form a cluster. Dissimilar
message/ text bodies can be created as other clusters. These clusters can then form a
network using hierarchical and partitional clustering method to form a graph with the
nodes as representative knowledge maps for a particular group of emails with high-
similarity in their message body/text.

Co-occurrence analysis can convert data indices and weights obtained from inputs
of parameters and various data sources(i.e.the email/text message bodies in the con-
text of this paper) into a matrix that shows the similarity between every pair of such
sources.[6,7].

When measured between two e-mail message bodies, say Ei and Ej,

Simij = {A ij / |A|2 } + Sij / |S|2 + (1- –) Cij / |C|2 (1)

0< , (parameters) <1, 0 <= + <=1,
where A, S, and C are matrices for A ij, Sij, and Cij respectively. Values for Aij will be
1 if Ei has a direct link/ reference/ hyperlink to Ej, else 0. S is the asymmetric similar-
ity score Ei and Ej, and is calculated as follows:

 P n
 Sij = sim (Ei, Ej) = [[dki dkj] / [d2

di]]

 k=1 k=1

(2)

where n is total number of terms in Ei, m is total number of terms in Ej , p is total
number of terms that appear in both Ei, and Ej., dij = (Number of occurrence of term j
in Ei) X log((N/dfj)Xwj)X(Termtype factor); dfj is number of Email message-bodies
containing term j; wj is number of words in term j; Termtype factor = 1 + ((10-2 X
typej / 10), where typej = min 1 if term j appears in subject, 2 if it appears in body, 3 if
it appears in ‘note’ etc.) and Cij is number of Es pointing to both Ei and Ej (co-
citation/ cross-referencing matrix).

Once we get the similarity and dissimilarity matrices for the initial build-up phase
using an existing repository of e-mails as the knowledge resources, we create a graph
and then partition it to form a network of nodes where the nodes are the representative
clusters of a group of emails having high similarity scores among them. Partitioning
of a graph, say G, can be done in various ways, for example, by using similarity
measures as below: [11,12].

Normalized Cut (x) ={cut between (A, B)/ assoc(A, V)}+{cut between (A, B)/
assoc (B,V)}

(3)

 Capturing MI from Customer Feedback E-mails 557

where, Cut between (A,B) = i€A, j€B Simij , Simij is similarity between nodes i and j of
the graph. Assoc(A,V) and assoc(B,V) shows how on average nodes within a group
are connected to each other. A cut on a graph G = (V, E) is defined as removal of a set
of edges such that the graph is split into disconnected sub-graphs. [2,3].

Once the high-dimensional network is created, it can be reduced to a 2-D form us-
ing Multi-Dimensional Scaling or MDS. Multidimensional scaling (MDS) algorithms
consist of a family of techniques that portray a data structure in a spatial fashion,
where the coordinates of data points xia are calculated by a dimensionality reduction
procedure. The distances (dij) are calculated as follows:

 dij = [{xia – xja }
p]1/p (p >= 1), xia

 <> xja (4)

where, p is the Minkowski exponent and may take any value not less than 1. r is the
coordinate of point on dimension a, and j is an r-element row vector from the ith row
of the matrix containing all n points on all r dimensions. The MDS procedure con-
structs a geometric representation of the data (such as a similarity matrix), usually in a
Euclidean space of low dimensionality (i.e. p = 2). MDS has been applied in many
different domains[8] It can be implemented using the following steps. First, Similarity
matrix is to be converted into a dissimilarity matrix by subtracting each element by
the maximum value in the original matrix. This matrix can be called as dissimilarity
matrix D. Then matrix B with elements bij which is a scalar product is to be calculated
as follows:

 n n n n
bij = - 1/ 2 [dij

2 – 1/n dik
2 – 1/n dkj

2 + 1/n2 dgh
2]

 k=1 k=1 g=1 h=1

(5)

where dij is an element in D, n= number of nodes in the data-source graph.
After calculating B, singular value decomposition is performed using the formula

as below:

B= UxVxU' , X = U X V1/2 (6)

where, U has eigenvectors in its columns and V has eigenvectors on its diagonal B
can then be expressed as B = X x X'.

The first two column vectors of X thus calculated now can be used to obtain the
two-dimensional coordinates of points.

Using this process along with MDS, suppose we get a network built up as shown
below in Figure 1 based on the similarity and dissimilarity scores among the existing
customer-e-mail repository.

Once the initial build-up phase is over and the initial MI network is created from
an existing repository of e-mail messages, it should be incrementally self-enhancing
with periodic incremental inputs from the e-mail repositories. This is where we
propose the use of Bolzmann Machines. Suppose n number of customer messages is
to be fed onto the initial MI network as shown in Figure 1. Now, each e-mail message
is treated as a new hypothesis (as explained in previous section on Bolzmann
Machines). All the nodes (clusters) of the existing network are also treated as hy-
potheses but they are already tested hypotheses which have been included and used
for building up the initial network. Each new hypothesis is tested with all the existing

558 N.P. Kumar and T. Bandopadhyay

Fig. 1. Initial MI Network using Knowledge Maps with Existing e-mail Repository

hypotheses or nodes. The network places similarity scores as weights on connections
between pair of hypotheses which are compatible or mutually supporting. The in-
compatible ones get 0 similarity score, so there is no connection or edge between
them.

Fig. 2. An Existing Network w.r.t. a New Message

These steps are explained as shown in figure 3 below. Suppose a new e-mail Mi
has come to be fed into the MI network

Existing Network
New e-mail/ form
inputs

Mi

7

5

3

4
5

1
0

2

Fig. 3. Similarity and Dissimilarity Value assignment in An Existing Network w.r.t. a New
Message

For Mi, it’s similarity score with all the existing nodes will be calculated. Say the
scores are as shown in Figure 4.

Existing e-mail repository based
MI network

Existing network New e-mail/ form
inputs

Mi

 Capturing MI from Customer Feedback E-mails 559

If for Mi, the maximum positive value (similarity score) over it’s edges with the
existing nodes m, say, with existing node j is Wij , then

• If Wij is more than a given threshold value, Mi will be included in node j.
• If Wij is less than the given threshold value, Mi will be represented as a new node

creating another cluster in the network.

Using these principles, If the similarity threshold is given as +8, then Mi will be in-
cluded in the node for which the edge has the maximum value i.e. =10 and the value
is higher than the threshold value.

If the similarity threshold value is given as +12, then the maximum value of edges
between new node Mi and existing nodes 1 to j = +10, is lower than the threshold
value. So, Mi will create a new node and a new cluster will be created centering on
Mi. It will be positioned in the graph using the principles of graph partitioning as
mentioned previously, and the resulting network may take the shape as shown below
in Figure 4:

Enhanced network

Fig. 4. Enhanced Network in case of similarity threshold value greater than the maximum value
of edges

This process will be repeated with all the n new input messages. The weights can
be dynamically adjusted as all the n messages are input and tested. Ultimately at the
end of one incremental phase with n email messages, the network will have the new
hypotheses included in the MI network.

3 Conclusion

The process of creating a market intelligence network as a form of MI repository in an
organization, as explained in this paper, is simple and easily implemented. Further
extensions may include exploring various other knowledge map creation mechanisms
including the GA approaches and extrapolating the Knowledge maps into the analyti-
cal systems required for analyzing and visualizing the Market intelligence data. It can
also be extend to incorporate various other MI inputs or resources other than customer
e-mails, to create a more comprehensive MI network for an organization.

560 N.P. Kumar and T. Bandopadhyay

References

1. Bowman. C.M, Danzig. P.B., Manber. U.(1994); Schwartz, F'. Scalable Internet resource
discovery: Research problems and approaches. Communication of the ACM. Vol 8 . pp 98-
107.

2. Chen. H.; Chung, Y.; Ramsey. M.; and Yang. C.(1998) A smart itsy bitsy spider for the
Web. Journal of the American Society far Information Science. 49. 7, 604-618.

3. Chen, H.; Fan. H.; Chau. M.; and Zeng, D.(2001) Meta Spider: Meta searching and cate-
gorization on the Web. Journal of the American Society for Information Science and
Technology. 52, 13, 1134-1147.

4. Fuld, L.M.: Singh. A.: Rothwell. K.; and Kim, J.(2003) Intelligence Software Report™
2003: Leveraging the Web. Cambridge. MA: Fuld & Company.

5. Futures-Group Ostriches & Eagles. The Futures Group Articles, Washington, DC, (1997)
(available at www.futuresgroup.com).

6. He. X.; Ding. C; Zha. H.; and Simon, H. (2001) Automatic topic identification using Web-
page clustering. In X. Wu. N. Cercone, TY. Lin, J- Gehrke. C. Clifton. R. Kotagiri. N.
Zhong. and X. Hu (eds,). Proceedings of the 2001 IEEE International Conference on Data
Mining. Los Alamitos. CA: IEEE Computer Society Press. 2(X)I. pp, 195-202.

7. He, Y, and Hui. S.C. (2002) Mining a Web citation database for author co-citation analy-
sis. Information Processing and Management. 38. 4. 491-508.

8. Kealy, W.A.(2000) Knowledge maps and their use in computer-based collaborative learn-
ing. Journal of Educational Computing Research, 25. 4. 325-349.

9. Lin, X.(1997) Map displays for information retrieval. Journal of the American Society for
Information Science. 4H. 1, 40-54.

10. Nucleus Report on Top 10 IT Spending for 2005: Survey of CIOs in MNCs:Survey Report
March 2005 by Nucleus Research, http://www.nucleus.com/surveys/2005.

11. Rich E., Knight K.(2001), Artificial Intelligence, Tata McGrawHill Publishing Company
Ltd, N. Delhi.

12. Shi. J., and Malik. J.(2000) Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence. 22. S (2(X)0), 8S8-905.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 561 – 572, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Algorithm for Fuzzy Clustering of Mixed Data with
Numeric and Categorical Attributes

Amir Ahmad1 and Lipika Dey2

1 Solid State Physics Laboratory,
Timarpur, Delhi 110054, India

amirahmad01@rediffmail.com
2 Department of Mathematics,

I.I.T., Hauz Khas, New Delhi 110016, India
lipika@maths.iitd.ernet.in

Abstract. In many applications numeric as well as categorical features describe
the data objects. A variety of algorithms have been proposed for clustering if
fuzzy partitions and descriptive cluster prototypes are desired. However, most
of these methods are designed for data sets with variables measured in the same
scale type (only categorical, or only numeric). We have developed probabilistic
distance measure to compute significance of attributes for numeric data, and
distance between two categorical values. We used this distance measure with
the cluster center definition proposed by Yasser El-Sonbaty and M. A. Ismail
[26] to propose Fuzzy-c mean type clustering algorithm for mixed attributes
data. The results of the application of the new algorithm show that new
technique is quite encouraging.

1 Introduction

Clustering involves partitioning a set of data points into non overlapping groups, or
clusters of points where points in a cluster are “more similar” to one another than to
points in other clusters. Clustering is one of the principal techniques in the field of
data mining [1], data compression [2], information retrieval [3], web mining [4] and
many others. In the real world, a majority of the data is described by a combination of
numeric and categorical data. K-means algorithm [5] is one of the most popular
clustering algorithms used in scientific and industrial applications because of its
simplicity and efficiency. While K-means gives satisfactory results for numeric
attributes it is not appropriate for data set with categorical attributes since it is not
possible to find mean of categorical values. Although the standard hierarchical
clustering methods ([6], [7], [8]) can handle data with numeric and categorical
attributes they are not very useful for large data set because of its high computational
cost. Similarity Based Agglomerative Clustering (SBAC) algorithm [9] based on
Goodall similarity measure [10] works well with mixed numeric and categorical
features but has high computational cost. Conceptual clustering algorithms developed
in machine learning, cluster with categorical values. Conceptual clustering systems
([11], [12]) use conditional probability estimates as a means for defining the relation

562 A. Ahmad and L. Dey

between groups or clusters. System like COBWEB [11] and its derivatives (e.g.,
COBWEB/3 [13]; ECOWEB [14]; ITERATE [15]) use the Category Utility (CU)
measure [16]. AUTOCLUSTER [17] imposes a clusterical finite mixture distribution
model on the data and uses a Bayesian method to drive the most probable cluster
distribution for the data given prior information (PI). For problems in data mining,
which often involves many concepts and very large object spaces, the concept-based
search can become a potential handicap for conceptual clustering algorithms to deal
with extremely large dataset. Huang [18] proposed an algorithm based on K-mean
algorithm philosophy to cluster mixed data.

Fuzzy c-means (FCM) proposed by Dunn [19] and extended by Bezdek [20] is one
of the most well known methodologies in clustering analysis. Basically FCM is
dependent of the measure of the distance between samples. For pure numeric data
sets, FCM uses the common Euclidean distance, which take equal importance of each
feature. This assumption seriously affects the performance of FCM since in most real
data sets, features are not equally important. In [21] the authors stated that the
Euclidean distance can give good results when all clusters are spheroids with same
size are when clusters are well separated. Krishnapuram and Kim [22] have proposed
Mahalanobis distance as the metric in FCM. Recently a gradient descent learning
technique [23] has been proposed to compute feature-weights that can improve the
performance of FCM clustering. But this improvement is at the price of feature-
weight learning which has O(cn2) time complexity where c is constant and n is
number of data objects.

Based on the philosophy of FCM Huang and Ng [24] developed fuzzy K-mode
algorithm for categorical data with binary distance measure and hard centroid.
Recently a fuzzy clustering algorithm has been developed [25] with fuzzy centroid
that shows improvement over fuzzy K-mode algorithm. Yaser El-Sonbaty and M. A.
Ismail [26] developed an algorithm for Fuzzy clustering for symbolic data(Fuzzy
symbolic c-means algorithm). They proposed a concept of cluster center for mixed
data in their work. For categorical data the center computed using their method are the
same as kim et al. [25] fuzzy centroid concept. In their paper Yaser El-Sonbaty and
M. A. Ismail [26] presented a framework for fuzzy clustering for mixed data. They
suggested that weight associated with the features are calculated heuristically or using
some optimization routines.

Amir and Lipika [27] have proposed a K-mean type clustering algorithm for
dataset having numerical and categorical attributes, that compute distance between
two categorical attribute values for the categorical attributes and significance of
attributes for the numeric attributes We have extended this algorithm for fuzzy
framework. This paper has following organization. Section 2 reviews the fuzzy c-
mean clustering algorithm. Section 3 shows how to compute distance between two
categorical attributes values and significance of attributes for numeric attributes.
Section 4 addresses the problem of computing center for categorical attributes and the
distance between data object and center (which will be called modified center).
Section 5 describes the proposed algorithm. We present the experimental results in
section 6. Section 7 summarizes our contribution and describes directions for future
work.

 Algorithm for Fuzzy Clustering of Mixed Data 563

2 Fuzzy c- Mean Clustering Algorithm

Fuzzy c-means (FCM) proposed by Dunn [19] and extended by Bezdek [20] is one of
the most well known methodologies in clustering analysis. We can describe FCM as
follows for data set having n data objects, s attributes, K clusters, Fuzzy partition
matrix U = (uij)nXK . FCM partitions a set of n-dimensional vectors X= { X1, X2, …, Xn}
into K clusters where Xi = {xi1,…,xim} represents the ith sample for i=1,…,n. FCM aims
to determine cluster centers vj (j =1,2,…., K) where vj={vi1,vi2,…,vjs} and the fuzzy
partition matrix U by minimizing the objective function J defined as follows:

J =
=

K

j 1 =

n

i 1

(uij)
mdij (m is used defined real number, m≠ 1,) (2.1)

subject to
=

K

j 1

 uij = 1 , i = 1,2, . . ., n

For numeric data vj is computer in following manner.

vjp =
=

n

i 1

 (uij)
m Xip/

=

n

i 1

 (uij)
m (for numeric data)

where dij is the distance from sample Xi to cluster center vj(Normally Euclidean
distance is used for numeric data). The computation of dij is different for numeric
data and categorical data.

uij= 1/ (
=

K

k 1

(dij/ dkj)
1/(m-1)) (2.2)

The steps for FCM based algorithm are following

Step 1- Choose a threshold value ε. Initialize the fuzzy partition matrix U by
generating nxK random numbers in the interval [0,1].
do
Step 2- Compute vj (1<=j<=K) cluster center.
Step 3- Compute all dij and then all uij . Thus update the fuzzy partition matrix U by
the new computed uij using (2.2).
Step 4- Compute the objective function J by using (2.1).

While(the difference between two adjacent computed values of objective function J is
more than the given than the given threshold ε).

3 Distance Between Two Categorical Values (δ(x,y))

Huang and Ng [24] developed fuzzy K-mode algorithm for categorical data with
binary distance measure. Kim et al. [25] developed fuzzy clustering algorithm with
fuzzy centroid for categorical data. They also used binary distance measure. They
took the value equal to δ(x,y)=1 for x≠y. and δ(x,y)=0 for x=y. In our proposed
algorithm δ(x,y) is not to be either 0 or 1 rather it depends upon the distribution of
data objects in different clusters. Since distribution of data objects in different clusters
changes until clusters stabilize, δ(x,y) changes values between iteration.

564 A. Ahmad and L. Dey

Amir and Lipika [27] proposed new distance measure between pair of categorical
values for same attribute for K- mean type algorithm for the mixed data. We have
extended that approach for FCM. Amir and Lipika [27] suggested that the distance
between two categorical attribute values can be computed in following way.

Let us assume that x and y are two categorical values of ath attribute which is
categorical attribute.

δ(x,y)= (1/K)(
=

K

c 1

| (Na,x,c- Na,y,c)/ Nc |)

Na,x,c is the number of data objects in Dataset that have the value x for the ath attribute
and the data object belongs to cluster c.
Nc is the number of data objects in Dataset that belong to cluster c.
(1/K) term is introduced to make δ(x,y) between 0 and 1. δ(x,y) can take any value
between 0 and 1.
Some of the properties of δ(x,y)

1- 0<=δ(x,y)<=1
2- δ(x,y)= δ(y,x)
3- δ(x,x)=0

Table 3.1. Dataset

Data Object Attribute value for
1st attribue

Membership
For cluster C

Membership
For cluster C’

1 α 0.3 0.7
2 α 0.6 0.4
3 β 0.4 0.6
4 α 0.2 0.8
5 β 0.3 0.7
6 β 0.9 0.1

For FCM type algorithm where membership of data objects is fuzzy we can
compute Na,x,c, which we will call association of value x for the ath attribute with
cluster c, in following way

Na,x,c =
=

n

i 1

 l(x=a)(uij)
m (jth cluster is c)

where l(x=a) = 1 for data objects having ath attribute
 value = x
 = 0 for data objects having ath attribute
 value ≠ x

Nc is computed in following manner.

Nc =
=

n

i 1

 (uij)
m (where jth cluster is c)

 Algorithm for Fuzzy Clustering of Mixed Data 565

For data set given in Table 3.1, computation of Na,x,c is shown for attribute value α
belonging to attribute 1 and cluster C,

N1,α,C = (0.3)m + (0.6)m + (0.2)m.

3.1 Significance of Attributes for the Numeric Attributes

Another potentially useful concept is significance of the numeric attributes, which is
important not only for the numeric datasets but also for the mixed datasets. Numeric
attributes contribute differently for the cluster decision so we need to know the
significance of attributes. To compute the significance of numeric attribute, we
discretize the numeric attribute. Suppose we have S intervals each of the intervals can
be taken as one categorical attribute value. We compute δ(x,y) for every pair of
values. Intuitively if δ(x,y) value is high for most of the pairs the attribute will be
significant. The average value of δ(x,y) for all pairs will be taken as significance of
the attribute. For the categorical attributes we do not need computation of significance
of the attribute because it is included in the distance between two categorical values.

4 Modified Center and the Distance from the Modified Center

The problem with Fuzzy c-means algorithm for categorical data set is that we cannot
find the mean of categorical values. For categorical attributes the mean is replaced by
the mode. Since we are taking only one attribute value as a representation of cluster
for that categorical attribute. There will be information loss. In our proposed
algorithm we have used the cluster center concept proposed by Yasser El-Sonbaty
and M. A. Ismail [26]. We define center C for given cluster c for ath categorical
attribute as

1/Nc {(Na, Aa,1,,cAa,1), (Na, Aa,2, cAa,2),… , (Na, Aa,h,cAa,h)} (4.1)

Aa,p is the pth attribute value of ath atrribute

Na,Aa,p ,c is association of value Aa,p for the ath attribute with cluster c
h is the number of distinct attribute values in ath attribute

where Nc =
=

n

i 1

 (uij)
m (where jth cluster is c)

method to compute Na,Aa,p ,c is described in section 3.
For data set with one-dimensional categorical data, the distance between data

objects with attribute value X and center C for given cluster c (Eq. (4.1)) can be
defined as

Ω (X, C) = (1/Nc)((Na,Aa,1,cδ(X,Aa,1) + (Na, Aa,2,cδ(X,Aa,2)+…+ ((Na, Aa,h,,cδ(X,Aa,h))
(4.2)

δ(x,y) is computed by the method as suggested in section 3.
For the numeric data the mean is computed in following way. Assume we have n

objects X1, X2, . .,Xn belonging to cluster center center j with degree of membership
u1j, u2j,. . . unj.

566 A. Ahmad and L. Dey

For pth attribute which is numeric cluster center for cluster j is calculated in
following manner,

Cjp =
=

n

i 1

 (uij)
m Xip/

=

n

i 1

 (uij)
m (4.3)

For mixed data set with s attributes (sr numeric attributes, sc categorical attributes,
s= sr + sc) We define the distance between Di data object and Cj the cluster center as

(dij)
2=

=

rs

1t

 (wt (Dit
r – Cjt

r))2 +
=

cs

1t

(Ω (Dit
c, Cjt

c))2 (4.4)

Dit
r are values of the numeric attributes. Whereas Dit

c are values of the categorical
attributes for data object Di. Here Cj=(Cj1, Cj2,…,Cjs) is the representative vector for
cluster j. Cjt

r represents mean of numeric attribute t and cluster j. Cjt
c is modified

center for jth cluster as defined above for tth categorical attribute. For the numeric
attribute we have Euclidean distance measure with wt term, which defines the
significance of attribute of tth attribute(feature weight). For the categorical attributes
we use the distance measure defined in Eq. 4.2. For numeric distance we take
normalized distance to keep every numeric attribute on same scale (between 0 and
1). The distance between any two-attribute values will be between zero and one. It
will be true for every attribute whether it is numeric attribute or categorical
attribute.

5 Our Proposed Algorithm

Our proposed algorithm Fuzzy_clustering has following steps.

Fuzzy_Clustering()
Choose a threshold value ε. Initialize the fuzzy partition matrix U by generating nxK
random numbers in the interval [0,1].

Do

For every categorical attribute
Compute distance δ(p,q) between every pairs of categorical values p and q using
distribution of data objects in different clusters.

For every numeric attribute
Compute significance of attribute using distribution of data objects in different
clusters.
Compute vj (1<=j<=K) modified cluster center.
Compute all dij using eq. 4.2 and then all uij . Thus update the fuzzy partition matrix
U by the new computed uij .
Compute the objective function J by using (2.1).

While (the difference between two adjacent computed values of objective function J is
greater than the given than the given threshold ε).

 Algorithm for Fuzzy Clustering of Mixed Data 567

5.1 Complexity of the Algorithm

The proposed algorithm has following steps for each iteration,

(a) Computation of the distance between two categorical attributes values- This step
needs reading of two columns (attribute column, class column) s times where s is the
number of attributes. This will take sn steps where n is the number of data objects.
Computation of the distance between two categorical attributes values after reading
will at most take S2Ks steps where S is the maximum number of distinct attribute
values, K is number of classes hence the total steps will be O(sn + S2Ks).
(b) Computation of distance between data object and modified center

(i) For the numeric attributes it will take sr steps where sr is the number of
numeric attributes.

 (ii) For the categorical values it will take at most scS steps where sc is the
number

 of categorical attributes and S is the maximum number of distinct attribute
values.
(c) Step b is to be repeated K times since we are computing distance for K modified
centers.
(d) Steps b and c will be repeated for n data objects.

Total number of steps will be nK(sr + scS) for steps b, c and d.
For each iteration computation will take O(sn + S2Ks + nKsr + nKscS). If there are

p iterations, computational cost of this algorithm is O(p(sn + S2Ks + nKsr + nKscS))
which is linear with respect to number of data objects.

6 Experiments

In this paper we proposed concepts of new distance measure between data point and
modified center for mixed data.We used normalization scheme presented in [28] for
numeric attributes. For ith attribute and jth pattern normalized value of xij is kij

where kij = (xij-xi,min)/ (xi,max-xi,min)

(xi,min , xi,max are minimum and maximum values of ith attribute respectively)
We used equal width discretization (interval = Range of the attribute values of Ai /

Number of distinct intervals of attribute Ai (S)) for the converting numeric data into
categorical data to compute significance of the numeric attributes. We have taken the
value of S=5 unless specified otherwise. We used algorithm proposed in section 5 to
cluster four data sets Iris (numeric), Soybean (categorical), DNA(categorical) and
Cleveland heart disease (mixed data) to see the effectiveness of our proposed
algorithm. These data were taken from UCI repository (http://www.sgi.com/tech/mlc/
db). Value of m is taken as 1.8 for all experiments for our proposed algorithm. We
compared our results with different algorithms (mostly Fuzzy c-mean type
algorithms) that are used for different types of datasets (pure numeric dataset, pure
categorical dataset, mixed dataset).

568 A. Ahmad and L. Dey

6.1 Iris Dataset

It has 150 data objects defined by 4 numeric attributes. These data objects are equally
distributed in 3 classes (Iris Setosa, Iris Versicolour and Iris Virginica) with Iris
Versicolour, Iris Virginica classes are having some overlap. For the numeric data set

our distance function will become (dij)
2 =

=

rs

1t

(wt(dit
r – Cjt

r))2 . This is similar to

Euclidean distance cost function for FCM. The only difference is inclusion of weight
function wt in our proposed cost function. It is quite logical because every attribute
contribute differently towards the cluster assignment. We carried out clustering 100
times and average clustering results are shown in table 6.1. Clustering results suggest
significantly improved results with our proposed algorithm as compared to FCM.
This suggests the importance of inclusion of significance of attributes in cost function.
It also shows the slight improvement over WFCM [23] in which feature weight
learning has O(cn2) time complexity. In our proposed algorithm Feature-weight
changes in every iteration, We computed the average feature weight in last iteration of
100 runs. Comparative results with other algorithms are presented in table 6.1.

Table 6.1. Clustering results for Iris data

Algorithm Feature - Weight Error rate

FCM 1, 1, 1, 1 15/150
WFCM[23] 0.0001, 0.0002, 1.0, 0.164 8/150

Our proposed algorithm 0.629, 0.597, 0.856, 0.804 6/150

6.2 Soybean Dataset

It is pure categorical data. It contains 47 data points on disease in soybean. Each data
point has 35 categorical attributes and is classified as one of the following four
diseases: Diaporthe Stem Canker, Charcoal Rot, Rhizoctonia Root Rot and
Phytophthora Rot. Phytophthora Rot has 17 data, and rest three other disease have 10
data each. Clustering results of various algorithms are given in table 6.2. Each
algorithm was run 100 times. Clustering results in table 6.2 shows the performance of
our algorithm is better than K-mode [29], Fuzzy K-mode [24] (m= 1.1) and Fuzzy
clustering with fuzzy centroids [25] (m= 1.8) algorithms.

Table 6.2. Clustering results for Soybean data set

Algorithm Number of time we get
correct classification

K-mode [29] 12/100
Fuzzy K-mode [24] 15/100

Fuzzy clustering with
fuzzy centroids [25]

87/100

Our proposed algorithm 92/100

 Algorithm for Fuzzy Clustering of Mixed Data 569

6.2.1 Classification of Boundary Data
One of the most difficult problems in clustering is the classification of boundary data
objects. To investigate the clustering of the boundary data objects by the last two
algorithms considered above, we examined four boundary data (in most of the runs K-
mode algorithm and Fuzzy K-mode algorithm fail to cluster the data points correctly)
obtained from the clustering results of the Soybean data set. In table 6.3 the distance
between the data and centroid are listed. We may observe (we have highlighted the
distance between the data objects and the nearest cluster center and the second nearest
cluster center) that although both algorithms cluster boundary data objects correctly,
with our proposed distance measure we can classify data objects in different cluster
more easily. That improves clustering results.

Table 6.3. Distance between boundary data objects and cluster center

Distances between data object and Cluster center Algorithm Data
(Di) Distance

from 1st
cluster
center

Distance
from 2nd

cluster
center

Distance
from 3rd
cluster
center

Distance
from 4rt
cluster
center

Allotted
Cluster

D3 6.86 12.94 11.43 11.43 1

D23 10.70 15.27 8.32 8.36 3
D25 9.99 14.34 7.64 7.67 3

Fuzzy
clustering
with fuzzy
centroids

[25]
D29 11.31 15.25 10.13 10.17 3

D3 1.14 4.89 4.26 4.53 1

D23 4.64 5.85 1.03 3.58 3
D25 4.40 5.68 1.03 3.36 3

Our
proposed
Algorithm

D29 4.38 5.64 2.05 4.21 3

6.3 DNA Dataset

It is pure categorical data. It has 3186 data objects, which is defined by 60 DNA
sequence elements (A, C, G, T). These data objects are devided into three categories,
intron(767), exon(765) and none(1654). Each algorithm was run for 100 times. With
K-mode and Fuzzy K-mode we could not find any reasonable clustering. Performance
of our proposed algorithm was better than Fuzzy clustering with fuzzy centroids [25]
algorithm(table- 6.4).

6.4 Heart Disease Dataset

This data generated, at the Cleveland Clinic, contains a mixture of categorical and
numeric features. This data set consists of 303 patients instances defined by 13
features. Five of these are numeric valued features, and eight are categorical-valued

570 A. Ahmad and L. Dey

features. It has two classes, normal (164) and heart patient (139). Li et al. [9]
presented a Similarity Based Agglomerative Clustering (SBAC) algorithm for mixed
data. They used heart disease data to show the effectiveness of their algorithm.
Comparison with other algorithm ECOWEB [14] is also shown in their paper. They
used static method (Expected range of the attribute values of Ai / Expected number of
distinct intervals of attribute Ai (n)) and n=8 to compute the interval for ECOWEB.
We took those published results for comparison. We used equal width discretization
to compute significance of attributes for numeric attributes. Average number of
distinct attributes values(for categorical attributes) is taken as number of intervals,
which is ≈3 for heart disease data set. We executed our clustering algorithm 100
times. Table 6.5 shows the clustering results obtained by using Similarity Based
Agglomerative Clustering (SBAC) [9], ECOWEB [14], Huang’s Algorithm [18] and
proposed algorithm. Comparative study reveals that the clustering result obtained by
our proposed algorithm is comparable with the results obtain with computationally
costly SBAC and ECOWEB and much better than Huang’s Algorithm.

Table 6.4. Clustering results for DNA dataset

Algorithm Number of data objects
correctly classification (%)

K-mode [29] 36.3
Fuzzy K-mode [24] 38.4

Fuzzy clustering with fuzzy
centroids [25]

61.5

Our proposed algorithm 74.7

Table 6.5. Clustering results for heart dataset

Algorithm Number of data objects correctly
classification (%)

SBAC [9] 75.2
ECOWEB [14] 73.9

Huang’s Algorithm [18] 58.3
Our proposed algorithm 74.6

7 Conclusion

A fuzzy c-mean type clustering algorithm has been developed to cluster mixed data
with numeric and categorical data. This clustering algorithm also works well for pure
numeric or pure categorical data. We have proposed a probabilistic distance measure to
compute the distance between two categorical values that will depend on distribution
of data objects in different clusters. Using this concept we can compute feature weight
for the numeric attributes in linear time. Comparative study with other clustering
algorithms (mostly Fuzzy c-mean type algorithms) illustrates the effectiveness of this
approach.

 Algorithm for Fuzzy Clustering of Mixed Data 571

References

1. Fayyad, U. M, Piatesky-Shapiro, G., Smyth, P., Uthurusamy R.:Advances in
Knowledge Discovery and Data Mining. AAA1 press, 1996.

2. Gersho and Gray Vector Quantization and Signal Compression. KAP, 1992.
3. 3. Can, F., Ozkarahan,E.:A Dynamic Cluster Maintenance System for Information

Retrieval. In Proceedings of the Tenth Annual International ACM SIGIR Conference,
(1987), pp. 123-131.

4. Arotaritei, D., Mitra, S. : Web mining: a survey in the fuzzy frame work. Fuzzy Sets and
Systems, Volume 148, Issue 1,(2004), Pages 5-19.

5. MacQuuen, J. B.:Some Methods for Classification and Analysis of Multivariate
Observation, In Proceedings of the 5th Berkley Symposium on Mathematical Statistics and
Probability, (1967), pp 281-297.

6. Gower., J. C.:A General Coefficient of Similarity and Some of its Properties BioMetrics,
27, (1971), pp. 857-874.

7. Jain, A.K., Dubes, R. C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliff,
New Jersey, 1988.

8. Everitt, B.:Cluster Analysis. Heinemann Educational Books Ltd, 1974.
9. Li, C., Biswas, G.: Unsupervised Learning with Mixed Numeric and Nominal Data. IEEE

Transactions on Knowledge and Data Engineering, vol. 14, no. 4, (2002), pp. 673-690.
10. Goodall, D. W.: A New similarity Index Based on Probability. Biometric, Vol.

22, (1966), pp.882-907.
11. Fisher, D. H.:Knowledge Acquisition Via Incremental Conceptual Clustering. Machine

Learning, 2(2)(1987) pp. 139-172.
12. Lebowitz, M.: Experiments with Incremental Concept Formation, Machine Learning 2(2),

(1987), pp.103-138.
13. McKusick, K., Thomson, K.: COBWEB/3: A portable Implementation. Technical Report

FIA-90-6-18-2. NASA Ames Research Center. 1990.
14. Y. Reich and S. J. Fenves, The Formation and Use of Abstract Concepts in Design.

Concept formation: Knowledge and Experience in Unsupervised Learning, D.H. Fisher,
M. J. Pazzani, and P. Langley, (Editors)(1991) pp. 323-352, Los Altos, Calif: Morgan
Kaufmann.

15. Biswas, G., Weingberg J., Fisher, D. H.: ITERAE: A Conceptual Clustering Algorithm for
Data Mining. IEEE Trans. Systems, Man, and Cybernetics, vol. 28C (1998) pp.219-230.

16. Gluck, M., Corter, J.: Information, Uncertainty, and the Utility of Categories.
Proc. Seventh Ann. Conf. Cognitive Soc., (1985) pp. 283-287.

17. Cheesman, P., Stutz, J.: Baysian Classification (AUTO-CLASS): Theory and Results.
Advances in Knowledge Discovery and Data Mining .1995.

18. Huang, Z.: Clustering Large Data sets with Mixed Numeric and Categorical Values, In
Proceedings of The First Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Singapore. World Scientific, 1997.

19. Dunn, J. C.: Some recent investigations of a new fuzzy algorithm and its application to
pattern classification problems. J. Cybernetics 4(1974) 1-15.

20. Bezdek, J. C.:Pattern recognition with fuzzy Objective Function algorithms, Plenum, New
York, 1981.

21. Zhao, S. Y.: Calculus and Clustering. China Renming University Press, 1987.
22. Krishnapuram, R., Kim, J.: A note on the Gustafsno-Kessel and adaptive fuzzy clustering.

IEEE Trans. Fuzzy Syst., 7, (1999) pp. 453-461.

572 A. Ahmad and L. Dey

23. Wang, X., Wang Y., Wang L.: Improving fuzzy c-means clustering based on feature-
weight learning, Pattern Recognition Letters 25 (2004) pp.1123–1132.

24. Huang, Z.,. Ng, M. K : A fuzzy k-modes algorithm for clustering categorical data. IEEE
Trans. Fuzzy Systems, 7(4). 1999.

25. Kim Dae-Won, Lee, K. H., Lee, D.:Fuzzy Clustering of categorical data using fuzzy
centroids, Pattern recognition Letters, 25(2004) pp.1263-1271.

26. Sonbaty ,Yaseer Ei, M. A Ismail,: Fuzzy Clustering for Symbolic data. IEEE Transaction
on Fuzzy Systems, Vol. 6, No. 2. 1998.

27. Ahmad, A., Dey, L.:A K-means Clustering Algorithm for Mixed Numeric and Categorical
Data Set Using Dynamic Distance Measure, Proc. of Fifth International Conference on
Advances in Pattern recognition, ICAPR2003, 2003.

28. Witten H. I., Frank, E.:Data Mining Practical Machine Learning Tools and Techniques
with Java Implementation. San Fransisco, CA: Morgon Kaufmann Publishers. 2000.

29. Huang, Z.:Extensions to the K-modes algorithm for clustering large data sets with
categorical values, Data Min. Knowl. Dis. 2(3),1998.

Dissemination of Multidimensional Data Using
Broadcast Clusters

Ilias Michalarias1,2 and Hans-J. Lenz1

1 Institute of Production, Information Systems and Operations Research,
Free University Berlin, Garystr. 21, 14195 Berlin, Germany

{ilmich, hjlenz}@wiwiss.fu-berlin.de
2 Berlin-Brandenburg Graduate School in Distributed Information Systems

Abstract. The multidimensional modeling of data is steadily gaining
popularity, finding adoption not only for business but for scientific ap-
plications as well. Data Warehousing is the most prominent example of
multidimensional data usage. In parallel, wireless networks, with their
rapid growth, already play a fundamental role in facilitating time criti-
cal decision-making. Nevertheless, their inherent shortcomings, but also
those of the mobile devices operating within their proximity, introduce
additional complexity. Access time and energy consumption become,
among others, factors that should be taken into consideration. This pa-
per deals with the efficient dissemination of multidimensional data into
wireless networks. In this context, a new family of scheduling algorithms,
which simultaneously exploits various characteristics both of OLAP data
and wireless networks, is introduced. These algorithms clearly outper-
form existing proposals, on all counts: average access time, energy con-
sumption and network utilization.

1 Introduction

Modeling of data in a multidimensional way came up as an idea, due to the
inappropriate nature of the relational model, when vast volumes of data must be
first summarized, in order to answer pertinent queries. Such queries are typically
used, to enhance decision-making in major enterprises. Data Warehousing and
OLAP applications, being a major research area in the last decade, constitute an
indispensable part of what is described as business intelligence. The significance
of having good and actual information is nowadays more than ever, a key factor
for the success of every commercial corporation.

Meanwhile, the mobile and wireless industry has already surpassed its in-
fancy, having matured to a point, where wide-scale adoption is not unrealistic.
Demand for mobile technology is growing at a tremendous rate. Organizations
are deploying mobile applications because substantial business benefits can be
safely assumed. Vendors of mobile devices constantly produce devices with en-
hanced features, while wireless networks already provide access to data from
almost anywhere. This progress poses new challenges for existing applications,
since the former are frequently influenced by inherent characteristics of mobility.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 573–584, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

574 I. Michalarias and H.-J. Lenz

In this paper, an effort to bring together two different technologies is sus-
tained, with the goal to enhance mOLAP (mobile-OLAP). Some interesting con-
tradictions arise. On the one hand, OLAP applications usually require intense
computations and powerful machines, while on the other hand, in the wireless
world, despite the prodigious improvement and enhancement of networks and
devices, there is by no means abundance of necessary resources. Devices like
PDAs cannot compete with desktop computers, as far as computational power
or storage capacity is concerned. Therefore different strategies should be em-
ployed, in regard to efficient dissemination of multidimensional data in mobile
clients.

It shall become more obvious in following sections of this paper that there
exists a trade-off problem when trying to build such systems: there is a trade-
off between actual system resources, such as network utilization, overall access
time for each request and client energy consumption. Simultaneous optimizing
all of these measures is not a trivial issue. We focus on the design of schedul-
ing algorithms, which extend their functionality beyond the classical scheduling
paradigm, taking into consideration many system parameters that are crucial for
the system efficiency. A traditional scheduler, dealing with incoming requests for
any kind of data, primarily concerns about minimizing the average access time.
When dealing with mOLAP queries, it will be shown that this is neither rational
nor optimal. In this context, we introduce a new family of scheduling algorithms,
under the name FCLOS (Force Clustering OLAP Schedulers), which by exploit-
ing various characteristics both of multidimensional data and wireless technolo-
gies, outperformed existing proposals, exhibiting in average a 40% reduction of
access time, a 15% reduction of energy consumption and a 35% reduction of the
total amount of transmitted data.

The remainder of the paper is structured as follows: In Section 2, we describe
some fundamental mOLAP architectures and present how some properties of
multidimensional data, can be exploited in wireless networks by using broadcast-
ing. In Section 3, we give a short description of existing scheduling algorithms.
In Section 4, we introduce our new family of scheduling algorithms under the
name FCLOS and in Section 5 we present our experimental simulation results.
In Section 6, we conclude our results and present topics for future work.

2 Background

2.1 mOLAP Architectures

One could think of two fundamental architectures, where mOLAP functional-
ity is provided. Let us describe these briefly without, for the time being, going
into thorough details. Naturally we do not cite the case where a mobile client
merely uses a web browser to query OLAP data. A fundamental requirement
for mOLAP is offline operation functionality, which cannot be provided in this
case. We assume that clients store incoming data locally, not only to allow offline
operations, but also to accelerate subsequent queries. The first architecture con-
sists of a central server facility, which typically resides in an application server,

Dissemination of Multidimensional Data Using Broadcast Clusters 575

and several mobile clients. This is shown in Fig.1a. Mobile clients pose queries
to one or more data cubes. We assume that the server is able to respond to
any incoming query referring to a data cube, either by having already stored
all possible sub-cubes, or by retrieving them from the backend data warehouse,
when necessary. In other words, there is no direct connection from the client to
the data warehouse. The server is responsible for answering all incoming queries.
No communication between clients is assumed. We assume that there is a single
broadcast channel that is monitored by all clients and that the channel is fully
dedicated to the data broadcast (i.e., the data server can use the entire band-
width), and of course a uplink channel for posing requests. Clients continuously
monitor the downlink channel after making a request, to check for requested
data.

(a) (b)

Data Sources -
Middleware

Wireless
Gateway

Mobile ClientsData Sources -
Middleware

Wireless
Gateway

Mobile Clients

Fig. 1. Two fundamental mOLAP architectures

A second architecture extends the previous one, by enabling clients to directly
communicate with each other, in order to minimize connections with the central
server. This is quite rational, since this would not only be more efficient, in
terms of access time, but it could also be favorable in economical terms, as many
wireless networks are volume based. This architecture is depicted in Fig.1b. In
this paper we tackle with issues arising in the first architecture, since the majority
of existing systems use this infrastructure based scenario (WLAN, GSM, UMTS).
Moreover, research regarding the second one, is part of ongoing work of our
group.

2.2 Data Modeling

Multidimensional modeling is based on the notion of the data cube. The cube
operator produces a data cube, which is the union of all possible Group-By
operators applied on a fact table [1, 2]. The notion of the data cube lattice (DCL)
came up from the research area that focuses on designing efficient algorithms for
the computation of the complete data cube. It is a directed graph that depicts
the relationships between all 2N sub-cubes in a given N-dimensional space. In
Fig.2 a 3-dimensional space is depicted. The three dimensional attributes are
Product, Time and Store. Each of every 8 possible sub-cubes is represented in
the lattice by one node.

576 I. Michalarias and H.-J. Lenz

PST

ST PT PS

T S P

--

Product

Store
Time

Product

Product

Store

Fig. 2. A Data Cube Lattice for a 3-dimensional Space and some visualized views

A fundamental distinctive of OLAP queries is that it is often possible to reuse
the results of queries to answer other queries. This property, which stems from
the semantics of the multidimensional model, is called subsumption. The arcs
in the data cube lattice represent exactly this relationship. Generally, a sub-
cube can be derived by another sub-cube, when there is a path in the DCL that
connects the nodes that represent these sub-cubes. For example, one can derive
the sub-cube PS (Product, Store) in the DCL from the PST (Product, Store,
Time) sub-cube, plainly by aggregating over the dimension Time.

This derivation is permissible for distributive (inductive) aggregation func-
tions such as sum, min, max or count, but not allowed for algebraic functions
such as average or covariance [3, 4] and not for holistic functions like median. For
algebraic functions additional information is required so as to derive sub-cubes.
For example if avg is used, then the number of tuples (count) is additionally
required. In the context of mOLAP, we typically assume that the sum function
is used, but that is plausibly not restrictive.

2.3 Broadcasting – Multicasting

Broadcasting is the process in which one node participating in a network sends
a packet to all other nodes in the network. In wireless networks, broadcasting
gains additional significance, since it is one of the most common operations on
the wireless link. Broadcasting can be used for server detection, name resolution,
and name reservation, among others.

In general, there are two modes of data dissemination in wireless networks,
the push model and the pull model. Using push, data items are sent out to the
clients, without explicit requests, whereas using pull data items come in response
to explicit requests. Pull can be used either for unicast or for broadcast and is also
referred as on-demand broadcast. The transmission of data is initiated by client
request and not based on profiles or subscriptions [5]. It has been long argued
that push is more beneficial than pull since it provides tremendous scalability.
Nevertheless, mOLAP assumes a pull model.

In the context of mOLAP, broadcasting or multicasting can prove very ben-
eficial, since they can, in conjunction with cube subsumption property, improve
the system performance. In the architectures described in the previous section,

Dissemination of Multidimensional Data Using Broadcast Clusters 577

there is a wireless gateway, which acts as the connection point bridging the wired
and wireless world. The gateway can use broadcasting to answer queries posed
by several clients and thus reduce consumption of system resources. Instead
of establishing two separate connections with two clients, that have requested
sub-cubes, which are connected in the DCL, the gateway broadcasts the bigger
sub-cube and both clients are being served. One could think of this procedure
as a multicast, since we assume that the mobile clients that are not interested
in the transmitted sub-cube simply deny the incoming packets.

Typically as far as the packet content is concerned, the sub-cubes can be
represented as a binary number, consisting of so many digits as the number of
dimensional attributes N. When a dimensional attribute is contained in the sub-
cube, the corresponding digit is 1, else 0.This is just one way, with which a mobile
client can interpret the metadata of the transmitted data, but naturally many
others exist. For security reasons different representations could be applied.

Obviously, the central server must be able to make intelligent decisions, about
the sequence with which incoming queries are answered. A naive approach would
be to adopt a point-to-point model, where no scheduler and no queue are neces-
sary. The available bandwidth is divided into as many channels as the incoming
requests. Each query is immediately served, without spending time in a queue.
No scheduler is required. Naturally such systems exhibit poor performance.

3 Related Work

In the context of mOLAP, Hand-OLAP, [6], is a proposed system for delivering
OLAP functionality to mobile clients. In this approach, issues of compression and
summarization of data have a leading role. The main purpose of this system is to
allow a handheld device to request a bulk of information coming from an OLAP
server distributed on a wired network, and store the received (compressed) data
locally, in order to query the received information off-line. Cube View, [7], is
an academic prototype system, which provides a generic approach, towards the
visualization of OLAP data, both on desktop systems and mobile devices. The
focus is on the efficient presentation of data, using non-traditional visualization
techniques. In the research field of scheduling, in [8] it was pointed out for the
first time, that traditional FCFS (First In First Out) scheduling provides a poor
average wait time for a broadcast environment, when the access distribution for
data items was non-uniform. Several algorithms aimed at providing improved
performance. Other algorithms studied can be found in [8, 9]. The R×W algo-
rithm was introduced in [10]. It provides fine performance across all of these
criteria and can be tuned to trade off average and worst-case waiting time. This
algorithm does not use estimates of the access probabilities of items, but rather,
makes scheduling decisions based on the current queue state, allowing it to easily
adapt to changes in the intensity and distribution of the workload. All of them
are generic approaches, and generally inappropriate for multidimensional data.

STOBS-a (Summary Tables On-Demand Broadcast scheduler) is the inaugu-
ral approach explicitly dealing with dissemination of multidimensional informa-

578 I. Michalarias and H.-J. Lenz

tion, where scheduling decisions take into consideration additional parameters
such as energy consumption [11]. STOBS-a exploits the derivation semantics
among OLAP summary tables. STOBS-a maximizes the aggregated data shar-
ing between mobile users and reduces the broadcast length. An optimizer is
used to control the tradeoff between experienced access time and the energy
consumption overhead.

STOBS-a consists of two components. The first component is a prioritizing
function based on the popular queue metric R×W/S [10], where R is the number
of requests for a specific sub-cube, W is a factor computed by the time a request
has already waited in the queue and S is the size of the sub-cube. The idea is
quite straightforward. Initially the R×W/S metric is computed for each element
of the queue and then the sub-cube tr with the maximum metric value is selected
for transmission:

∀j ∈ Queue Kj =
Rj ×Wj

Sj
, tr := arg max(Kj) (1)

The second component controls the degree of flexibility when trying to derive
subsumptions. This is done by the a optimizer. BCL is the group or cluster of
requests that are going to be served by the broadcast. Dj and Di stand for the
dimensionalities of sub-cubes j and i respectively.

∀i ∈ Queue : i �= j , if i derivable from j and Dj−Di ≤ a add i to BCL (2)

For example, use DCL of Fig.2, and let a = 1, then sub-cube ST can be clustered
with PST whereas S cannot. Note, that if a>2 then S could be clustered with
PST. STOBS-a undisputedly exhibits a superior performance than a point-to-
point model [11]. The a-optimizer provides a fairly satisfying flexibility. Despite
that, the algorithm does not at all take into account the nature of the transmitted
data, which is in this case OLAP summary tables, at least at the first step,
namely the prioritizing function. Typically cube querying consists of drill downs
or roll ups. This is essentially ignored since only the size of the sub-cube is
used in the prioritizing function. However, the size does not offer any particular
metadata information. In addition to that, the two components (prioritizing and
optimizing) are completely independent. The clustering of requests succeeds,
only after the sub-cube to be transmitted has been already selected. As a result,
clustering is rather loose. This is justified by the fact, that smaller in size sub-
cubes have generally priority. When smaller sub-cubes are selected from the
first component to be transmitted, the possibility of making clusters becomes
smaller. In the following section we will describe a new proposal, which adopts a
more aggressive behavior, as far as the grouping of queries is concerned. We will
directly compare our proposal with STOBS-a, since there is currently no other
proposal, which outperforms it.

4 FCLOS

FCLOS (Force Clustering OLAP Scheduler) is a new family of scheduling al-
gorithms, towards efficient dissemination of multidimensional data into wireless

Dissemination of Multidimensional Data Using Broadcast Clusters 579

networks. FCLOS actively exploits both the metadata of multidimensional sub-
cubes and the broadcasting operation of the physical layer in wireless networks,
in order to reduce query access time, energy consumption and total number of
bytes transmitted through the network.

A prioritizing function and an optimizer are also used, like in the case of
STOBS-a, but in a totally different way. In FCLOS we make use of a new
metric SM (Sub-cube Metric):

SM = R×W ×D (3)

where R and W have the same meaning described in [11], in order to weigh
all the elements of the queue. D represents the dimensionality of a sub-cube.
Since the dimensionality of a sub-cube is generally proportional to its size, SM
distinguishes itself from other metrics in the fact that the dimensionality (or the
size) is now a positive prioritizing factor. Dissimilarly, bigger in size sub-cubes
now obtain higher priority. Then for each element j (sub-cube) in the queue, its
SM is computed:

∀j ∈ Queue SMj = Rj ×Wj ×Dj (4)

Then, still without having decided which sub-cube is going to be actually trans-
mitted, in other words without considering SM at all, every possible clustering
BCL (Broadcast Cluster) is detected. A broadcast cluster consists of one parent
and its children. The parent node in a broadcast cluster is the sub-cube, from
which all other sub-cubes comprising the BCL can be derived, according to the
criteria of Eq. (2). Obviously, for this detection we also use a similar optimizer,
which essentially works exactly as the optimizer in STOBS-a. With this, we
control the degree of flexibility, when trying to detect broadcast clusters. After
having identified all possible BCLs we employ a new metric under the name BW
(Broadcast Weight). BW practically represents the weight not of one specific el-
ement in the queue, but the one of a potential broadcast cluster. If k represents
a sub-cube belonging to an identified BCL then the BW of that specific BCL is
defined as:

BW =
∑

k∈BCL

SMk (5)

Our algorithm computes for each identified BCLn, its respective BWn:

∀BCL BWn =
∑

k∈BCLn

SMk (6)

Eventually, what is actually transmitted is the parent node of the cluster BCLtr,
namely the cluster with the maximum BW. Reasonably all clients that have
requested sub-cubes which belong to BCLtr are served.

transmit parent node of BCLtr : BWtr = max(BWn) (7)

Since we formally presented the algorithm, let us now explain the intuition
behind FCLOS. The fundamental difference with existing approaches resides in

580 I. Michalarias and H.-J. Lenz

the fact that the size of a sub-cube is a positive factor when prioritizing requests.
Cube querying has the property, that new queries have high probability to be
related with previous ones. In other words, slicing, dicing and drilling occur
more often. FCLOS exploits this property. This will become clear with a simple
example. Let us suppose that client A has requested the sub-cube S and client
B sub-cube PST, according to Fig.2. For reasons of explanation, let us further
assume that no other request exists in the queue. In STOBS-a, initially the sub-
cube S will be transmitted, since its size is smaller than the size of PST, and after
that PST will be transmitted. In FCLOS what is going to be initially transmitted
is the sub-cube PST, and then there is apparently no need to transmit S, because
client A has already got the necessary data to compute S.

By introducing our new metric BW and by separately detecting all possible
clusters, FCLOS does not broadcast whenever this is possible but rather enforces
it. This results in a better exploitation of the broadcasting feature, since quite
expectedly the number of members of the served BCLtr is now higher in average.

Results for new queries have now, higher probability that they already ex-
ist in client side, partly due to previous scheduling decisions taken by FCLOS.
Naturally, we assume that clients that receive supersets of what was actually
requested, store locally the additional data, and do not discard them, a funda-
mental idea behind the notion of mOLAP. The algorithm is summarized below:

Algorithm FCLOS

1: Compute SM for every Queue element (sub-cube)
2: Find all possible Clusters (BCLs), based on the optimizer a
3: Compute BWk for every identified Cluster BCLk

4: Transmit the parent node of the Cluster BCLtr, whose BWtr is maximum

5 Experimental Results

In order to analyse the performance of the algorithms, we implemented a sim-
ulation testbench, fully parameterized by all factors concerning mobile OLAP
querying. We compared the FCLOS algorithms with the STOBS-a algorithms,
in terms of average access time, energy consumption and network utilization.

Our simulation testbench consists of one server, which maintains the scheduler
as well as the multidimensional data. Mobile clients query a specifically dimen-
sional query space and pose a specific number of requests. When the answer is
received, the client poses a new request. We use three measures to evaluate the
algorithms:

– Average Query Access Time: The time that a request spends waiting in the
server queue, incremented by the time the client is receiving data in his
downlink channel being in an active mode incremented by the time spent for
the aggregation, if one should be necessary.

– Average Energy Consumption Overhead: The energy a client consumes by
waiting in a doze mode till the first packet that is directed to him appears in

Dissemination of Multidimensional Data Using Broadcast Clusters 581

the downlink channel, incremented by the energy spent listening the down-
link channel and being in an active mode, incremented by the energy con-
sumed for a possible aggregation.

– Total Amount of Bytes sent: Total amount of data disseminated by the server
into the wireless network.

The multidimensional space is simulated as described in [12]. Summary tables
are assumed to exist. Given a binary number bin as described in section 2.2, a
sub-cube is allocated a size of:

size(sc) = min{bin2, P roduct of sizes of children(sc) in the lattice} (8)

This method guarantees diversity in the sub-cube sizes. We use Zipfian for the
query distribution, where sub-cubes are sorted according to their sizes. Natu-
rally sub-cubes with smaller sizes are more likely to be requested. We simulate
the aggregation process as a plain scanning of the summary table, using the de-
vice CPU and memory bus. Energy consumption is captured using the energy =
power × time equation. A typical wireless card from Socket [13], as well as com-
mon PDA specifications, has been used. All details are shown in Table 1. Default
simulation parameters were applied, when comparing FCLOS with STOBS-a.
Next, we evaluate the performance of FCLOS, using several values, regarding to
cube dimensionality and query skewness.

Table 1. Simulation parameters

Simulation Parameter Default Range

Wireless Network WLAN -
Wireless Card Power supply 3,3 Volt -
Wireless Card Idle/Receive Mode Consumption 20/170 mA -
Device CPU 312 MHz -
Device Memory Bus 64 bits -
Cube Dimensionality 7 4-10
Mobile Clients 50 0-150
Requests posed by each client 30 10-50
Query Distribution Zipf(θ = 0,5) θ = 0,3-0,9
Network Bandwidth 11Mbs 1-11Mbs

In the beginning, we compare the average access time experienced by a mobile
client for a query. Fig.3 shows the results. The impact by increasing the number
of mobile clients is not so strong for both of the algorithms, even if FCLOS proves
to be more stable. By increasing the value of the a-optimizer, the superiority of
FCLOS becomes clearer. For example if a=2, we have a 15% average reduction,
whereas when a=6 the average reduction reaches to as high as 50%.

After that, we compare the average energy consumption overhead caused by
a given query. Let it here be denoted, that the overhead produced by the aggre-
gations in the mobile device is essentially negligible, though included in these

582 I. Michalarias and H.-J. Lenz

0

100

200

300

400

500

600

700

800

25 50 75 100 125 150

Number of clients

A
v

e
ra

g
e

 A
c

c
e

s
s

 T
im

e
 (

m
s

)

FCLOS-6 STOBS-6 FCLOS-4 STOBS-4 FCLOS-2 STOBS-2

Fig. 3. STOBS-a vs FCLOS in terms of Average Access Time

results. The major overhead is produced when the client being in active mode
receives data. Fig.4 shows the details. Even though the optimization is now not
so impressive, as in the case of access time, FCLOS still exhibits better per-
formance, proving that is actually feasible to simultaneously reduce access time
and energy consumption. Again increasing the value of the a optimizer, posi-
tively influences FCLOS. When a=2, similar energy overheads, were observed.
However, when a=6 the reduction reaches 25%.

Finally, we compare the two algorithm families in regard to the total amount
of bytes transmitted in the network. This can be a very important factor, when
volume based networks are used. Again FCLOS exhibits an average 40% reduc-
tion in actual transmitted data for higher values of a, as depicted in Fig.5. Let it
be noted though, that when a=2, FCLOS exhibit essentially similar behaviors.
By having such a little degree of flexibility, the benefits of FCLOS in terms of
transmitted data are practically eliminated. The transmitted cluster serves not
so many members as required, for the characteristics of FCLOS to be exploited.

The boost of the performance of FCLOS, with higher values for the a-optimizer
comes rather unsurprisingly. By adopting a more aggressive strategy in terms of
clustering of requests, FCLOS makes in average bigger clusters and subsequently
the number of total bytes sent as well as the average access time (since the queue
time is also reduced), are clearly reduced.

We also run simulations with several dimensions and degrees of query skew-
ness. In Fig.6 and Fig.7 we present the percentage of reduction gain achieved over

0

20000

40000

60000

80000

100000

120000

140000

160000

25 50 75 100 125 150

Number of clients

A
v

e
ra

g
e

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

O
v

e
rh

e
a

d
 (

μ
J

)

FCLOS-6 STOBS-6 FCLOS-4 STOBS-4 FCLOS-2 STOBS-2

Fig. 4. STOBS-a vs FCLOS in terms of
Average Energy Consumption

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

25 50 75 100 125 150

Number of clients

T
o

ta
l

T
ra

n
s

m
it

te
d

 D
a

ta
 (

k
B

)

FCLOS-6 STOBS-6 FCLOS-4 STOBS-4 FCLOS-2 STOBS-2

Fig. 5. STOBS-a vs FCLOS in terms of
Total Transmitted Data to the Network

Dissemination of Multidimensional Data Using Broadcast Clusters 583

STOBS-a. The argument ”-FULL” means that a is equal to the dimensionality,
while the argument ”-/2” means that a has the half value of the dimension-
ality. We include all three aforementioned measurements. Negative percentages
indicate superiority of FCLOS, while positive superiority of STOBS-a.

Reduction of Access Time(AT), Energy Consumption(EC), Bytes Transmitted(BT)

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

5 6 7 8 9 10

Dimensionality

R
e

d
u

c
ti

o
n

 i
n

 %

AT-FULL EC-FULL BT-FULL AT-/2 EC-/2 BT-/2

Fig. 6. Reduction achieved with different
dimensionalities

Reduction of Access Time(AT), Energy Consumption(EC), Bytes Transmitted(BT)

-70

-60

-50

-40

-30

-20

-10

0

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Zipf Parameter()

R
ed

uc
tio

n
in

 %

AT-FULL EC-FULL BT-FULL AT-/2 EC-/2 BT-/2

Fig. 7. Reduction achieved for different
query distributions

As far as dimensionality is concerned, FCLOS exhibits poorer performance
only in energy consumption overhead, when the dimensionality gets very big.
This is quite rational, since the created clusters become very big in this case,
and clients that have requested sub-cubes with small dimensionalities, spend a
lot of time receiving data in the downlink channel, and thus consume energy.
But even in this case, FCLOS performs better in terms of average access time
and total amount of bytes transmitted. We also tested the impact of the wireless
bandwidth on the two algorithms. The results show no particular divergence in
fractional figures.

6 Conclusions and Future Work

This paper deals with efficient dissemination of multidimensional data into wire-
less networks. We underlined the importance of multidimensional data, since
ever growing volumes of data are being accumulated in traditional relational
databases. It’s major contribution is the introduction of a new family of schedul-
ing algorithms for multidimensional data, under the name FCLOS, which clearly
outperforms existing ones on all counts according to experimental objectives:
average access time, energy consumption and network utilization, particularly
when high scale clustering is used. We showed that inherent characteristics of
OLAP data and wireless networks can be combined to accelerate query answer-
ing. We also reemphasized the potential benefits gained by using the subsump-
tion property of sub-cubes, especially in wireless networks.

Future work will try to further investigate the role of the a-optimizer in the
performance of FCLOS algorithms, with the aim to gain additional energy gain.
Our intuition suggests that a more dynamical definition could be beneficial.
Simulation of more dynamic scenarios, concerning the number of mobile clients,

584 I. Michalarias and H.-J. Lenz

request rate and query distributions may also prove helpful, to further optimize
scheduling decisions.

Furthermore, future work will try to investigate scenarios, which appear in
architectures shown in Fig.1b. Additional parameters to the problem of selecting
which node will answer an incoming query must be taken into consideration,
when comparing our approach with traditional querying. For example, routing
is only one part of the selection criteria, but by no means the only one. Additional
factors as node load, energy level, and data availability should be considered.

References

1. Jim Gray et all: Data Cube:A Relational Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-Totals. Data Mining and Data Discovery 1, Kluwer
Academic Publishers 29–53

2. Gyssens, M., Lakshamanan: Multidimensional Data Model and Query Language
for Infometrics. In the proccedings of the 23rd. VLDB Conference, Athens. (1997)
106–115

3. Lenz, H.J., Shoshani, A.: Summarizability in OLAP and statistical databases. In
SSDBM IX, Washington. (1997)

4. Lenz, H.J., Thalheim, B.: OLAP Databases and Aggregation Functions. In the
Procceedings of the 13th. International Conference on Scientific and Statistical
Database Management, Virginia USA,IEEE Computer Society. (2001) 91–100.

5. Franklin, M., Zdonik, S.:A framework for scalable dissemination based systems. In
the Procceedings of ACM OOPSLA Conf. (1997)94–105.

6. Cuzzocrea, A., Furfaro, F., Saccam, D.:Hand-OLAP: a System for Delivering
OLAP Services on Handheld Devices. ISADS 2003,Pisa, Italy. (2003) 213–224

7. Maniatis, A., Vassiliadis, P., Skiadopoulos, S., Vassiliou, Y., Mavrogonatos, G.,
Michalarias, I.: A Presentation Model and Non- Traditional Visualization for
OLAP. International Journal of Data Warehousing & Mining (2005) 1–36

8. Dykeman, H.D., Ammar, M., Wong, J.W.: Scheduling algorithms for videotex sys-
tems under broadcast delivery. In the Procceedings of the IEEE Int. Conf. Com-
mun., Toronto, Canada. (1986) 1847–1851

9. Wong, J.W.: Broadcast delivery. In the Procceedings of the IEEE, vol. 76. (1988)
1566–1577

10. Aksoy D., Franklin, M.: RxW: A scheduling approach for largescale on-demand
data broadcast. IEEE/ACMTransactions on Networking 7. (1999) 846–860

11. Sharaf, M., Chrysanthis, P.: On-Demand Data Broadcasting for Mobile Decision
Making. Mobile Networks and Applications 9,Kluwer Academic Publishers. (2004)
703–714

12. Kalnis, P., Mamoulis, N., Papadias, D.: View selection using randomized search.
Data & Knowledge Engineering 42(1). (2002) 89–111.

13. www.socket.com

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 585 – 591, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Multidimensional Frequent Pattern Mining Using
Association Rule Based Constraints

S. Vijayalakshmi1 and S. Suresh Raja2

1 Lecturer,Department of Computer Science & Engineering,
Thiagarajar College of Engineering, Madurai-625015

sv_la@yahoo.com

2 Lecturer,Department of Computer Applications,
K.L.N.College of Engineering , Madurai-625020

csrsuresh07@yahoo.co.in

Abstract. Knowledge about multi-dimensional frequent patterns is interesting and
useful. The classic frequent pattern mining algorithms based on a uniform
minimum support, such as Apriori and FP-growth, either miss interesting patterns
of low support or suffer from the bottleneck of itemset generation. Other frequent
pattern mining algorithms, such as Adaptive Apriori, though taking various
supports, focus mining at a single abstraction level. Furthermore, as an Apriori-
based algorithm, the efficiency of Adaptive Apriori suffers from the multiple
database scans. In this paper, we extend FP-growth to attack the problem of
multidimensional frequent pattern mining. The algorithm Ada-FP, which stands
for Adaptive FP-growth. The efficiency of the Ada-FP is guaranteed by the high
scalability of FP-growth. To increase the effectiveness, the Ada-FP pushes various
support constraints into the mining process. We show that the Ada-FP is more
flexible at capturing desired knowledge than previous Algorithm.

1 Introduction

The explosive growth of many business, government and scientific databases has far
outpaced our ability to interpret and digest this data. We are drowning in information
yet starving for knowledge. Data mining therefore appears as a useful tool to address the
need for sifting useful information such as hidden patterns from databases. Frequent
pattern mining is one of the active research themes in data mining. In this paper, we
expand the horizon of frequent pattern mining by analyzing an efficient algorithm for
mining multidimensional frequent patterns with flexible support constrains.

1.1 Problem Definition

Multidimensional frequent pattern mining is a very promising research topic and
plays an invaluable role in real life applications. In this section, we review related
concepts and give the definition of multi-dimensional frequent pattern mining.

1.2 Data Mining

Briefly stated, data mining refers to extracting or ``mining'' knowledge from large
amounts of data. Data mining can be performed on a variety of data stores, including
relational databases, transactional databases and data warehouses. A comprehensive
data mining system usually provides multiple mining functions. Association is one of
the key features that can be found in such systems.

586 S. Vijayalakshmi and S. Suresh Raja

1.3 Association Mining

Association mining searches for interesting relationship among items in a given
database and displays it in a rule form, i.e. A B. With the massive amounts of data
continuously being collected and stored in databases, many industries are becoming
interested in mining associations among data. Market basket analysis is a typical
example among the various applications of association mining.

Example 1.3.1
Suppose,as a manager of an AllElectronics branch, you would like to learn more
about the buying habits of your customers. Specifically, you may wonder ``Which
groups or sets of items are customers likely to purchase on a given trip to the store?''.
To answer your question, association mining can be performed on the retail data of
customer transactions at your store. The knowledge that customers who purchase IBM
Laptop also tend to buy HP Epson Color Printer at the same time is represented in the
association rule below.

IBM Laptop HP Epson Color Printer
[support = 2%, confidence = 60%]

Support and confidence are two measures of rule interestingness. In the above
association rule, the support of 2% means that 2% of all the transactions under
analysis show that IBM Laptop and HP Epson Color Printer are purchased together.
The confidence of 60% means that 60% of the customers who purchase IBM Laptop
also buy HP Epson Color Printer. In a nutshell, support represents the percentage of
data samples that the given rule satisfies and confidence assesses the degree of
certainty of the detected association. Support and confidence are usually set by users
or domain experts.

1.4 Multi-dimensional Frequent Pattern Mining

Real transaction databases usually contain both item information and dimension
information. Moreover, taxonomies about items likely exist. In this paper, we explore
the problem of multi-dimensional frequent pattern mining. We give the Example of
multi- dimensional frequent pattern mining as below.

Table 1.4.1. About an AllElectronics database illustration our points

Store Location Trans- ID List of Item Ids

BC 001 (TV,Color TV,Sony Color TV);
(Computer,Laptop,IBM Laptop);
(Printer,Color Printer,HP Epson Color Printer)

ON 001 (Printer, Color Printer, HP Epson Color Printer)

BC 002 (TV,Color TV,Sony Color TV);
(Computer, Laptop, IBM Laptop)

ON 002 (Computer,Laptop,IBM Laptop)
BC 003 (TV, Color TV, Sony Color TV);

 (Computer, Laptop,IBM Laptop)

 Multidimensional Frequent Pattern Mining Using Association Rule Based Constraints 587

1.5 Motivation

In this paper multi-dimensional frequent pattern mining, is motivated by the four
limitations of existing algorithms.

First, the classic frequent pattern mining algorithms (i.e. Apriori, FP- growth) have
been focusing on mining knowledge at single concept levels, i.e., either primitive or
rather high concept level. However, it is often desirable to discover knowledge at
multiple concept levels. Second, in real life applications, multiple dimensions, such as
store locations, may be associated with transactions. Incorporating dimension
information into the mining process can produce patterns with more detailed
knowledge. Third, to our knowledge, previous proposed algorithms for multi-level
frequent pattern mining all adopt an Apriori-like method. It is well known that the
Apriori method relies on iterative pattern generation and multiple database scans.
Hence the efficiency of the Apriori method might suffer in situations of generating
long patterns. Recently, a novel algorithm, FP-growth, is proposed to mine frequent
patterns. FP-growth is proved to achieve a better system performance than traditional
frequent pattern mining algorithms.

2 Frequent Pattern Mining

The process of discovering the complete set of frequent patterns is also called
frequent pattern mining” for short. We give its definition as below.

Definition (frequent pattern mining)
Let t = {i1,i2,…..im} be a set of items. Let D be a set of transactions, where each
transaction T is a set of items such that t T . Patterns are essentially a set of items
and are also referred to as itemsets. In our later discussion, we may use the two terms –
“itemsets” and “patterns” alternatively. An itemset that contains k items is a k -itemset.
The occurrence of an itemset is the number of transactions that contain the itemset.
This is also known as the frequency or support count of the itemset. The task of
frequent pattern mining is to generate all patterns (or itemsets) whose occurrences (or
support) are greater than or equal to the user-specified minimum support. Researchers
have been seeking for efficient solutions to the problem of frequent pattern mining
since 1993.

3 Algorithm

This paper Discuss an efficient and effective algorithm for multidimensional frequent
pattern mining. In this section, we present the algorithm – Ada-FP step by step. We
illustrate Ada-FP algorithm using an example. There are three critical challenges in
designing an efficient multi-dimensional frequent pattern mining algorithm. We list
them as below. Our solutions are given as well. Ada-FP algorithm is an extension of
the FP-growth algorithm. The nitty-gritty features of the FP-growth algorithm, i.e. FP-
tree, FP-tree-based pattern fragment, partition-based divide and conquer method, are

588 S. Vijayalakshmi and S. Suresh Raja

well preserved. when dimension information are need to be taken into account, there
rises the problem of how to amend the existing frequent pattern mining algorithms
(FP-growth) to tackle the dimension information. In our Latest Ada-FP algorithm, we
treat dimension information the same as item information. When reading the
transaction database, the dimension is counted as well. A dimension (or dimension-
set) is regarded as frequent if its occurrence satisfies the specified threshold. the idea
of flexible support constraint. To avoid the problem caused by uniform support
threshold, we introduce the concept of mining with various support constraints.

Step 1. Find frequent 1-items and frequent 1-dimensions
In this step, we scan the transaction database D once. During this database scan, we
collect the count for each dimension and item. In the meanwhile, we compare their
counts with the corresponding two types of thresholds – passage threshold and
printing thresholds. For each individual dimension, we compare its count with the
dimension passage threshold and the dimension printing threshold. Eliminate
dimensions whose support do not even pass the corresponding support threshold. For
each individual item, we first detect the abstraction level the item resides in; we then
check whether it is a normal item or an exceptional item. If it is an normal item, we
compare the item support with the corresponding passage threshold and printing
threshold; otherwise, we shall narrow the possibility further and label this item as
either a very common one or a very rare one, we then compare the item support with
the corresponding passage support and printing support. Under all circumstances, the
item will not be printed as a frequent 1- item unless its support passes the
corresponding item printing threshold. Also be aware that all items whose support
pass the corresponding item passage threshold are possible to appear in the frequent 2
or even longer patterns. The items whose support do not pass the corresponding
passage threshold die in the comparison.

Step 2. Construct an FP-tree for the given transaction database
The Ada-FP adopts the same prefix-tree structure as the one taken by FP-growth. The
structure of FP-tree is defined below. It consists of one root labeled as “ null” , a set
of item prefix subtrees as the children of the root, and a frequent item header table.

 Each node in the item prefix subtree consists of three fields: name, count, and
node-link. Name registers which item (or dimension) this node represents. Count
registers the number of transactions represented by the portion of the path
reaching this node. Node-link links to the next node in the FP-tree carrying the
same item-name (or dimension-name). Node-link is null if there is none.

 Each entry in the frequent item header table consists of two fields, (1) name and
(2) head of node link. Name represents the item name or the dimension name.
Head of node link points to the first node in the FP-tree carrying the item-name
(or dimension name). The procedure of constructing an FP-tree is described as
below. It is a two-step process.

 Create the root of an FP-tree, T, and label it as “ null” . For each transaction
Trans in DB do the following.

 Multidimensional Frequent Pattern Mining Using Association Rule Based Constraints 589

Step 3. Recursively mine FP-tree to generate multi-dimensional frequent patterns
In step 1 and step 2, we gather the counts for each individual item and dimension; we
compress the complete information about the transaction database in the FP-tree.
They are realized at the cost of two database scans. From now on, we start the pattern
generation process by recursively visiting the FP-tree. Note no more costly database
operations will be involved.

The essential of the Ada-FP is the FP-growth operation. The critical parts are the
pushing of various support constraints. We describe the Latest Ada-FP algorithm for
pattern generation as below.

The input are: (1) the FP-tree that we construct in step 2, (2) length k-level passage

thresholds (k ≥2), (3) length k-level printing thresholds (k ≥2), (4) item passage
thresold for special items, (5) item printing thresold for special items.

Call Ada-FP-growth(FP-tree,null)
Procedure Ada-FP-growth(Tree,α)
{
 if(Tree contains a single path P)then{
 for(each combination-denoted as of the nodes in the path P) do{
generate pattern ∪ with support-minimum support of nodes in :
if (pattern β∪α contains special items) then{
if (pattern β∪α‘s support is larger than or equal to special item’s passage

threshold) then {
if(pattern β∪α‘s support is larger than or equal to special item’s printing threshold

) then{
 add β∪α to L:
 add β∪α to C:
 }
 }
 else{
 len=the length of pattern β∪α:
 if(pattern β∪α‘s support is larger than or equal to length-len passage threshold)

then {
 if(pattern β∪α‘s support is larger than or equal to length-len printing

threshold)then

Header Table
Item/Dim

 Head of Node Links

BC
Accessories
Compaq Desktop
Canon b/w Printer
Desktop
ON
Sony Color TV

 BC :3 Accessories:2

Accessories:1 Compaq:1 Sony:1 Desktop:2

 Compaq:1 Canon:1 On :2

 Canon:1

590 S. Vijayalakshmi and S. Suresh Raja

 add β∪α to L;
 add β∪α to C;
 } }
 }
 }
 else for (each ai in the header of Tree)do{
 generate pattern β =ai ∪α with support = ai support;
 construct β‘s conditional pattern base and then β‘s conditional FP-tree Treep:
 }
 if(Treep≠φ)then
 call Ada-FP-growth(Treep.β)
 }

In the above, we give the pseudo-code of the Ada-FP-growth. Starting from the least
frequent item/dimension, we generate conditional pattern base and accordingly
construct conditional FP-tree for each member of the header table. Conditional pattern
base for an item i (or a dimension d) consists of the items/dimensions that co-occur
with the item I (or a dimension d). In the same manner, we explore the conditional
FP-tree using Ada- FP-growth.

4 Discussion

Briefly speaking, the Ada-FP algorithm is a three-step process. In the first step, we
scans database once to get the count of every single item and every single dimension.
The frequent 1-items or frequent 1-dimensions are those whose counts pass their
corresponding printing threshold. In the second step, we scan database again to
construct an FP-tree. Notice items or dimensions can appear in the FP-tree as long as
their counts pass their corresponding passage threshold. Thus a frequent pattern which
includes the whole taxonomy information about an item is also interesting to the user.
Finally, we recursively mine the FP-tree (and conditional FP-tree) to generate all
frequent patterns. Frequent patterns can appear in one of the three forms: items in the
frequent patterns span the entire concept hierarchy.

5 Conclusions

The goal of this paper is to propose an efficient and effective way for Multidimen-
sional frequent pattern mining. Constraint based multidimensional frequent pattern
mining is a very interesting and useful tool. It can be used to facilitate decision
making and boost business sales. The Difficulties to attack this problem originate
from two aspects. On one hand, in real life transaction database, items as well as
dimensions may exist at the same time. Moreover, items are likely to appear with
hierarchical information encoded. General frequent pattern mining algorithms focus
on mining at single level. Besides, only strong associations between items will be
discovered.

 Multidimensional Frequent Pattern Mining Using Association Rule Based Constraints 591

References

1) R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation
of frequent itemsets. In Journal of Parallel and Distributed Computing (Special Issue on
High Performance Data Mining), (to appear), 2000.

2) R. Agrawal and R. Srikant. Fast algorithms for mining association rules. Proc. 1994 Int.
Conf. Very Large Data Bases (VLDB'94), pages 487-499, Santiago, Chile, September
1994.

3) R. J. Bayardo, R. Agrawal, and D.Gunopulos. Constraint-based rule mining on large,
dense data sets. Proc. 1999 Int. Conf. Data Engineering (ICDE'99), Sydney, Australia,
April 1999.

4) S. Brin, R. Motwani, and C. Silverstein. Beyond market basket:Generalizing association
rules to correlations. Proc. 1997 ACM-SIGMOD Int. Conf. on Management of Data
(SIGMOD'97), pages 265-276, Tucson, AZ, May 1997.

5) J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. Proc.
1995 Int. Conf. Very Large Datab Bases (VLDB'95)

6) J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, August 2000.

7) M. Kamber, J. Han and J. Y. Chiang. Metarule-guided mining of multi- dimensional
association rules using data cubes. Proc. 3 rd Int. Conf. Knowledge Discovery and Data
Mining (KDD'97),

8) W. Lee, S. J. Stolfo, K. W. Mok. Mining audit data to build intrusion detection models.
Proc. 1998 Int. Conf. Knowledge Discovery and Data Mining (KDD'98),

9) M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding
interesting rules from large sets of discovered association rules. Proc. 3 rd Int. Conf.
Information and Knowledge Management (CIKM'94), pages 401-408, Gaithersburg, MD,
November 1994.

10) R. Ng, L. V. S. Lakshmanan, J. Han and A. Pang. Exploratory mining and pruning
optimizations of constrained association rules. Proc. 1998 ACM-SIGMOD Int. Conf. on
Management of Data (SIGMOD'98), pages 13-24, Seattle, WA, June 1998. J. Han and M.
Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, August
2000.

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 592 – 603, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Classification Based Approach for Root Unknown
Phylogenetic Networks Under Constrained

Recombination

M.A.H. Zahid, Ankush Mittal, and R.C. Joshi

Department of Electronics and Computer Engineering,
Indian Institute of Technology Roorkee, Uttaranchal, India 247667
{zaheddec, ankumfec, joshfec}@iitr.ernet.in

Abstract. Phylogenetic networks are the generalization of the tree models used
to represent evolutionary relationship between the species. Tree models of evo-
lutionary process are not adequate to represent the evolutionary events such as,
hybridization, lateral/ horizontal gene transfer and genetic recombination. A
well-formulated problem in phylogenetic networks, due to recombination, is to
derive a set of input sequences on a network with minimum number of recom-
binations. No efficient algorithm exists for this problem as it is known to be
NP-hard. Efficient solutions exist for the constrained recombination networks,
where the nodes on each recombination cycles are disjoint. These solutions are
based on the assumption that the ancestral sequence is known in advance. On
the other hand, the more biologically realistic case is that where the ancestor
sequence is not known in advance. In this paper we propose an efficient classi-
fication based method for deriving a phylogenetic network under constrained
recombination without knowing the ancestral sequence.

1 Introduction

The phylogenetic tree construction methods fail to find true relationship between the
species, because of the evolutionary events such as, horizontal gene transfer, hybridi-
zation, homoplasy and genetic recombination. The network representation of the
evolutionary relationship provides a better understanding of the evolutionary process
and the non-tree like events [1, 2]. Detection of recombination plays an important role
in locating the origin of the gene influencing the genetic disease. A case study on
HIV, carried at the center for computational and experimental genomics, Department
of Biological Sciences, University of Southern California has shown that the most
frequent recombination event make it difficult to design a drug for HIV. Recombina-
tion in HIV is recognized as an important mechanism by which the viruses escape the
attack against the drug [3].

Since long time, the consequences of the recombination are ignored, and phylogen-
ies were constructed by neglecting the recombination events. Schierup and Hein in
[2, 6] and Posada [7] have shown the effect of neglecting the recombination while
constructing the phylogeny. When recombination occurs, different parts of the genetic
sequence represent different histories violating the conventional assumption of a

 A Classification Based Approach for Root Unknown Phylogenetic Networks 593

sequence representing single underlying history. Despite this fact, there is significant
lacuna of the methods robust for recombination. A good amount of work has been
done for non tree like evolutionary events other than recombination; for an exhaustive
survey refer [8, 9].

Wang et al. [4] has shown the problem of finding a perfect phylogenetic network,
network with minimum number of recombination nodes, is NP-hard and has given an

algorithm for a restricted problem, called node disjoint network, with)(
4

nO comput-
ing time. The restriction is that in a merge path of a recombination node, there is no
node that is in the merged path of a different recombination node. In other words, no
node is shared by two or more recombination cycles, also called as “gall”. The phy-
logenetic network, in which every recombination cycle is a gall, is also called a "gall
tree". The network construction methods in [4, 5] construct the phylogenetic network
with the assumption that the ancestral sequence is known in advance. On the other
hand, biologically more realistic case is one in which the ancestral sequence is not
known in advance. Gusfield [12] proposed an algorithm similar to [5, 11] for un-
known root and used the concepts of split graphs and conflict graphs to construct the
phylogenetic network. The algorithm given in [12] computes the root unknown gall

tree in)(
3

nnmO + time, where n is number of nodes and m is number of sites on each
nodes. In this paper we proposed a classification technique, based on biological con-
straints, for the classification of the nodes in the network. Theses classified nodes are
used to construct the phylogenetic network for unknown ancestor sequence. The
nodes are classified into mutation, recombination and null classes. The proposed
method takes)mnnO(n 2log + computing time for classifying all the nodes.

The paper is organized as follows. Section 2 deals with the formal definitions and
assumptions related to phylogenetic networks. Section 3 deals with the combinatorial
background and conditions for the detection of the recombination. The algorithm for
classifying the nodes with an example is given in section 4.

2 Preliminaries

This section deals with the basic terminology and assumptions made for the develop-
ment of algorithm. We follow the terminology from [5] and [11].

Formally, a phylogenetic network is a directed acyclic graph, but underlying undi-
rected graph can have cycles. Each node in the phylogenetic network N has indegree
0, 1 or 2. The nodes with indegree 0 are called independent node as the ancestor to
these nodes is unknown, the nodes with indegree 1 are called tree nodes and the nodes
with indegree 2 are called recombination nodes. A tree node is the result of mutation
and the recombination node is the due the recombination of genetic material of two
parent species of the node. Each node in the network N is assigned a binary sequence
of length m. The tree or mutation nodes have a single site or character change from 0
to 1, when compared with the parent nodes. The sequence of recombination node is
the parts of its two ancestor’s sequences.

If a node u is reachable from a node v via a directed path, then v is an ancestor of u,
and u is the descendent of the node v. Each node in the phylogenetic network is repre-
sented with a binary number of some specified length m. In the perfect phylogeny the

594 M.A.H. Zahid, A. Mittal, and R.C. Joshi

transformation of states from 0 to 1, occurs at most ones for each site or the column in
the binary sequence. The nodes on perfect phylogenetic networks are organized in
such a way that there is unique node having state 1 in site ,, mii ∈ every other node
having 1 at site i is the descendents of this unique node. The transformation from 0 to
1 is possible in case of recombination, where the crossovers can change the state from
0 to 1. A phylogenetic network with recombination is said to be perfect if it has
minimum number of recombination nodes and follows all the restrictions mentioned
above.

A set of binary sequences represents a phylogenetic network N, if and only if each
sequence labels exactly one leaf of the network N. A phylogenetic network on a set of
three binary sequences is shown in Fig. 1. The biological interpretation of a phyloge-
netic network N, for M binary sequences is that the network represents the possible
history of the M sequences under the following assumptions. (1) The change in one
site, from 0 to 1, is permitted only once (called mutation). (2) Two sequences are
permitted to recombine as a result of recombination event. (3) Each site in the se-
quence represents a SNP (single nucleotide polymorphism), a site where two of the
four possible nucleotides appear in the population with the frequency above some
threshold [10].

Given a set of species n species with binary sequences of length m, a phylogenetic
network with)(nmO recombination nodes exist. Recombination is a rare event in the
evolutionary process. Therefore a phylogenetic network with minimum number of
recombination nodes is informative.

3 Conditions for the Classification of Nodes

In this section we formulate the necessary and sufficient condition for the classifica-
tion of nodes, which has biological significance. We use the similarity and dissimi-
larly between the sequences as the major tool for the classification of the nodes into
mutation, recombination and null classes.

Lemma 1 is crucial for the detection of the recombination cycles in the given bi-
nary sequences. It states that the similarity and dissimilarity between the sequences,
which shares a common parent, should be computed after the removing the parent’s
characteristics are removed from each of the child, to avoid the misleading similarity
between the species.

Recombination
edges

Recombination
node

00

01
11

10

Fig. 1. Phylogenetic network for binary sequences

 A Classification Based Approach for Root Unknown Phylogenetic Networks 595

Lemma 1. Let S and S' be the sequences of the children of node v. if S' is not the re-
sult of the mutation or recombination in S then the similarity between S and S' is due
to common ancestry.

Proof. Let S' is not a child of the S, then S' is not reachable from S, therefore all the
sites or character of S' are different from the characters of the node S or vise versa. Let
S and S' are children of node v, then according to the assumption made in section 2
both S and S' are reachable from node v, and show the similarity by at least one char-
acter (of site) with the parent node v. Both the nodes S and S' show the similarity with
their parent node by at least one character not with each other. Hence this proves that
the distinct nodes will show similarity due to common ancestry.

Lemma 2 gives a method of finding child node and parent node when the compared
nodes show some similarity.

Lemma 2. If a node v' is the result of mutation from its parent v then 'vv < , when the
sequences are considered as the binary numbers.

Proof. We prove this by mathematical induction on the length m of the binary se-
quences. In the first step consider a parent v, with sequence S, contains all 0's in its
sequence. According to the definition of the mutation only one site can change the
state from 0 to 1 and rest of the sequence remains same. If a mutation occurs at site i
of v leading to at least on of the sites of the sequence, S', of the node v' is set to 1 and
the rest of the sequence will remain same as the parent sequence. Thus making S less
than S', S<S’. Now consider the case where the node v has m-2 number of 1s in se-
quence S. A mutation leads to m-1 number of ones in S' making S<S'. Now we prove
it for a generalized case of m-1 number of 1s. If a node v, with sequence S having m-1
number of 1s mutates to result in new child node v' with sequence S' having m number
of ones, which is the highest value binary number for a given length m. there-
fore 'vv < when mutation is reason for speciation.

Lemma 3 plays an important role in the detection of the recombination nodes. It
proves that if a node is the result of recombination then it should be greater than at
least one of the parents.

Lemma 3. Let v be a recombination node with sequence S. if P' and P" are two parent
nodes of v, with sequences S' and S" respectively, then any of the following should
hold.

(a) S'>S and S">S
(b) S'>S and S"<S
(c) S'<S and S">S

Proof. To prove this it is enough to prove it for the binary sequences of length 2. Let
three binary sequences, which give a recombination node v are 00, 01, 10, 11. These
sequences can be placed in only three different ways to represent the recombination as
shown in Fig.2. The other possibilities are ruled out due to the assumption that back
mutation is not permitted.

596 M.A.H. Zahid, A. Mittal, and R.C. Joshi

Fig. 2. Three cases for lemma 3

Case (a): Here the two mutations from root node lead to the species 01 and 10. The
node v with sequence 11 is the result of recombination of 01 and 10. Clear v is
greater than its two parents.
Case (b): In this case the sequence 01 muted from root and the sequence 11 is mutated
from 01. The recombination node v is the result of recombination between root and P'.
It satisfies the case (b) stating, S'>S and S"<S.
Case (C): In this case the sequence 10 muted from root and the sequence 11 is mu-
tated from 10. The recombination node v is the result of recombination between root
and P". It satisfies the case (c) stating, S'<S and S">S.

Theorem 4 uses the lemma 2 and 3 for the detection of the recombination nodes. It
helps in finding the parents of the recombination nodes when any one of the parent is
greater than the child.

Theorem 4. Let M be the given sequence matrix representing the node disjoint net-
work. A species or sequence is said to the result of recombination if it holds any of
the following conditions.

(a) If two species have, 0<similarity<=100% and dissimilarity > (100/m) %,
where m is the length of the sequence, one sequence represent parent and an-
other sequence represent the child, which is the result of recombination.

(b) The similarity between the two parent of a recombination node is always 0.

Proof. Case (a): Suppose that at some node x, mutation occurred at site i, representing
the change at site i from 0 to 1 and rest of the sequence remain same. If we calculate its
similarity and dissimilarity corresponding to the value 1 at each site, the similarity will
be 100% and dissimilarity will be 100/m % exactly. This indicates that only one site has
modified its value from 0 to 1. By the assumptions we made for phylogenetic network,
there is no provision for back mutation, that is transformation from 1 to 0 or mutation of
more than one site at the same instance of time is also ruled out. This restricts the dis-
similarity to be exactly 100/m % for mutation. But in case of recombination the restric-
tions of the mutation are ruled out due to the fact that the resulting sequence may carry a
part of the sequence from one parent and rest will be imitated from the other parent (in
single crossover). This fact indicates that the similarity can be 0<similarity<=100%
and dissimilarity > (100/m) %. Hence the condition (a) is proved.

Case (b): We prove this by contradiction. Suppose the recombination node v has two
parents with the sequences S' and S", show some similarity with each other. From the
assumptions made in section 2 and lemma 1, the similarity between the species is due

 A Classification Based Approach for Root Unknown Phylogenetic Networks 597

to two reasons (1) common parent, (2) child parent relationship with a single mutation
and (3) due to recombination. If S' and S" shows some similarity then any of the
above relation holds. The relation 1 is avoided by removing the parent characteristics
while computing the similarity between the children. We are focusing on a con-
strained recombination problem, where two recombination nodes are disjoint, avoid
the relation 3. If S' and S” shares child parent relationship with mutation then the
result of recombination will be a sequence N, similar to child or parent instead of the
new sequence,)",'(SSN ∈ . Hence it's proved that the parents of the recombination
node are dissimilar to each other.

Theorem 5 gives a strong basis for the detecting the node disjoint network in the
given input data. Any data satisfying the conditions given in theorem 5 will have a
gall tree. Otherwise, the data does not represent the gall tree structure.

Theorem 5. If C, C', and C" are child list of sequences S, S', and S" then the follow-
ing conditions should hold for the gall trees.

(a) If φ≠∩ 'CC and 1|'| =∩ CC .
(b) If the number of recombinations node in any of the parents is greater than 1,

and φ≠∩ 'CC then φ=∩ "CC or CCS ⊆∪ "" and φ=∩ "' CC or '"" CCS ⊆∪ .

Proof. Case (a): This is proved by contradiction. Let 1|'| >∩ CC , represents that the
node S and S’ are involved in more than one recombination with each other. The path
from root node to the recombination node always has two alternatives, each from one
of its parents. If there are more than two recombination nodes for the single pair of
parents S and S’, then there are two paths for each recombination nodes which in-
volves the same set of parents S and S’. In other words the parent nodes are shared by
two recombination cycles. But according to the definition of node disjoint network,
the nodes on the path to one recombination node should not be shared with other
recombination node path Hence this rejects our hypothesis and proves the condition.

Case (b): The proof is similar as in case (a). Let φ≠∩ 'CC and the number of re-
combination nodes in C are two. If xCC =∩ ' and yCC =∩ " , then there exist a path
from root node to the recombination cycle of node x and node y, which passes through
the node C. This violates the node disjoint rule of phylogenetic networks. Let child
list C” and the node S” itself is a subset of the child list of node S. If the similarity
and dissimilarity between the children of S is computed after removing the S’s charac-
teristics from each node then the recombination node will not show S in its parent list,
according to lemma 1. This parent relationship with the recombination node is due to
the common ancestor of all the nodes in the recombination cycle. So when there is
common ancestor for the parents of a recombination node then the parent of all the
nodes in that cycle is also added as the parent to the recombination node.

4 Phylogenetic Network Reconstruction Algorithm

In this section we develop a formal algorithm for the phylogenetic network recon-
struction with constrained recombination and prove that this algorithm results in
minimum number of recombinations in the resulting network. We conclude the sec-
tion with an example for the algorithm.

598 M.A.H. Zahid, A. Mittal, and R.C. Joshi

4.1 The Node_Class Algorithm

The algorithm Node_Class classifies the nodes and make the child and parent list of
each node given in the data matrix based on similarity and dissimilarity. We assume
that all the sequences represent a unique leaf node in the network, and back mutation
is not permitted.

The algorithm accepts a mn × binary matrix as input, where each row represents a
node in the phylogenetic network. A similarity and dissimilarity matrix is generated
based on the input matrix and is computed corresponding to the value 1 at the sites.
The distance (similarity and dissimilarity) between the siblings is measured after
removing the parent’s characteristics from the children. The parent node is considered
as the root to all the nodes in the child list and the parent list represents the parent
nodes of the current node. If data does not represent node disjoint network the algo-
rithm terminates by reporting an error message. The algorithm is as follows.

Data structures:

←d is an input matrix of size mn × ,where n is number of species and m is length of
sequences.

←
ij

dissim _ is the similarity and dissimilarity matrix corresponding to 1’s in the

sequences.
Node is a record with three variables: Label, Count (number of parents), and
Type(class).

←iChild An array of child nodes labels for each node.

←
i

Parent An array of parent nodes labels for each node.

INPUT: - binary matrix of mn × size.
OUTPUT: - child list for each node.

ALGORITHM: Node_Class (d)

Sort the matrix by considering each row as binary number.
for each row in the input binary matrix do
 ;_ valuerowLabel ←
 ;0←Count
 ;NullType ←
for each sorted node ni ≤≤1 do

;Null
i

Child ←

;Null
i

Parent ←

for each node nj ≤≤1 do
if Null

ij
dissim ←_ then

Compute Similarity and dissimilarity between i and j;
Modify dissim _ matrix;

 endif;

 A Classification Based Approach for Root Unknown Phylogenetic Networks 599

if mutationNullType
i

Node /. = then

if Similarity = 100% and Dissimilarity = 100/m % then
 ;1.. +← Count

j
NodeCount

j
Node

 ;
i

Node
j

Parent
j

Parent ∪←

else if 2. ≤Count
j

Node then

;. ionrecombinatType
j

Noide =

;
j

Node
i

Child
i

Child ∪←

endif;
else

;. mutationType
j

Noide =

;
j

Node
i

Child
i

Child ∪←

endif;
if Similarity < 100% and Dissimilarity ≥ 100/n % then

;1.. +← Count
j

NodeCount
j

Node

;
i

Node
j

Parent
j

Parent ∪←

;. ionrecombinatType
j

Noide =

;
j

Node
i

Child
i

Child ∪←

 endfor;
for each x, ||1

i
Childx ≤≤ , and

i
Child

x
Node ∈ do

Compare
i

Node with other element of
i

Child after removing parents characteris-

tics;
 Modify dissim _ matrix;

 endfor;
endfor;
Test_Nodedis (child, Node)
return;
endAlgorithm;

The function Test_Nodedis, takes Child and Node record list as input and based on

theorem 5 verifies whether node disjoint network exist in the given data or not. The
function is as follows.

Function: Test_Nodedis (Child, Node)

 for each node ni ≤≤1 do
if number of recombination nodes > 1 or 2. >Count

i
Node then

 for each node nj ≤≤1 , where ij ≠ do
 if 1|| >∩

j
Child

i
Child then

600 M.A.H. Zahid, A. Mittal, and R.C. Joshi

 exit “node disjoint recombination cycle does not exist”;
 else
 for each node nk ≤≤1 , where jik ,≠ do
 ;

k
Child

k
Nodetest ∪←

if φ≠∩
k

Child
i

Child or
i

ChildTest ⊄ and

φ≠∩
k

Child
j

Child or
j

ChildTest ⊄ then

 exit “node disjoint recombination cycle does not exist”;
 else
 Compute the similarity and dissimilarity matrix, d, after removing the

parent’s characteristics from each child;
 Node_Class(d)
 endif;
 endfor;

 endif;
 endfor;

return “node disjoint recombination cycle exist”;
endFunction;

4.2 An Example

The input matrix for the algorithm is shown in Fig. 3(a), which consists of seven leaf
nodes with their binary sequences. As the first step in the algorithm we sort the nodes
considering each row represents a node and is a binary number. The sorted matrix is
shown in Fig. 3(b).

Fig 3. (a) Input binary matrix with labels. (b) Sorted input binary matrix on rows

After processing each node the values assigned to each variable or properties of the
node records is shown in Table 1. The Type values for nodes A and C are 'Null' be-
cause they are mutated from the root node, not from any given nodes. The nodes D
and F are the result of the recombination and have two parents. All the other nodes are
the result of mutation from their respective parents.

The similarly-dissimilarity matrix computed during the detection of the recombina-
tion nodes is shown in Fig. 4.

Table 2 shows the child list of each node. The nodes D and F don’t have any child
so their list carries Null entry. On the other hand the nodes D and F are in the child list

. .

 A Classification Based Approach for Root Unknown Phylogenetic Networks 601

of (B, C) and (E, G) nodes respectively, making D and F, recombination nodes.
Table 3 gives the list of parent nodes for each node. This list is computed based on the
node disjoint conditions proved in theorem 5. The child list for the node C have two
recombination nodes, D and F, and the child F has count value 3 indicating three
parents. But it satisfies second condition in theorem 5, therefore the count is reduced
by 1 and its super ancestor is removed from its parent list.

Given the child and parent list for each of the node in the input data, it is easy to

construct the phylogenetic network for it. The procedure starts with scanning the child
list table. For each node in the child list a cross verification is performed with the
parent list. If both validate each other, then nodes are added and connected accord-
ingly in the child parent relationship. Otherwise, an additional node is created which
has the same sequence as conflicting node, called the coalescent node, and child and
parent tables are modified. Each internal node is attached with a new node represent
ing the leaf node in the node disjoint network, except the coalescent nodes. The se-
quence for the new node is same as its parent. The final network for the input data
given in Fig. 3(a) is shown in Fig. 5.

Now we prove that the algorithm results in a node disjoint network, if one exists,
with the minimum number of node disjoint recombination cycles in it.

Table 2. Child list for the input matrix
shown in Fig. 3(a)

Node Label Child List
A B
B D
C D,E,F,G
D Null
E F
F Null
G F

Table 3. Parent list for the input
matrix shown in Fig. 3(a)

Node Label Child List

A Null
B A
C Null
D B,C
E C
F E,G
G C

Table 1. Values of each property of node record after
the processing input matrix shown in Fig. 3(a)

Node Label Type Count
A Null 0
B Mutation 1
C Null 0
D Recombination 2
E Mutation 1
F Recombination 3
G Mutation 1

Fig 4. Similarity and dissimilar-
ity matrix for the input data
shown in Fig. 3 (a)

.

602 M.A.H. Zahid, A. Mittal, and R.C. Joshi

Fig. 5. Node disjoint network for the input shown in Fig. 3(a)

Theorem 6. If the for the input matrix M there are k recombination nodes then any
node disjoint network that minimizes the recombination will have exactly k recombi-
nations.

Proof. Let T be a node disjoint network for the input binary matrix M. If there is a
node disjoint cycle Q in T that contains only the mutation nodes, then the sequence
labeling of the nodes on Q can be derived from the perfect phylogeny. The root of the
node disjoint cycle Q is the sequence labeling the coalescent node of Q. Replacing Q
with perfect phylogeny will result in a node disjoint network with one recombination
less than the network T. Hence in any node disjoint network using the minimum num-
ber of recombinations must have exactly one recombination node for each node dis-
joint cycle. Therefore the minimum number of node disjoint cycles in a node disjoint
network is exactly the number of nodes with recombination type or class.

4.3 Correctness and Time Complexity

The results in section 3 and 4 give the proof of correctness of the classification
method. When the input data does not display a node disjoint network structure, the
algorithm reports an error message and terminates. The phylogenetic network com-
puted by the algorithm will have minimum number of recombinations.

The algorithm computes a node disjoint network, if one exists, in)log(2mnnnO +
time, where n is number of nodes, and m is the length of the each binary number. The
algorithm sorts the n rows, considering each row as a binary number, using quick sort,
which takes)log(nnO time. In the next step the algorithm computes the similarity and
dissimilarity between each of the node with respect to the sites with the value 1. The

second step takes)(2mnO time. On the basis of the similarity and dissimilarity meas-
ure the type of each node is decided and the child list is modified. This child list can
be further used to construct the node disjoint network.

5 Conclusions

In this paper we proposed a classification based approach for the construction of phy-
logenetic network with constrained recombination for unknown root or ancestor. The
construction of perfect phylogenetic network is proved to be NP-hard by Wang et al.
[4]. Wang et al. [4] gave a polynomial time algorithm for a restricted problem called

 A Classification Based Approach for Root Unknown Phylogenetic Networks 603

node disjoint network with known root, in which a node cannot be a part of two re-
combination paths in the network. It has both algorithmic and biological significance.

The method in [4] computes the gall tree or node disjoint network in)(4nO time.
Guesfield et al. [5, 11] proved that the [4] does not give the necessary and sufficient
conditions for the gall tree construction and gave a sufficient combinatorial basis for
network construction with known root. A similar method as [5, 11] is given by Gues-
field et al. [12] for the construction of the node disjoint network for unknown root.

The method [12] takes)(3nnmO + time for constructing a network for unknown root.

The proposed algorithm computes the root unknown network in)log(2mnnnO +
time and established the necessary and sufficient condition for the root unknown
networks. Unlike the other algorithms, we followed a row-based search to detect the
recombination nodes. Other algorithms search the columns for the detection of re-
combination. The number of columns in a sequence may be far greater than the rows,
which increases the complexity of the previous algorithms.

References

1. Posada, D., Crandall, K.: Intraspecific gene genealogies: trees grafting into networks,
Trends in Ecology and Evolution. 16 (2001) 37–45.

2. Schierup, M. H., Hein, J.: Consequences of recombination on traditional phylogenetic
analysis. Genetics. 156(2000) 879-891.

3. Savai, P., Abulleef, H., Chun, L. L., Skvortsov, D.: Phylogenetic analysis, MS. Project,
University of southern California, 2002.

4. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. Jour-
nal of Computational Biology. 8 (2001) 69-78.

5. Guesfield, D., Satish, E., Langley, C.: Optimal efficient reconstruction of phylogenetic
network with constrained recombination. Journal of Computer and System science. 70
(2005) 381-398.

6. Schierup, M. H., Hein, J.: Recombination and the molecular clock. Mol. Biol. Evol.
17(2000) 1578–1579.

7. Posada, D., Crandall, K.: The effect of recombination on the accuracy of phylogeny esti-
mation. Journal of Molecular Evolution. 54(2002) 396-402.

8. Linder C.R., Moret, B.M.E. L. Nakhleh, and T. warnow, Reconstructing networks part II:
computational aspects. A tutorial presented at the ninth pacific symposium on Biocomput-
ing (PSB), 2004.

9. Zahid, M. A. H., Mittal, A., Joshi, R. C.: Use of phylogenetic networks and its reconstruc-
tion algorithms. Journal of Bioinformatics India, ISSN 0972-7655. 4(2004) 47-58.

10. Chakravarthi, A., It’s raining SNP’s hallelujah? Nature Genetics. 19 (1998) 216-866.
11. Guesfield, D., Satish, E., Langley, C.: The fine structure of galls in phylogenetic networks.

INFORMS J. on computing, special issue on Computational Biology. 16(2004) 459-469.
12. Gusfield, D.: Optimal, Efficient Reconstruction of Root-Unknown Phylogenetic Networks

with Constrained and Structured Recombination, J. Computer and Systems Sciences, Spe-
cial issue on Computational Biology, 70 (2005) p. 381-398.

Author Index

Agarwal, Rahul 172
Ahmad, Amir 561
Ahn, JinHo 166
Apte, Varsha 154
Arumugam, Mahesh 69

Bandopadhyay, Tapati 553
Bapi, Raju S. 536
Bardhan, Debabrata 105
Barman, Siddharth 117
Bhargava, Anjali 314
Bhargava, Bharat 314
Bhattacharjee, A.K. 508
Bhattacharjee, Subhasis 93
Bhattacharyya, D.K. 523
Bisht, Mahender 172
Biswas, Pradipta 308
Bruhadeshwar, Bezawada 377

Cao, Yukun 278
Chandra, Punit 203
Chandrapal, Paritosh 192
Chen, Huajun 243
Chung, Yon Dohn 143
Cleaveland, Rance 482
Cokuslu, Deniz 56

Dagdeviren, Orhan 56
Dai, Xiaoling 297
Das, Nabanita 93
Das, Sandip 105
Dey, Lipika 561
Dong, Zhijiang 446

Erciyes, Kayhan 56

Flocchini, Paola 132
Fu, Yue 446
Fu, Yujian 446

Gorantla, M.C. 357
Goswami, Diganta 27
Grundy, John 297
Gupta, Gopal 433

Han, Dongsoo 217
Han, Kyeong-Eun 21
He, Xudong 446
Hong, Manpyo 348
Hou, Jia 15
Hwang, Chong-Sun 3

Inoue, Michihiro 82
Iyengar, S.S. 1

Jaghoori, M.M. 494
Janakiram, D. 235
Jiang, Tao 348
Jifeng, He 432
Joo, Kil Hong 255, 321
Joshi, R.C. 592

Kim, Seong-Whan 404, 410
Kim, SungSuk 3
Kim, Young-Chon 21
Kim, Young-Chul 21
Kim, Wonil 348
Kshemkalyani, Ajay D. 203
Kulkarni, Sandeep S. 69, 377
Kumar, Atul 314
Kumar, N. Pradeep 290
Kumar, Padam 192
Kumar, Pradeep 536
Kumar, Pradeep 553

Lee, Jaeho 255
Lee, Ji Yeon 143
Lee, Junghee 217
Lee, Moon Ho 15
Lee, SooJung 321
Lenz, Hans-J. 573
Lhee, Kyungsuk 348
Li, Yunfeng 278
Liao, Xiaofeng 278
Lobiyal, D.K. 39

Madria, Sanjay K. 242, 314
Maheshwari, S.N. 172
Mall, Rajib 470
Maluk Mohamed, M.A. 235

606 Author Index

Michalarias, Ilias 573
Mitra, Tulika 458
Mittal, Ankush 592
Mohania, Mukesh 522
Mousavi, M.R. 494
Movaghar, A. 494
Mukherjee, Nandini 229
Mukhopadhyay, Debajyoti 308
Mukhopadhyay, Debapriyay 334
Murugan, K. 62

Nagaprabhanjan, B. 154
Nandi, Sukumar 397
Nayak, Amiya 132
Negi, Atul 389
Negi, Hemendra Singh 458

Onozato, Yoshikuni 82

Padhy, Smruti 27
Palshikar, Girish Keshav 547
Patro, Ranjeet Kumar 184
Paul, B. 50
Peng, Li-Mei 21
Prasad, Sanjiva 172
Prasanna, S. 364

Radha, V. 290
Radha, Krishna P. 536
Rahman, M.S. 267
Ramakrishna, S. 290
Raman, C.V. 389
Rao, S.V. 50
Ray, Indrajit 333
Ray, Indrakshi 420
Reddy, Suresh 397
Roy, Rajat Shuvro 267
Roy, S. 523
Roy, Sarbani 229

Roy, Sasanka 105
Roy, Suman 334
Roychoudhury, Abhik 458
Ruhil, Anand Praksh 39

Santosh Kumar, S. 235
Saxena, Ashutosh 357
Schulz, Arno 132
Sen, Arunabha 2
Sen, Jaydip 125
Sengupta, Bikram 482
Sengupta, Indranil 125
Seol, Jae-Min 404
Shanmugavel, S. 62
Shukla, K.K. 117
Shyamasundar, R.K. 508
Singh, Anshuman 117
Sirjani, M. 494
Stojmenovic, Ivan 39
Sung, Hyun-Seong 410
Suresh Raja, S. 585

Thejaswi, Chandrashekhar P.S. 184
Toahchoodee, Manachai 420
Tripathi, Rakesh 470

Venkateswara Rao, M. 536
Venkateswara Reddy, M. 235
Vetriselvi, V. 364
Vijay Srinivas, A. 235
Vijayalakshmi, S. 585

Wang, Qian 434

Yang, Sun Ok 3
Yoo, Kyoung-Min 21
Yoshiura, Noriaki 82

Zahid, M.A.H. 592

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 536 – 546, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using Sub-sequence Information with kNN for
Classification of Sequential Data

Pradeep Kumar1,2, M. Venkateswara Rao1,2, P. Radha Krishna1, and Raju S. Bapi2

1 Institute for Development and Research in Banking Technology IDRBT,
Castle Hills, Masab Tank, Hyderabad, India-500057
Ph No: 91-40-23534981, Fax No: 91-40-23535157

2 University of Hyderabad, Gachibowli, Hyderabad, India-500046
{pradeepkumar, prkrishna}@idrbt.ac.in,

mvrao@mtech.idrbt.ac.in, bapics@uohyd.ernet.in

Abstract. With the enormous growth of data, which exhibit sequentiality, it has
become important to investigate the impact of embedded sequential information
within the data. Sequential data are growing enormously, hence an efficient
classification of sequential data is needed. k-Nearest Neighbor (kNN) has been
used and proved to be an efficient classification technique for two-class prob-
lems. This paper uses sliding window approach to extract sub-sequences of
various lengths and classification using kNN. We conducted experiments on
DARPA 98 IDS dataset using various distance/similarity measures such as Jac-
card similarity, Cosine similarity, Euclidian distance and Binary Weighted Co-
sine (BWC) measure. Our results demonstrate that sub-sequence information
enhances kNN classification accuracy for sequential data, irrespective of the
distance/similarity metric used.

Keywords: Sequence mining, k-Nearest Neighbor Classification, Similar-
ity/Distance metric, Intrusion detection.

1 Introduction

Data are very vital for a commercial organization. These data are sequential or non-
sequential in nature. Sequence mining helps us in discovering formal relations in
sequence data. Sequence pattern mining is the mining of frequently occurring patterns
related to time or other sequences [7, 15]. An example of the rule that sequence
mining algorithm would discover is -- “A user who has visited rediff website is likely
to visit yahoo website within next five page visits.” Sequence mining plays a vital
role in domains such as telecommunication records, protein classification, signal
processing and intrusion detection. It is important to note that datasets in these
problems need not necessarily have inherent temporality [7, 15].

Studies on sequential pattern mining mostly concentrate on symbolic patterns [1, 10,
17]. As in symbolic patterns, numerical curve patterns usually belong to the scope of
trend analysis and prediction in statistical time series analysis. Many other parameters
also influence the results of sequential pattern mining. These parameters include
duration of time sequence (T), event folding window (w) and time interval between
two events (int). If we assign w as the whole duration T, we get time independent

ERRATUM

 Using Sub-sequence Information with kNN for Classification of Sequential Data 537

frequent patterns. An example of such a rule is “ In 1999, customers who bought PCs
also bought digital cameras”. If w is set to be 1, that is, no event sequence folding
occurs, then all events are considered to be discrete time events. The rule of the type
“Customers who bought hard disk and then memory chip are likely to buy CD-Writer
later on” is example of such a case. If w were set to be something between 1 and T,
events occurring between sliding windows of specified length would be considered. An
example rule is “Sale of PC in the month of April 1999 is maximum”.

Sequential data are growing at a rapid pace. A pre-defined collection of historical
data with their observed nature helps in determining the nature of newly arriving data
stream and hence will be useful in classification of the new data stream. In data
mining, classification algorithms are popularly used for exploring the relationships
among various object features at various conditions. Sequence data sets are similar in
nature except that they have an additional temporal dimension [22].

Classification algorithms help in predicting future trends as well as extracting a
model of important data classes. Many classification algorithms have been proposed
by researchers in machine learning [21], expert systems [20], statistics [8].
Classification algorithms have been successfully applied to the problems, where the
dependent variable (class variable) depends on non-sequential independent
(explanatory) variables [3]. Typical classification algorithms are Support Vector
Machines, Decision Trees, Bayesian Classification, Neural Networks, k-Nearest
Neighbor (kNN) and Association Classification. To deal with the sequential
information, sequential data are transformed into non-sequential variables. This leads
to a loss of sequential information of the data. Although traditional classification is
robust and efficient for modeling non-sequential data, they fail to capture sequential
information of the dataset.

Intrusion detection is the process of monitoring and analyzing the events occurring
in a computer system in order to detect signs of security problems [2]. Computer
security can be achieved by maintaining audit data. Cryptographic techniques,
authentication means and firewalls have gained importance with the advent of new
technologies. With the ever-increasing size of audit data logs, it becomes crucial for
network administrators and security analysts to use some efficient Intrusion Detection
System (IDS), to reduce the monitoring activity. Data mining techniques are useful in
providing important contributions to the field of intrusion detection.

IDSs based on examining sequences of system calls often define normal behavior
of an application by sliding a window of fixed size across a sequence of traces of
system calls. System call traces are normally produced with programs like strace on
Linux systems and truss on Solaris systems. Several methods have been proposed for
storing system calls traces’ information and to use these for detecting anomalies in an
IDS. Forrest et al. [5, 9] stored normal behavior by sliding a window of fixed size L
across sequence of system call traces and recorded which system call followed the
system call in position 0 at offsets 1 through L-1. Liao et al. [12] applied kNN
classifier with Cosine similarity measure considering frequencies of system calls with
sliding window size w =1. A similar work with modified similarity measure using a
combination of Cosine as well Jaccard has also been carried out in [18].

The central theme of this paper is to investigate that vital information stored in sub-
sequences, plays any role in building a classifier. In this paper, we combine sequence
analysis problem with kNN classification algorithm, to design an efficient classifier

538 P. Kumar et al.

for sequential data. Sequence analysis can be categorized into two types, depending
on the nature of the treatment. Either we can consider the whole sequence as one or
sub-sequences of different sizes. Our hypothesis is that sequence or order of
information plays a role in sequence classification. We extracted sequence
information from sub-sequences and used this information for building various
distance/similarity metrics. With the appropriate distance/similarity metric, a new
session is classified using kNN classifier. In order to evaluate the efficiency and
behavior of the classifier with the encoded vector measures, Receiver Operating
Characteristics (ROC) curve is used. Experiments are conducted on DARPA 98 IDS
[13] dataset to show the viability of our model.

Like other classification algorithms, kNN classification algorithm does not make a
classifier in advance. Hence, it is suitable for classification of data streams.
Whenever a new data stream comes, kNN finds the k near neighbors to new data
stream from training data set using some distance/similarity metric [4, 6]. kNN is the
best choice for making a good classifier, when simplicity and accuracy is important
issues [11].

The rest of the paper is organized as follows - Section 2 gives a brief description of
the nearest neighbor classification algorithm. In section 3, we briefly discuss about
the distance/similarity measures used in the experiments. In section 4, we outline our
proposed approach. The Section 5 provides the experimental results on DARPA 98
IDS dataset. Finally, we conclude in section 6.

2 Nearest Neighbor Classification

kNN classifier are based on learning by analogy. KNN classification algorithm
assumes that all instances correspond to points in an n-dimensional space. Nearest
neighbors of an instance are described by a distance/similarity measure. When a new
sample comes, a kNN classifier searches the training dataset for the k closest sample
to the new sample using distance/similarity measure for determining the nature of
new sample. These k samples are known as the k nearest neighbors of the new
sample. The new sample is assigned the most common class of its k nearest
neighbors. Nearest neighbor algorithm can be summarized as follows:

Begin
 Training

 Construct Training sample T from the given dataset D.
Classification
Given a new sample s to be classified,

 Let I1… Ik denote the k instances from T that are nearest to new sample s
 Return the class from k nearest neighbor samples.
 Returned class is the class of new sample.
End
 In the nearest neighbor model, choice of a suitable distance function and the value
of the members of nearest neighbors (k) are very crucial. The k represents the
complexity of nearest neighbor model. The model is less adaptive with higher k
values [7].

 Using Sub-sequence Information with kNN for Classification of Sequential Data 539

3 Distance/Similarity Measures

Distance/similarity measure plays an important role in classifying or grouping
observations in homogeneous groups. In other words, a distance/similarity measure
establishes the relationship between the rows of the data matrix. Preliminary
information for identifying homogeneous groups is provided by the distance/similarity
measure. Between any pair of observations xi and xj function of the corresponding row
vector in the data matrix is given by:

Dij = f (xi , xj) where i,j = 1, 2, 3,…,n

For an accurate classifier, it is important to formulate a metric to determine whether
an event is deemed normal or anomalous. In this section, we briefly discuss various
measures such as Jaccard similarity measure, Cosine similarity measure, Euclidian
distance measure and BWC measure. We used sub-sequence information with these
different measures in kNN classifier for cross comparison purpose.

3.1 Jaccard Similarity Function

Jaccard similarity function is used for measuring similarity between binary values
[19]. It is defined as the degree of commonality between two sets. It is measured as a
ratio of number of common attributes of X AND Y to the number of elements
possessed by X OR Y. If X and Y are two distinct sets then the similarity between X
and Y is:

S(X,Y) =
| |

| |

X Y

X Y

∩
∪

Consider two sets X =〈 M, N, P, Q, R, M, S, Q〉 and Y = 〈P, M, N, Q, M, P, P〉.
X ∩ Y is given as 〈M, N, P, Q〉 and X ∪ Y is 〈M, N, P, Q, R, S〉. Thus, the similarity
between X and Y is 0.66.

3.2 Cosine Similarity

Cosine similarity is a common vector based similarity measure. Cosine similarity
measure is commonly used in text databases [16]. Cosine similarity metric calculates
the angle of difference in direction of two vectors, irrespective of their lengths. Cosine
similarity between two vectors X and Y is given by:

S(X,Y) =
| || |

X Y

X Y

•

Direct application of Cosine similarity measure is not possible across sets. Sets are
first converted into n-dimensional vector space. Over these transformed vectors Co-
sine similarity measure is applied to find the angular similarity. For two sets,
X = 〈M, N, P, Q, R, M, S, Q〉 and Y = 〈P, M, N, Q, M, P, P〉 the equivalent trans-
formed frequency vector is Xv = < 2,1,1,2,1,1> and Yv = < 2,1,3,1,0,0 >. The Cosine
similarity of the transformed vector is 0.745.

540 P. Kumar et al.

3.3 Euclidean Distance

Euclidean distance is a widely used distance measure for vector spaces [16]. For two
vectors X and Y in an n- dimensional Euclidean space, it is defined as the square root
of the sum of difference of the corresponding dimensions of the vector.
Mathematically, it is given as

D(X,Y) =

1/ 2

2

1
()s s

n

s
X Y

=

⎡ ⎤−∑⎢ ⎥⎣ ⎦

Similar, to the Cosine similarity metric, application of Euclidean measure on sets is
not possible. Similar approach as used in Cosine similarity measure to transform sets
into vector is applicable here also. For two sets,
X = 〈 M, N, P, Q, R, M, S, Q〉 and Y = 〈P, M, N, Q, M, P, P〉 the equivalent
transformed frequency vector is Xv = < 2,1,1,2,1,1> and Yv = < 2,1,3,1,0,0 >. The
Euclidean measure of the transformed vector is 2.64.

3.4 Binary Weighted Cosine (BWC) Metric

Rawat et.al.[18] proposed BWC similarity measure for measuring similarity across
sequences of system calls. They showed the effectiveness of the proposed measure on
IDS. They applied kNN classification algorithm with BWC metric measure to
enhance the capability of the classifier. BWC similarity measure considers both the
number of shared elements between two sets as well as frequencies of those elements
in traces. The similarity measure between two sequences X and Y is given by

S (X, Y)=
| || |

X Y

X Y

•
*

| |

| |

X Y

X Y

∩
∪

BWC measure is derived from Cosine similarity as well as Jaccard similarity
measure. Since the Cosine similarity measure is a contributing component in a BWC
similarity measure hence, BWC similarity measure is also a vector based similarity
measure. The transformation step is same as carried out in Cosine similarity measure
or Euclidean measure for sets. For two sets, X =〈M, N, P, Q, R, M, S, Q〉 and
Y = 〈P, M, N, Q, M, P, P〉 the Cosine similarity is given as 0.745 and Jaccard similar-
ity as 0.66. Hence, the computed BWC similarity measure comes out to be 0.49.

4 Proposed Methodology

This section illustrates the methodology for extracting sequential information from the
sets, thus making it applicable to be used by various vector based distance/similarity
metrics. We considered sub-sequences of fixed sizes: 1,2,3… This fixed size sub-
sequence is called window. This window is slided over the traces of system calls to find
the unique sub-sequences of fixed length s over the whole dataset. A frequency count of
each sub-sequence is recorded. Consider a sequence, which consists of traces of system
calls.

 Using Sub-sequence Information with kNN for Classification of Sequential Data 541

execve open mmap open mmap mmap mmap mmap mmap open mmap exit

Sliding window of size 3

execve open mmap open mmap mmap mmap mmap mmap open mmap exit

Total length of sequence is 12 with the sliding window size w (=3) we will have

total sub-sequences of size 3 as 12 –3 + 1= 10. These 10 sub-sequences of size 3 are

execve open mmap open mmap open mmap open mmap open mmap mmap
mmap mmap mmap mmap mmap mmap mmap mmap mmap mmap mmap open
mmap open mmap open mmap exit

From among these 10 generated sliding window-sized sub-sequences unique sub-
sequences with their frequencies are as follows:

execve open mmap 1 mmap open mmap 2
 open mmap open 1 mmap mmap open 1
open mmap mmap 1 open mmap exit 1
mmap mmap mmap 3

With these encoded frequencies for sub-sequences, we can apply any vector based

distance/similarity measure, thus incorporating the sequential information with vector
space. The traditional classification algorithm – the kNN classification algorithm [4, 7]
with suitable distance/similarity metric can be used to build an efficient classifier.

Our proposed methodology consists of two phases namely training and testing
phase. Dataset D consists of m sessions. Each session is of variable length. Initially in
training phase, all the unique sub-sequences of size s are extracted from the whole
dataset. Let n be the number of unique sub-sequences of size w, generated from the
dataset D. A matrix C of size m × n is constructed where Cij is given by count of jth

unique sub-sequence in the ith session. A distance/similarity metric is constructed by
applying distance/similarity measure over the C matrix. The model is trained with the
dataset consisting of normal sessions.

In testing phase, whenever a new process P comes to the classifier, it looks for the
presence of any new sub-sequence of size s. If a new sub-sequence is found, the new
process is marked as abnormal. When there is no new sub-sequence in new process P,
calculate the similarity of new process with all the sessions. If similarity between any
session in training set and new process is equal to 1, mark it as normal. In other case,
pick the k highest values of similarity between new process P and training dataset.
From this k maximum values, calculate the average similarity for k-nearest neighbors.
If the average similarity value is greater than user defined threshold value (τ) mark
the new process P as normal, else mark P as abnormal.

5 Experimental Results

Experiments were conducted using k-Nearest Neighbor classifier with Jaccard
similarity function, Cosine similarity measure, Euclidean distance and BWC metric.

542 P. Kumar et al.

Each distance/similarity metric was individually experimented with kNN classifier on
DARPA 98 IDS dataset.

DARPA 98 IDS dataset consists of TCPDUMP and BSM audit data. The network
traffic of an Air Force Local Area Network was simulated to collect TCPDUMP and
BSM audit data [13]. The audit logs contain seven weeks of training data and two
weeks of testing data. There were 38 types of network-based attacks and several real-
istic intrusion scenarios conducted in the midst of normal background data. Detailed
discussion of DARPA dataset is given at [12]. For experimental purpose, 605 unique
processes were used as a training dataset, which were free from all types of attacks.
Testing was conducted on 5285 normal processes. In order to test the detection capa-
bility of proposed approach, we incorporate 55 intrusive sessions into our test data.
For kNN classification experiments, k=5 was considered. With various discussed
distance/similarity measures in the above section (Jaccard similarity measure, Cosine
similarity measure, Euclidean distance measure and BWC similarity measure) at dif-
ferent sub-sequence lengths (sliding window size) L=1,3,5 experiments were carried
out. Here, L=1 means that no sequential information is captured whereas, for L > 1
some amount of order information across elements of the data is preserved.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.005 0.01 0.015
False Positive Rate

De
tec

tio
n R

ate

sub-seq L=1 sub-seq L =3 sub-seq L =5

Fig. 1. ROC curve for Jaccard similarity metric using kNN classification for k =5

To analyze the efficiency of classifier, ROC curve is used. The ROC curve is an
interesting tool to analyze two-class problems [14]. ROC curve is very useful where
situations detection of rarely occurring event is done. ROC curve depicts the relationship
between False Positive Rate (FPR) and Detection Rate (DR) at various threshold values.
DR is the ratio of the number of intrusive sessions (abnormal) detected correctly to the
total number of intrusive sessions. The FPR is defined as the number of normal processes
detected as abnormal, divided by the total number of normal processes. ROC curve gives
an idea of the trade off between FPR and DR achieved by classifier. An ideal ROC curve
would be parallel to FPR axis at DR equal to 1.

 Using Sub-sequence Information with kNN for Classification of Sequential Data 543

0
0.2
0.4
0.6
0.8

1
1.2

0 0.1 0.2 0.3 0.

False Positive Rate

4

De
tec

tio
n R

ate

Sub-seq L=1 Sub-seq L=3 Sub-seq L=5

Fig. 2. ROC curve for Cosine similarity metric using kNN classification for k =5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15

De
tec

tio
n R

ate

sub-seq L=1 sub-seq L=3 Sub-seq L=5

False Positive Rate

Fig. 3. ROC curve for Euclidian distance metric using kNN classification for k =5

Corresponding ROC curves for Jaccard similarity measure, Cosine similarity
measure, Euclidean distance measure and BWC measure are shown in fig 1, 2, 3 and
4 respectively. It can be observed from fig 1,2,3 and 4 that as the sliding window size
increases from L =1 to L = 5, high DR (close to ideal value of 1) is observed with all
the distance/similarity metrics.

Rate of increase in false positive is less for Jaccard similarity measure (0.005-
0.015) as compared to different distance/similarity metrics such as Cosine similarity
(0.1-0.4), Euclidian distance (0.05-0.15) and BWC similarity (0.1-0.7). Table 1
depicts the factor (FPR or Threshold value) that was traded off in order to achieve
high DR. For example, in the case of Jaccard similarity measure, FPR was traded off
for threshold values (highlighted in bold face) in order to achieve high DR.

544 P. Kumar et al.

Sub-seq L=1 Sub-seq L=3 Sub-seq L=5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

False Positive Rate

De
tec

tio
n R

ate

Fig. 4. ROC curve for BWC similarity metric using kNN classification for k =5

Table 1. Results for different distance/similarity metric

 Jaccard
similarity
measure

Cosine
similarity
measure

Euclidian
distance
measure

BWC similarity
measure

 τ FPR τ FPR τ FPR τ FPR
L =1 0.94 0.0056 0.99 0.29 0.99 0.12 0.89 0.096
L =3 0.95 0.011 0.99 0.12 0.99 0.07 0.7 0.28
L =5 0.89 0.0105 0.75 0.03 0.99 0.06 0.65 0.30

Thus, our results support the hypothesis that classification accuracy of sequential
data can be improved by incorporating the order information embedded in sequences.
We also performed experiments with different k values for nearest neighbor classifier
with all the four measures.

Table 2. False positive rate at maximum attained detection rate for different sub-sequence
length for different distance/similarity measure at k =7

 L = 1 L = 3 L =5
Jaccard similarity 0.0058 0.0102 0.0105
Euclidian distance 0.94 0.0047 0.0085
Cosine distance 0.3286 0.1799 0.0387
BWC measure 0.0885 0.0783 0.0787

We present the false positive rate at maximum attained detection rate for different
sub-sequence lengths L = 1, 3, 5 with all the distance/similarity measures in table 2
for k =7. It can be observed that, as per the trend, the FPR is increasing with the
increasing sub-sequence lengths for all the four measures. We also performed
experiments with k =10 and the trend is also found to be consistent (Results are not
included here).

 Using Sub-sequence Information with kNN for Classification of Sequential Data 545

6 Conclusion

Using Intrusion Detection as an example domain, we demonstrated in this paper the
usefulness of utilizing sub-sequence information for kNN classification of sequential
data. We presented results on DARPA 98 IDS dataset wherein we systematically
varied the length of the sliding window from 1 to 5 and used various distance
/similarity measures such as Jaccard similarity, Cosine similarity, Euclidian distance
and BWC similarity measure. As the sub-sequence information is increased, the high
DR is achieved with all the four measures. Our results show that if order information
is made available, a traditional classifier such as kNN can be adapted for sequence
classification problem. We are currently working on design of new similarity
measure, for capturing complete sequential information. Although the current paper
presented results in the domain of information security, we feel this methodology can
be adopted for the domains such as web mining, text mining and bio-informatics.

References

1. Agrawal, R., Faloutsos, C. and Swami, A.: Efficient similarity search in sequence
databases. In proceedings of the 4th Int'l Conference on Foundations of Data Organization
and Algorithms. Chicago, IL, 1993. pp 69-84.

2. Bace, R.: Intrusion Detection. Macmillan Technical Publishing, 2000.
3. Buckinx, W., Moons, E., Van den Poel, D. and Wets, G: Customer-Adapted Coupon

Targeting Using Feature Selection, Expert Systems with Applications 26, No. 4 2004,
509-518.

4. Dasarathy, B.V.: Nearest-Neighbor Classification Techniques, IEEE Computer Society
Press, Los Alomitos, CA, 1991.

5. Forrest S, Hofmeyr S A, Somayaji A and Longstaff T.A.: A Sense of self for UNIX
process. In Proceedings of the IEEE Symposium on Security and Privacy, pages 120-128,
Los Alamitos, CA, 1996. IEEE Comuputer Socity Press.

6. Gludici, P: Applied Data Mining , Statistical methods for business and industry, Wiely
publication, 2003.

7. Han, Jiawei., Kamber, Micheline.: Data Mining , Concepts and Techniques, Morgan
Kaufmann Publishers, 2001.

8. Hastie, T., Tibshirani, R. and Friedman, J. H.: The Elements of Statistical Learning, Data
Mining, Inference, and Prediction, Springer, 2001.

9. Hofmeyr S A, Forrest S, and Somayaji A.: Intrusion Detection Using Sequences of System
calls. Journal of Computer Security, 1998, 6:151-180.

10. Keogh, E., Chakrabarti, K., Pazzani, M. and Mehrotra, S.: Locally adaptive dimensionality
reduction for indexing large time series databases. In proceedings of ACM SIGMOD
Conference on Management of Data. Santa Barbara, CA, 2003. pp 151-162.

11. Khan, M., Ding, Q. and Perrizo, W.: k-Nearest Neighbor Classification on Spatial Data
Streams Using P-Trees, In the Proceedings of the 6th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining, 2002.

12. Liao, Y., Rao Vemuri, V.: Using Text Categorization Techniques for Intrusion Detection.
USENIX Security Symposium 2002: 51-59.

13. MIT Lincoln Laboratory, http://www.ll.mit.edu/IST/ideval/.

546 P. Kumar et al.

14. Marques de sa, J.P: Pattern recognition: concepts, methods and applications, Springer-
Verlag 2001.

15. Pujari, A.K.: Data Mining Techniques, Universities Press INDIA, 2001.
16. Qian, G, Sural, S., Gu, Y., Pramanik, S.: Similarity between Euclidean and cosine angle

distance for nearest neighbor queries. SAC 2004: 1232-1237
17. Ratanamahatana, C. A. and Keogh. E..: Making Time-series Classification More Accurate

Using Learned Constraints. In proceedings of SIAM International Conference on Data
Mining (SDM '04), Lake Buena Vista, Florida, 2004. pp. 11-22.

18. Rawat, S. Pujari, A.K., Gulati, V.P.,and Vemuri, V. Rao.: Intrusion Detection using Text
Processing Techniques with a Binary-Weighted Cosine Metric. International Journal of
Information Security, Springer-Verlag, Submitted 2004.

19. Sams String Metrics, http://www.dcs.shef.ac.uk/~sam/stringmetrics.html
20. Sholom M. Weiss and Casimir A. Kulikowski: Computer Systems That Learn:

Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and
Expert Systems (Machine Learning Series), Morgan Kaufmann Publishers Inc. San
Francisco, CA, USA , 1991.

21. Tom M. Mitchell.: Machine learning, Mc Graw Hill 1997.
22. Wang, Jason T.L.; Zaki, Mohammed J.; Toivonen, Hannu T.T.; Shasha, Dennis: Data

mining in bioinformatics, Springer-Verlag 2005

G. Chakraborty (Ed.): ICDCIT 2005, LNCS 3816, pp. 553 – 560, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Capturing Market Intelligence from Customer Feedback
E-mails Using Self-enhancing Boltzmann Machine-Based

Network of Knowledge Maps

Pradeep Kumar and Tapati Bandopadhyay

Faculty Member, ICFAI Business School, Gurgaon-122016, Haryana, India
{pkgarg, tapati}@ibsdel.org

Abstract. With the proliferation of the Web, capture of market intelligence data
has become more difficult in reality from the system’s point of view, as data
sources on the web are voluminous, heterogeneous in terms of structures and
semantics, and some part of it may be irrelevant to a specific organizations’
marketing decision making context, which is the primary premises of market in-
telligence (MI) systems. To address these requirements of MI, we are proposing
a method for creating an MI network using customer feedback messages and e-
mails as inputs. We have proposed the use of knowledge map (KM) method for
representing textual and unstructured resources as a network using KMs and
clustering and then incrementally enhance itself as the new customer e-mails
keep coming. At last, we have proposed a self-enhancing network using
Bolzmann Machines concept where the new messages are treated as new hy-
potheses, and they get absorbed into the MI network based on their similarity
values.

1 Introduction

1.1 Market Intelligence

Market Intelligence is a specific functional form of Business Intelligence or BI. A
definition [10] on Business Intelligence says that it is a systematic and ethical pro-
gram for gathering, analyzing, and managing external information that can affect a
company's plans, decisions, and operations. It is also defined as the result of "acquisi-
tion, interpretation, collation, assessment, and exploitation of information" [5] in the
business domain. According to the report of Nucleus, a market research firm on IT, in
their research about Top 10 IT predictions for 2005, [10] on BI has emerged as the
first among the maximum sought-after solutions. Amongst various Business Intelli-
gence elements, Market Intelligence is one of the most significantly and practically
applied concept or tool. Gathering market intelligence (MI) is one of the critical op-
erational tactics for the marketing-strategic success of an enterprise. A study found
that the world produces between 635,000 and 2.12 million terabytes of unique infor-
mation per year, most of which has been stored in computer hard drives or servers [5].
Among these huge, heterogonous and unstructured data domain, one of the crucial
and valuable source of Market Intelligence for any company is the on-line customer

ERRATUM

554 P. Kumar and T. Bandopadhyay

feedback system. Gathering customer feedback online through e-mails or form-based
interfaces is one of the most common activities that companies are engaged in doing
on the net, because it gives the customer the flexibility to communicate in an asyn-
chronous domain (which is not the case with the telephone calls) and also gives them
a platform to communicate in writing which is a more convenient way as perceived
by people for putting the problems or thoughts in a more structured fashion.

This customer feedback information – either in the form of e-mails or some struc-
tured textual form-based inputs, is a precious source of MI for any organization. In
this paper, we are thereby proposing a method for collecting market intelligence from
customer e-mails using Knowledge Maps as the Knowledge extraction and descrip-
tion mechanism, and incorporating a self-enhancing MI network. In contrast with
traditional knowledge portal methods where document-level technologies are quite
popular, our design uses the Knowledge Map method for extraction and collection of
Market Intelligence data, based on the concept developed and presented by the author
[3]. Consequently, we present the process of extracting market intelligence using
knowledge maps, which is generated by an information synthesis process and can
provide semantic services through various application interfaces and analytical or fil-
ter or enterprise-data search engines.

1.2 Collecting Market Intelligence: Sources and Tools

Generally, MI research and system development efforts have focused on storage and
data mining technologies. Data warehousing and on-line analytical processing (OLAP)
have typically been used to solve data extraction, transformation, data cleaning, storage,
and mining issues. Previous efforts have used document-based technologies and
supported document-level functions such as full text search, document classification,
and so on. Business practitioners have developed automated tools to support better
understanding and processing of information. In recent years, business intelligence tools
have become important for analysis of information on the Web [4]. Researchers have
also developed advanced analysis and visualization techniques to summarize and
present vast amount of information. It is [4] found that the global interest in intelligence
technology has increased significantly during the years of early twenty-first century.
Automated search capability in many tools has been shown to lead to information over-
load.[5] Despite recent Improvements in analysis capability [4], there is still a long way
to go to assist qualitative analysis effectively. Most tools that claim to do analysis
simply provide different views of collection of information {e.g. comparison between
different products or companies). Various [9] display formats were identified for
handling multi-dimensional data e.g. hierarchical displays- an effective information
access tool for browsing, network displays, scatter displays.. Regarding document
visualization, it primarily concerns the task of getting insight into information obtained
from one or more documents. Most processes of document visualization involve three
stages i.e. document analysis, algorithms, and visualization. Web content mining treats
a web document as a vector of weights of key terms [1]. He et al. [6] proposed an
unsupervised clustering method that was shown to identify relevant topics effectively.
The clustering method employed a graph-partitioning method based on a normalized cut
criterion. This method we are using in this paper to extract intelligence from customer
e-mails for creating an MI network using Knowledge maps.

 Capturing MI from Customer Feedback E-mails 555

1.3 MI Network Creation with Customer E-mails as Inputs

Aside from the document level operations, an effective Market Intelligence collection
system should combine extraction technology with semantics, and should generate a
network structure to store knowledge. In this section, we present these requirements
of an effective market intelligence collection system using customer feedback e-mails
as inputs. Towards this end, we first introduce the concept of Bolzmann machine as
an effective self-enhancing network to dynamically and incrementally capture MI
from e-mail inputs. Then we explain the process of creating high-dimensional
KMs(Knowledge Maps) from an existing e-mail repository, using similarity-based
clustering and graph partitioning methods, at say Time T0 when an organization starts
building it’s MI network. The high-dimensional KM network is then decomposed
into 2-D network using MDS or Multi-Dimensional Scaling. This network then ac-
cepts periodic incremental inputs from new e-mails from customers and gets self-
enhanced by the Bolzmann machine concept application.

1.4 Bolzmann Machine

Bolzmann machines are variations on the basic concepts of Hopfield Networks, [11]
which was initially proposed in the field of artificial intelligence, as a theory of mem-
ory supporting distributed representations (memory as a pattern of activations across a
set of processing elements), distributed and asynchronous control, content-
addressable memory and fault-tolerance. Pairs of units in a Hopfield network are con-
nected by symmetric weights and the units update their states asynchronously by
looking at their local connections to the other units. The Hopfield network works
well as content-addressable memories. They can also be used for constraint-
satisfaction problems where each unit can be thought as a ‘hypothesis’. [11] Then the
network can try to reach a state of equilibrium by adjusting weights as follow:

1. Place positive weights on connections between pair of units representing compati-
ble or mutually supporting hypotheses

2. Place negative weights on connections between pairs of units representing incom-
patible or in-conflict hypotheses.

By definition, Hopfield networks settle on a number of local minimum, which is
workable in case of content-addressable memory, but for hypotheses-based situations,
a global equilibrium is to be reached. Towards this end, the concepts of Hopfield net-
works were combined with that of simulated annealing- another AI algorithm for
searching and constraint satisfaction, and this effort produced the idea of Bolzmann
machines.

This concept can be exploited very effectively in case of creating and arranging an
organizational memory. The paper focuses primarily on the knowledge extraction as-
pect to build an organizational memory, initially from start-up, and then incremen-
tally. For starting up, we propose the creation of a knowledge map network where
every node can represent a hypothesis. During the initial build-up phase, the hypothe-
ses are tested on-build-process and are located as nodes in the knowledge map net-
work. This way the first organizational memory gets built up. Once it gets production
released, the incremental building starts with the Bolzmann machine concepts.

556 P. Kumar and T. Bandopadhyay

2 Creation of Initial MI Network Using Knowledge Map

In this paper, we are taking the form-based text inputs and e-mail messages from cus-
tomers as the primary knowledge resources to build up an MI network. Treating them
as unstructured documents, we can use co-occurrence analysis to find the similarities
and then consequently the dissimilarities between the messages/ text contents. Mes-
sage bodies which are very similar in terms of their contents i.e. many of the identi-
fied key-terms (i.e. Terms excluding the general terms like pro-nouns, prepositions,
conjunctions etc.)are same, can be clubbed up together to form a cluster. Dissimilar
message/ text bodies can be created as other clusters. These clusters can then form a
network using hierarchical and partitional clustering method to form a graph with the
nodes as representative knowledge maps for a particular group of emails with high-
similarity in their message body/text.

Co-occurrence analysis can convert data indices and weights obtained from inputs
of parameters and various data sources(i.e.the email/text message bodies in the con-
text of this paper) into a matrix that shows the similarity between every pair of such
sources.[6,7].

When measured between two e-mail message bodies, say Ei and Ej,

Simij = {A ij / |A|2 } + Sij / |S|2 + (1- –) Cij / |C|2 (1)

0< , (parameters) <1, 0 <= + <=1,
where A, S, and C are matrices for A ij, Sij, and Cij respectively. Values for Aij will be
1 if Ei has a direct link/ reference/ hyperlink to Ej, else 0. S is the asymmetric similar-
ity score Ei and Ej, and is calculated as follows:

 P n
 Sij = sim (Ei, Ej) = [[dki dkj] / [d2

di]]

 k=1 k=1

(2)

where n is total number of terms in Ei, m is total number of terms in Ej , p is total
number of terms that appear in both Ei, and Ej., dij = (Number of occurrence of term j
in Ei) X log((N/dfj)Xwj)X(Termtype factor); dfj is number of Email message-bodies
containing term j; wj is number of words in term j; Termtype factor = 1 + ((10-2 X
typej / 10), where typej = min 1 if term j appears in subject, 2 if it appears in body, 3 if
it appears in ‘note’ etc.) and Cij is number of Es pointing to both Ei and Ej (co-
citation/ cross-referencing matrix).

Once we get the similarity and dissimilarity matrices for the initial build-up phase
using an existing repository of e-mails as the knowledge resources, we create a graph
and then partition it to form a network of nodes where the nodes are the representative
clusters of a group of emails having high similarity scores among them. Partitioning
of a graph, say G, can be done in various ways, for example, by using similarity
measures as below: [11,12].

Normalized Cut (x) ={cut between (A, B)/ assoc(A, V)}+{cut between (A, B)/
assoc (B,V)}

(3)

 Capturing MI from Customer Feedback E-mails 557

where, Cut between (A,B) = i€A, j€B Simij , Simij is similarity between nodes i and j of
the graph. Assoc(A,V) and assoc(B,V) shows how on average nodes within a group
are connected to each other. A cut on a graph G = (V, E) is defined as removal of a set
of edges such that the graph is split into disconnected sub-graphs. [2,3].

Once the high-dimensional network is created, it can be reduced to a 2-D form us-
ing Multi-Dimensional Scaling or MDS. Multidimensional scaling (MDS) algorithms
consist of a family of techniques that portray a data structure in a spatial fashion,
where the coordinates of data points xia are calculated by a dimensionality reduction
procedure. The distances (dij) are calculated as follows:

 dij = [{xia – xja }
p]1/p (p >= 1), xia

 <> xja (4)

where, p is the Minkowski exponent and may take any value not less than 1. r is the
coordinate of point on dimension a, and j is an r-element row vector from the ith row
of the matrix containing all n points on all r dimensions. The MDS procedure con-
structs a geometric representation of the data (such as a similarity matrix), usually in a
Euclidean space of low dimensionality (i.e. p = 2). MDS has been applied in many
different domains[8] It can be implemented using the following steps. First, Similarity
matrix is to be converted into a dissimilarity matrix by subtracting each element by
the maximum value in the original matrix. This matrix can be called as dissimilarity
matrix D. Then matrix B with elements bij which is a scalar product is to be calculated
as follows:

 n n n n
bij = - 1/ 2 [dij

2 – 1/n dik
2 – 1/n dkj

2 + 1/n2 dgh
2]

 k=1 k=1 g=1 h=1

(5)

where dij is an element in D, n= number of nodes in the data-source graph.
After calculating B, singular value decomposition is performed using the formula

as below:

B= UxVxU' , X = U X V1/2 (6)

where, U has eigenvectors in its columns and V has eigenvectors on its diagonal B
can then be expressed as B = X x X'.

The first two column vectors of X thus calculated now can be used to obtain the
two-dimensional coordinates of points.

Using this process along with MDS, suppose we get a network built up as shown
below in Figure 1 based on the similarity and dissimilarity scores among the existing
customer-e-mail repository.

Once the initial build-up phase is over and the initial MI network is created from
an existing repository of e-mail messages, it should be incrementally self-enhancing
with periodic incremental inputs from the e-mail repositories. This is where we
propose the use of Bolzmann Machines. Suppose n number of customer messages is
to be fed onto the initial MI network as shown in Figure 1. Now, each e-mail message
is treated as a new hypothesis (as explained in previous section on Bolzmann
Machines). All the nodes (clusters) of the existing network are also treated as hy-
potheses but they are already tested hypotheses which have been included and used
for building up the initial network. Each new hypothesis is tested with all the existing

558 P. Kumar and T. Bandopadhyay

Fig. 1. Initial MI Network using Knowledge Maps with Existing e-mail Repository

hypotheses or nodes. The network places similarity scores as weights on connections
between pair of hypotheses which are compatible or mutually supporting. The in-
compatible ones get 0 similarity score, so there is no connection or edge between
them.

Fig. 2. An Existing Network w.r.t. a New Message

These steps are explained as shown in figure 3 below. Suppose a new e-mail Mi
has come to be fed into the MI network

Existing Network
New e-mail/ form
inputs

Mi

7

5

3

4
5

1
0

2

Fig. 3. Similarity and Dissimilarity Value assignment in An Existing Network w.r.t. a New
Message

For Mi, it’s similarity score with all the existing nodes will be calculated. Say the
scores are as shown in Figure 4.

Existing e-mail repository based
MI network

Existing network New e-mail/ form
inputs

Mi

 Capturing MI from Customer Feedback E-mails 559

If for Mi, the maximum positive value (similarity score) over it’s edges with the
existing nodes m, say, with existing node j is Wij , then

• If Wij is more than a given threshold value, Mi will be included in node j.
• If Wij is less than the given threshold value, Mi will be represented as a new node

creating another cluster in the network.

Using these principles, If the similarity threshold is given as +8, then Mi will be in-
cluded in the node for which the edge has the maximum value i.e. =10 and the value
is higher than the threshold value.

If the similarity threshold value is given as +12, then the maximum value of edges
between new node Mi and existing nodes 1 to j = +10, is lower than the threshold
value. So, Mi will create a new node and a new cluster will be created centering on
Mi. It will be positioned in the graph using the principles of graph partitioning as
mentioned previously, and the resulting network may take the shape as shown below
in Figure 4:

Enhanced network

Fig. 4. Enhanced Network in case of similarity threshold value greater than the maximum value
of edges

This process will be repeated with all the n new input messages. The weights can
be dynamically adjusted as all the n messages are input and tested. Ultimately at the
end of one incremental phase with n email messages, the network will have the new
hypotheses included in the MI network.

3 Conclusion

The process of creating a market intelligence network as a form of MI repository in an
organization, as explained in this paper, is simple and easily implemented. Further
extensions may include exploring various other knowledge map creation mechanisms
including the GA approaches and extrapolating the Knowledge maps into the analyti-
cal systems required for analyzing and visualizing the Market intelligence data. It can
also be extend to incorporate various other MI inputs or resources other than customer
e-mails, to create a more comprehensive MI network for an organization.

560 P. Kumar and T. Bandopadhyay

References

1. Bowman. C.M, Danzig. P.B., Manber. U.(1994); Schwartz, F'. Scalable Internet resource
discovery: Research problems and approaches. Communication of the ACM. Vol 8 . pp 98-
107.

2. Chen. H.; Chung, Y.; Ramsey. M.; and Yang. C.(1998) A smart itsy bitsy spider for the
Web. Journal of the American Society far Information Science. 49. 7, 604-618.

3. Chen, H.; Fan. H.; Chau. M.; and Zeng, D.(2001) Meta Spider: Meta searching and cate-
gorization on the Web. Journal of the American Society for Information Science and
Technology. 52, 13, 1134-1147.

4. Fuld, L.M.: Singh. A.: Rothwell. K.; and Kim, J.(2003) Intelligence Software Report™
2003: Leveraging the Web. Cambridge. MA: Fuld & Company.

5. Futures-Group Ostriches & Eagles. The Futures Group Articles, Washington, DC, (1997)
(available at www.futuresgroup.com).

6. He. X.; Ding. C; Zha. H.; and Simon, H. (2001) Automatic topic identification using Web-
page clustering. In X. Wu. N. Cercone, TY. Lin, J- Gehrke. C. Clifton. R. Kotagiri. N.
Zhong. and X. Hu (eds,). Proceedings of the 2001 IEEE International Conference on Data
Mining. Los Alamitos. CA: IEEE Computer Society Press. 2(X)I. pp, 195-202.

7. He, Y, and Hui. S.C. (2002) Mining a Web citation database for author co-citation analy-
sis. Information Processing and Management. 38. 4. 491-508.

8. Kealy, W.A.(2000) Knowledge maps and their use in computer-based collaborative learn-
ing. Journal of Educational Computing Research, 25. 4. 325-349.

9. Lin, X.(1997) Map displays for information retrieval. Journal of the American Society for
Information Science. 4H. 1, 40-54.

10. Nucleus Report on Top 10 IT Spending for 2005: Survey of CIOs in MNCs:Survey Report
March 2005 by Nucleus Research, http://www.nucleus.com/surveys/2005.

11. Rich E., Knight K.(2001), Artificial Intelligence, Tata McGrawHill Publishing Company
Ltd, N. Delhi.

12. Shi. J., and Malik. J.(2000) Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence. 22. S (2(X)0), 8S8-905.

	Frontmatter
	Plenary Talk I
	The Distributed Sensor Networks -- An Emerging Technology

	Distributed Computing
	Distribute Computing Track Chair's Message

	Network Protcols
	Efficient Binding Lifetime Determination Schemes in HMIPv6
	A Fast Search and Advanced Marking Scheme for Network IP Traceback Model
	Design and Performance Evaluation of Token-Based MAC Protocols in WDM Burst Switched Ring Networks

	Routing in Mobile Ad Hoc Network
	Self-stabilizing Energy-Aware Routing Algorithm in Wireless Sensor Network with Limited Mobility
	Position Based Gradient Routing in Mobile Ad Hoc Networks
	Distributed Clustering Algorithm for Finding Virtual Backbone in Ad Hoc Networks
	Merging Clustering Algorithms in Mobile Ad Hoc Networks
	Performance Study and Implementation of Self Organized Routing Algorithm for Mobile Ad Hoc Network Using GloMoSim

	Communication and Coverage in Wireless Networks
	Self-stabilizing Deterministic TDMA for Sensor Networks
	Effect of Mobility on Communication Performance in Overloaded One-Dimensional Cellular Networks
	Distributed Time Slot Assignment in Wireless Ad Hoc Networks for STDMA
	Efficient Algorithm for Placing Base Stations by Avoiding Forbidden Zone

	Secured Communication in Distributed Systems
	Secure Two-Party Context Free Language Recognition
	Autonomous Agent Based Distributed Fault-Tolerant Intrusion Detection System
	Cleaning an Arbitrary Regular Network with Mobile Agents

	Query and Transaction Processing
	Multi-attribute Hashing of Wireless Data for Content-Based Queries
	A Tool for Automated Resource Consumption Profiling of Distributed Transactions
	An Efficient Algorithm for Removing Useless Logged Messages in SBML Protocols

	Theory of Distributed Systems
	Divide and Concur: Employing Chandra and Toueg's Consensus Algorithm in a Multi-level Setting
	Distributed Multiple Hypothesis Testing in Sensor Networks Under Bandwidth Constraint
	A Scalable Multi-level Distributed System-Level Diagnosis
	Analysis of Interval-Based Global State Detection

	Grid Computing
	A Two-Phase Scheduling Algorithm for Efficient Collective Communications of MPICH-G2
	Towards an Agent-Based Framework for Monitoring and Tuning Application Performance in Grid Environment
	GDP: A Paradigm for Intertask Communication in Grid Computing Through Distributed Pipes

	Internet Technology
	Internet Technology Track Chair's Message

	Internet Search and Query
	Rewriting Queries Using View for RDF/RDFS-Based Relational Data Integration
	An Effective Searching Method Using the Example-Based Query
	On Communicating with Agents on the Network

	E-Commerce
	Applying Fuzzy Logic to Recommend Consumer Electronics
	Generic XML Schema Definition (XSD) to GUI Translator
	Off-Line Micro-payment System for Content Sharing in P2P Networks

	Browsing and Analysis of Web Elements
	FlexiRank: An Algorithm Offering Flexibility and Accuracy for Ranking the Web Pages
	Adaptable Web Browsing of Images in Mobile Computing Environment: Experiments and Observations
	An Incremental Document Clustering Algorithm Based on a Hierarchical Agglomerative Approach

	Systems Security
	System Security Track Chair's Message

	Theory of Secured Systems
	A Game Based Model of Security for Key Predistribution Schemes in Wireless Sensor Network
	E-mail Worm Detection Using the Analysis of Behavior
	Verifiably Encrypted Signature Scheme Without Random Oracles

	Intrusion Detection and Ad Hoc Network Security
	An Improved Intrusion Detection Technique for Mobile Adhoc Networks
	User Revocation in Secure Adhoc Networks
	A Hybrid Method to Intrusion Detection Systems Using HMM

	Secured Systems Techniques
	Enhanced Network Traffic Anomaly Detector
	Statistically Secure Extension of Anti-collusion Code Fingerprinting
	An Improvement of Auto-Correlation Based Video Watermarking Scheme Using Perceptual Masking for Motion
	Validation of Policy Integration Using Alloy

	Plenary Talk II
	Linking Theories of Concurrency by Retraction

	Software Engineering
	Software Engineering Track Chair's Message

	Software Architecture
	Integrating Architecture Description Languages: A Semantics-Based Approach
	Automated Runtime Validation of Software Architecture Design

	Software Optimization and Reliability
	Analyzing Loop Paths for Execution Time Estimation
	A Technique for Early Software Reliability Prediction

	Formal Methods
	Executable Requirements Specifications Using Triggered Message Sequence Charts
	Efficient Symmetry Reduction for an Actor-Based Model
	Validated Code Generation for Activity Diagrams

	Data Mining
	Data Mining Track Chair's Message

	Data Clustering Techniques
	An Approach to Find Embedded Clusters Using Density Based Techniques
	Using Sub-sequence Information with kNN for Classification of Sequential Data
	Distance-Based Outliers in Sequences
	Capturing Market Intelligence from Customer Feedback E-mails Using Self-enhancing Bolzmann Machine-Based Network of Knowledge Maps

	Multidimensional Data Mining
	Algorithm for Fuzzy Clustering of Mixed Data with Numeric and Categorical Attributes
	Dissemination of Multidimensional Data Using Broadcast Clusters
	Multidimensional Frequent Pattern Mining Using Association Rule Based Constraints
	A Classification Based Approach for Root Unknown Phylogenetic Networks Under Constrained Recombination

	Backmatter
	Errata
	Using Sub-sequence Information with kNN for Classification of Sequential Data
	Capturing Market Intelligence from Customer FeedbackE-mails Using Self-enhancing Boltzmann Machine-BasedNetwork of Knowledge Maps

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

